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The normalised Sentinel-1 Global 
Backscatter Model, mapping 
Earth’s land surface with C-band 
microwaves
Bernhard Bauer-Marschallinger  1 ✉, Senmao Cao1,2, Claudio Navacchi1, Vahid Freeman1,3, 

Felix Reuß1, Dirk Geudtner4, Björn Rommen4, Francisco Ceba Vega4, Paul Snoeij5, 

Evert Attema6, Christoph Reimer2 & Wolfgang Wagner  1,2

We present a new perspective on Earth’s land surface, providing a normalised microwave backscatter 
map from spaceborne Synthetic Aperture Radar (SAR) observations. The Sentinel-1 Global Backscatter 
Model (S1GBM) describes Earth for the period 2016–17 by the mean C-band radar cross section in  
VV- and VH-polarisation at a 10 m sampling. We processed 0.5 million Sentinel-1 scenes totalling 
1.1 PB and performed semi-automatic quality curation and backscatter harmonisation related to 
orbit geometry effects. The overall mosaic quality excels (the few) existing datasets, with minimised 
imprinting from orbit discontinuities and successful angle normalisation in large parts of the world. 
Regions covered by only one or two Sentinel-1 orbits remain challenging, owing to insufficient angular 
variation and not yet perfect sub-swath thermal noise correction. Supporting the design and verification 
of upcoming radar sensors, the obtained S1GBM data potentially also serve land cover classification and 
determination of vegetation and soil states. Here, we demonstrate, as an example of its potential use, 
the mapping of permanent water bodies and evaluate against the Global Surface Water benchmark.

Background & Summary
Spaceborne Synthetic Aperture Radars (SAR) scan the Earth with microwaves, supplementing our visual per-
ceptions as captured by optical satellite missions. Analogous to optical sensors that record re�ected sunlight in 
the visible and infrared spectrum, they enable the retrieval of geophysical variables, as e.g. vegetation density1–3, 
forest condition4–6, soil moisture7–9, snow cover10,11, land cover12,13, and water extent14–16. While satellite-borne 
optical sensors might be hampered by atmospheric elements or in case of clouds entirely blocked, microwave 
sensors are hardly ever disturbed by the atmosphere, due to their active radar signal transmission. �ey allow a 
clear view on the surface, under all weather conditions and at any time of day and night. High-resolution SARs, 
which provide a spatial resolution comparable to optical imagery, are in particular valuable when optical sensors 
fail. Furthermore, as they operate in the microwave spectrum and respond to di�erent physical processes, the 
obtained radar signals depict an additional source of information, measuring ground variables from another 
physical perspective, or even reveal new properties.

�e processing and interpretation of SAR data is complicated by the nature of radar signal scattering mech-
anisms, rendering the work with it challenging, in both engineering and scienti�c terms, while the radar com-
munity is lacking a robust reference dataset. A global SAR backscatter mosaic describing the Earth surface in a 
comprehensive and harmonised way, free from voids and artefacts, was still up to now unavailable. Albeit that 
SAR-satellites are orbiting since the 1970s, planetary-scale backscatter mosaics were created only recently. To our 
knowledge, the �rst global composites were created in 2010 from Envisat ASAR17 (500 m sampling, 5.3 GHz), and 
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in 2013/19 from ALOS PALSAR-1/218 (25 m sampling, 1.27 GHz). Although making large steps forward, those 
mosaics inherit inconsistencies from erratic observations patterns due to concurrent observational sensor modes.

In this regard, ESA’s 2014-launched Sentinel-1 mission19 represents a game changer. Employing C-band SAR 
instruments (CSAR) operated at a 5.5 cm wavelength, it is the �rst SAR mission that is dedicated to a systematic 
backscatter acquisition, with a two-satellite-constellation scanning global land masses at a 10 m sampling within  
6 days. Owing to the mission’s unprecedented coverage, it became quickly possible to produce first global 
Sentinel-1 image mosaics. Examples are the composite image for 2014–17 created by Descartes Labs20 on the 
Google Earth Engine21, and the dual-polarisation mosaic for 2016 by the Joint Research Centre of the European 
Commission (JRC-EC) that demonstrated also the mapping of human settlements22. Notwithstanding Sentinel-1’s  
systematic acquisition plan, also these mosaics show some pronounced artefacts related to coverage heteroge-
neity, due to CSAR’s duty cycles limited by on-board power, thermal- and data-downlink -constraints, and the 
mission’s �xed orbit con�guration that generates a discriminative swath footprint pattern9. Moreover, as a result 
of maintaining the repeat orbit acquisition geometry (that serves well SAR-interferometry), many parts of the 
world are observed from only one viewing angle in ascending or descending overpass direction. Especially out-
side Europe (which is prioritised within the duty cycles and is hence well-covered) this poses a great challenge 
when normalisation by (projected) local radar incidence angle (PLIA) is sought.

Not addressed so far in mosaicking endeavours, PLIA-normalisation is essential for the generation of a har-
monised backscatter mosaic and for downstream applications, as radar backscatter is strongly varying with view-
ing angle. Here, we present the Sentinel-1 Global Backscatter Model (S1GBM), the �rst complete global land 
backscatter mosaic that is normalised to a single reference incidence angle, and hence suitable for spatially exten-
sive analysis and application. Based on the Sentinel-1A and −1B Interferometric Wide Swath (IW) mode acqui-
sitions19, it provides 2.67 TB of quality-curated layers at a 10 m sampling, and covers 97.9% of global land outside 
Antarctica for 2016–17. Backscatter is expressed in terms of σ° (sigma nought) at VV- and VH- polarisation, and 
is PLIA-normalised to an incidence angle of 38° using a linear regression method.

�e S1GBM was generated to support the design, testing and veri�cation of future C-band radar missions 
(Sentinel-1C/D, HydroTerra, Harmony, Sentinel-1 Next Generation (NG)), related SAR-processor performance 
simulations, raw data downlink compression optimisation, and for visualisation purposes. Nonetheless, it also 
presents a valuable environmental record for investigating the C-band VV/VH backscatter response over di�er-
ent land covers, and documenting the state of the land surface in 2016/17. In this publication we demonstrate the 
global mapping of permanent water bodies (PWB), through applying a simple threshold on the S1GBM layers. 
Although the algorithm is comparatively compact, results from comparison against 2015’s benchmark of Global 
Surface Water from JRC-EC23 are very encouraging. We invite developers from the broader user community to 
exploit this novel data resource and to integrate S1GBM parameters in models for various variables of land cover, 
soil composition, or vegetation structure.

Methods
�e aim of our work was to create consistent and comprehensive mosaics from the Sentinel-1 CSAR observations 
over land. As a start into this paper, Fig. 1a presents the S1GBM’s main layer, the global mosaic of the normalised 
mean radar backscatter signal (henceforth referred to as “backscatter”) in VV polarisation covering the period 
2016–17. In this overview world map, one can see the general characterisation of the Earth’s land masses as per-
ceived by C-band radar sensors, – with high average backscatter over the tropical rain forests, – with medium 
backscatter in the temperate climates sustaining agrarian cultivation, – with low backscatter over the sparsely 
vegetated grasslands of the American Great Plains, Kazakhstan and central Asia, and the savannas of southern 
Africa, – and with extreme low backscatter over arid areas of the subtropics in Africa, Arabia, and Australia, as 
well as in China and Mongolia. Beyond those characteristics at region-scale, the mosaic holds also a variety of 
land-cover and geomorphologic features at �eld scale, delineating e.g. rivers, lakes, forests, infrastructure, and 
cities (compare also with the zoomed-in detail in Fig. 2a), but also surface properties bound to soil- and bedrock 
composition, dominating e.g. the Sahara, Arabia, Australia, and the Tibetan Plateau.

Figure 1b maps the input data density to the mosaic above, counting per mosaic pixel the number of used (and 
quality-checked) datasets, and re�ecting to a great deal the Sentinel-1’s ground coverage pattern over landmasses 
of the 2016–17 period. Daily-updated global Sentinel-1 accumulative coverage maps are provided by the public 
data catalogue24 of the Earth Observation Data Centre (EODC).

Sentinel-1 mission ground coverage. As obvious from the density map in Fig. 1b,the mission’s coverage 
is inhomogeneous in two respects: First, ESA’s Sentinel-1 acquisition strategy prioritises Europe and tectonic 
active areas, whereas over other regions the CSAR data acquisition is selectively switched active/inactive, with the 
aim to make optimal use of the SAR cycle within the technical constraints of the overall system. Second, the e�ec-
tive ground coverage varies within a region, with either a rhomboid footprint pattern bound to the interwoven 
orbit overpasses in case of a dense coverage, or a linear pattern in case of coverage by only one local orbit overpass 
with CSAR data acquisition active.

Let us examine the overpass pattern in detail: It is persistent in time and stems from the �xed orbit- and 
observation-con�guration with a repeat cycle of exactly 12-days for each Sentinel-1 satellite. �e global data cov-
erage was gradually improved during the mission’s exploitation ramp-up phase (covering our 2016–17 period), 
in line with the increasing operational capacity. Full details on the coverage pattern are outlined in the Sentinel-1 
SAR observation scenario25. As a summary here, the scenario follows the Sentinel High Level Operations Plan 
(HLOP26) and de�nes for land monitoring that most of the global landmasses are mapped every 12 days at least. 
�e European land and coastal waters are systematically mapped within the 6-day constellation repeat cycle 
in both ascending and descending passes, using dual-polarisation (VV & VH). Tectonic/volcanic areas outside 
Europe are covered alternating between ascending and descending passes, each within a 24-day repeat-pass 
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Fig. 1 (a) S1GBM’s main layer, the global mosaic depicting the average VV-polarised backscatter coe�cient  
σ0 in decibels (dB), normalised to 38° incidence angle, for the period 2016–2017. �e dataset’s extent is mapped 
in dark grey over the sea; non-covered land areas are mapped in white (omitting non-covered Antarctica).  
(b) Input density map to the mosaic in a), mapping per pixel the number of used Sentinel-1 scenes from the 
period 2016–17. �e S1GBM detail images displayed in the Technical Validation section are shown in blue.
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interval. Speci�c observation campaigns and monitoring modes are set up for the global sea-ice and iceberg 
waters, and ice-sheets of Greenland and Antarctica.

E�ectively, individual ground locations are covered with di�erent revisits, ranging from 9 to 1 local observa-
tions within 12 days. �is so-called coverage frequency is in general improving with latitude (e.g. over Europe), 
but shows also a longitudinal component, leading to areas of high observation frequency next to areas of low 
observation frequency (as discussed in detail by Bauer-Marschallinger et al.9). �e density map in Fig. 1b clearly 
shows the linear patterns in non-prioritised regions covered by only one or two overpasses with CSAR data 
acquisition active, e.g., over great portions of Africa, Australia, Russia, Canada, and the eastern sections of the 
Americas. �ese sections were particularly challenging to normalise for the incidence angle. As a result, a remain-
der of the initial artefacts in the backscatter mosaics are visible in Fig. 1a over the tropic and subarctic forests.

Mosaicking challenges. Overall, we faced two major challenges for the generation of harmonised global 
Sentinel-1 composite maps: First, aggregating a multitude of individual SAR scenes was imperative, as averaging 
over a large number of temporally distributed measurements was needed to suppress the impact of natural soil 
moisture variability and vegetation phenology. We had to collect and deal with a huge amount of Sentinel-1 
input and interim data (a single Sentinel-1 scene has a compressed volume of about 1 GB), which needed to be 
preprocessed, structured, and stored in an e�cient way. Second, as already mentioned above, it does not su�ce to 
simply stitch the images together in time, since acquisition patterns from the di�erences in the viewing geometry 
persist. �e next section is dedicated to describe how we tackled both tasks, presenting our chosen processing 
and data organisation strategy, and showing how one can normalise the Sentinel-1 data to reduce the in�uence 
of the observation geometry represented by the PLIA. �e section closes with a description of our mosaicking 
procedure and quality curation.

Data acquisition and preprocessing. Sentinel-1 Ground Range Detected High-resolution (GRDH) 
Interferometric Wide swath (IW) products are used as input for the S1GBM. �e GRD data product type features 
a nominal spatial resolution of about 20 m × 23 m and contains dual-polarisation backscatter in VV and VH that 
has been detected, multi-looked, and projected onto the WGS84 ellipsoid with a 10 m ground sampling. IW is 
Sentinel-1’s main dataset over land that, however, leaves out large portions of Greenland, Novaya Zemlya, and 
the Canadian Arctic Archipelago (i.e. 2.1% of global land outside Antarctica). �ose regions are observed by the 
Sentinel-1 mission in the Extra Wide (EW) swath mode at a 40 m projected sampling and in HH and HV polari-
sation (see the IW GRD data speci�cations27).

�e Sentinel-1 IW data is collected and hosted by a dedicated service of the Earth Observation Data Centre 
for Water Resources Monitoring (EODC, https://www.eodc.eu/). To increase timeliness and completeness of the 
data collection, EODC deploys a so-called “Hubwatcher” to monitor and cross-check di�erent data resources and 
hubs, e.g. the Copernicus Services Data Hub28 or the Sentinels Collaborative Data Hub29.

Hard- and software setup. In the course of the development of the S1GBM, 460000 input Sentinel-1A/B 
scenes from the years 2016–17, totaling a raw data volume of 360 TB, were processed via 700 TB intermediate 
data to a total of 80 TB non-normalised and normalised mosaic layers. �e Petabyte-scale data amount obviously 
placed high demands on processing- and storage- facilities, requiring hardware consisting of a supercomputer 
connected to a fast accessible mass data storage, and innovative processing chains to perform parallel processing 
of the manifold input sensor records and higher-levels intermediates.

�ese hardware requirements were met by the EODC/TUW’s infrastructure that employs 1) the Vienna 
Scienti�c Cluster 3 (VSC-3) embedding 2200 computing nodes each with 2 × 2.6GHz Intel processors and 64 GB 
or optionally 128 GB memory, 2) a VSC-side 0.6 PB BeeGFS Filesystem and EODC’s IBM GPFS storage holding 
7 PB that is connected to VSC-3 via a 8 × 40 GBit In�niBank fabric, and 3) an on-site virtualised research and 
development cloud environment. On this system, a total of 3 million core hours were consumed for the genera-
tion of the S1GBM.

Regarding processing so�ware, the Department of Geodesy and Geoinformation at the TU Wien (Technische 
Universität Wien) developed the dedicated so�ware suite SAR Geophysical Retrieval Toolbox (SGRT v2.4) for 
the large-scale processing of Sentinel-1 products and the subsequent data aggregation and extraction of geophys-
ical parameters. Its framework uses the Python language and comprises work�ows of several image and signal 
processing components, including a parallelised SAR preprocessing module environing the Sentinel-1 Toolbox 
(S1TBX30) of ESA’s Sentinel Application Platform (SNAP v6.0).

For storing and managing the processed data and �nal mosaics, we used the EODC/TUW’s global data-
cube approach based on the Equi7Grid31, a spatial reference system designed to handle e�ciently the archiving, 
processing, and displaying of high resolution raster data over land. It preserves geometric accuracy and mini-
mises data oversampling to a very low value of 2% (as compared to 36% of the Lat-Lon-projection, for exam-
ple). Recently, the Equi7Grid was found to preserve the accuracy of geometric-analytical measures around the 
globe, being most bene�cial for terrain analysis32. De�ned for the entire Earth (code and data openly accessible 
on GitHub33), it consists of seven planar subgrids for each continent and features a scalable tiling scheme. In 
combination with an image stacking layout and a metadatabase at the storage �le system, the Equi7Grid lays the 
foundation for a tiled datacube that directly enables parallelisation of processing and spatio-temporal data access 
required for the generation of the S1GBM aggregation layers.

Sentinel-1 CSAR preprocessing. �e preprocessing of Sentinel-1 SAR data constituted the by far most 
computation e�ort in the entire processing chain, and was the major driver to employ the described hard- and 
so�ware system, with its large-scale computing cluster, e�cient job parallelisation, fast �le system, and capacious 
data storage.
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SGRT’s preprocessing module ingests individually the Sentinel-1 IW GRDH images, and subsequently applies 
1) orbital state vectors 2) image border noise removal following an algorithm developed speci�cally for S-134 3) 
annotated radiometric calibration factors 4) slant range – zero Doppler geometric terrain correction (using a 
combined 3arcsec SRTM/GDEM elevation model [VFP SRTM DEM at 90 m pixel sampling35]) 5) projection onto 
the Equi7Grid using gdalwarp36 with bilinear resampling and splitting into 100 km-sized “T1”-tiles.

�e output images hold σ° (sigma nought) backscatter coe�cient values in decibel (dB) and are time-stacked 
per Equi7grid-T1-tile, building the data basis for the mosaic generation. More details on the SAR preprocessing 
with SGRT can be found in dedicated studies34,37,38.

Incidence angle normalisation. In general, the radar backscatter is the portion of a transmitted radar 
signal that is scattered back by observed objects. �e received energy depends not only on the ground target 
itself and its characteristics comprising geometry, dielectric properties, and other (sub-)surface properties, but 
also on speci�cations of the sensor, such as radar frequency, polarisation, and the observation geometry. �e 
Earth-sensor geometry is de�ned foremost by the local incidence angle (LIA), or more preferable the projected 
local incidence angle (PLIA), which accounts for the orientation of the local normal vector in azimuth and is 
herein referred to as θ39.

While sensor speci�cations are invariable and well-known, θ is variable and also substantially impacts the 
backscattered signal. Generally, backscatter decreases with increasing θ, since more energy is scattered forward 
than backward and is therefore not received by the sensor. SAR imaging sensors, with their side-looking observa-
tion geometry, intrinsically record the backscatter signal with a gradient from near- to far-range, which adds to a 
second geometric impact from the topography relief. While the e�ect from the relief could be accounted for 
through the reconstruction of the illuminated surface area following the approach of Small et al.40 for radiomet-
rically terrain-�attened gamma nought backscatter (γT

0), the backscatter’s dependency on θ due to di�erent scat-
tering mechanisms in different land cover types still needs to be modelled. Moreover, we aim for a global 
σ°-reference for future C-band missions. �erefore, to make all measurements from the Sentinel-1 imagery 
directly comparable—which is the main goal of mosaicking—we account for the di�erent values of θ and normal-
ise the σ°-backscatter recordings of each observation to a �xed reference angle.

Yet, modelling the relation of θ with backscatter expressed as σ° is not straightforward as it is a function 
of local properties of the observed surface. In case of a smooth surface, a specular re�ection leads to a strong 
dependency. In case of a surface covered by vegetation, backscatter directionality is more uniform over all 
θ-angles due to volume scattering along the ray path, which leads to a weaker dependency of backscatter with θ. 
Seen from the opposite perspective, the PLIA-dependency carries useful information about land cover, vegeta-
tion, and changes within the phenological cycle41. �roughout the years, various σ°-backscatter normalisation 
techniques have been developed for SAR applications. Most of them are data-driven and estimate a regression 
model based on either a temporal dataset42 or a speci�c sensing geometry43. �e more recent study in9 presents 
for 500 m-sampled Sentinel-1 IW data a multivariate linear regression approach that exploits local signal varia-
tion and mean backscatter. A more comprehensive approach44 takes into account also azimuthal modularisation, 
using the orientation of the local relief and orbit-speci�c statistics, and presents a new method to simultaneously 
normalise for the incidence- and the azimuth- angle of Sentinel-1 measurements.

�e Sentinel-1 mission features—in support of repeat-pass SAR interferometry—a very stable orbit geometry 
repetition with well-de�ned orbital baselines, allowing the application of a-priori PLIA values θro, stored for each 
of the 175 relative orbits. In IW mode, Sentinel-1 covers incidence angles ranging from 29° to 46° using an Earth 
ellipsoid as reference surface. Aiming for a homogeneous global mosaic that is normalised to the central value of 
θ at 38°, we examined existing methods and concluded that a simple linear regression model is most robust, esti-
mating per 10 m-pixel one single slope parameter for the local PLIA-dependency that describes the inverse linear 
relationship between θ and backscatter σ° (as in Pathe et al.7). �is slope, or β, is then used in the normalisation 
step to tilt the local backscatter distribution (from the local time series σ°(θ, t)) to the reference incidence angle of 
38°, yielding the normalised backscatter values σ° (38, t):

σ σ θ β θ= − −
�t t(38, ) ( , ) ( 38 ) [dB] (1)ro ro

0 0

We note that an interpolation method based on historic Envisat ASAR Wide Swath data showed good perfor-
mance over Europe, but could not be employed globally due to ASAR’s incomplete global coverage. Methods that 
estimate normalisation parameters for each Sentinel-1 orbit geometry showed much more computational e�ort 
while failing in areas observed from only one or two orbits, which have only little PLIA-spread. In those prob-
lematic areas, which are found globally but mainly in low-latitudes (compare with Fig. 1b), also our simple linear 
regression cannot produce reliable β-estimates. However, we found that a static value for β of −0.13 dB/° showed 
visually acceptable results in these areas and is used there in the S1GBM. �is value is obtained as spatially aver-
aged β from selected European areas that are covered by four Sentinel-1 orbits that span typically a PLIA-spread 
larger than 8°. While the use of a static β-value is not optimal, it was a practical choice that allowed us to complete 
the world-wide processing. In the future, this limitation might be overcome by improved Sentinel-1 coverage and 
machine learning approaches that predict spatially variable values for β in these areas using models trained in the 
well-covered regions.

Layer aggregation & image mosaicking. Basically, the S1GBM mosaic layers are generated as statistical 
parameters from normalised backscatter derived from SAR data acquired in the period 2016–2017. A�er popu-
lating the global Sentinel-1 datacube with output from preprocessing the 460000 IW GRDH scenes, two sets of 
mosaics were generated, one from non-normalised backscatter for each relative orbit, and one from normalised 
backscatter combining all orbit overpasses. �e latter builds the here presented mosaic layers and constitute 
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the S1GBM Version 1.0. As a note, we also generated a separate set of mosaics for the Arctic region based on 
40 m-sampled Sentinel-1 Extra Wide Swath (EW) mode data, but we omitted them in this �rst release for con-
sistency reasons.

Within the 10m-sampled Sentinel-1 datacube, for each pixel the normalised backscatter time series σ° (38, t) 
were built, analysed, and processed to statistical parameters, such as mean, standard deviation, minimum, maxi-
mum, and counts of valid observations.

More speci�cally, the S1GBM mosaicking process was carried out individually per Equi7Grid T1-tile, consist-
ing of the following steps:

 1. selection and quality check of Sentinel-1 preprocessed data, comprising backscatter (i.e. σ°) and PLIA (i.e. 
θ) image stacks

 2. generation of mean PLIA images per Sentinel-1 relative orbit, representing the a-priori θro for 1–8 relative 
orbits covering a T1-tile

 3. estimation of local slope (β) per pixel from linear regression, and �lling up with β = −0.13 dB/° where the 
number of local relative orbits is ≤2

 4. normalisation of σ° (t) to σ0 (38, t) with Eq. 1
 5. conversion of σ0 (38, t) backscatter to linear unit
 6. calculation of statistical parameters using the NumPy library45

 7. conversion of statistical parameters to decibels
 8. storing each parameter to a datacube, as a T1-tiled GeoTIFF �le

Artefacts and remedies. During the development of the mosaics, several issues and artefacts have been encoun-
tered with the Sentinel-1 IW GRDH inputs, such as 1) narrow, linear gaps between subsequent slices of Sentinel-1 data 
takes, 2) so-called “dirty pixels” on the border of an acquisition, 3) Radio-Frequency Interference (RFI) pollution, 4) 
bands of di�erent backscatter levels due to thermal noise, and gaps at the antimeridian (i.e. 180° East/West).

�e gaps between subsequent slices were initially found in the non-normalised parameters during the quality 
checking. Boosting e�ciency and data downlink, ESA slices Sentinel-1 IW observations along-track per 25 sec 
sensing time. �ose slices are published individually and share no overlap with their adjacent slices. However, 
during the geocoding step, computing the correct backscatter values along the cut-line-rows requires the adjacent 
measurements, or otherwise it generates no-data values, locally. As the SAR datasets are generally ingested sepa-
rately and processed in parallel, narrow stripes of no-data are generated at a dataset’s start- and end rows, yielding 
linear gaps in the mosaic of one orbit data take, with a width up to 30 pixels. In most cases, this did not a�ect the 
integrity of the S1GBM’s mosaics, as the along-track position of the image slicing was not always the same, and 
hence the gaps were �lled-up over time thanks to a su�cient input data density. In the case of the normalised 
mosaics, this is even more relaxed, as they combine data from up to six di�erent orbits. However, areas covered 
by only one relative orbit were still impaired by those gaps, and this compelled us to implement a simple remedy: 
First we detected the artefacts (totaling 760 in non-normalised mosaics; 65 in normalised mosaics) using simple 
spatial operators. Second, we �lled up the parameters with backscatter data by re-processing identi�ed slices that 
we merged pair-wise before geocoding.

One challenging problem was caused by SAR measurement artefacts, which required dedicated manual qual-
ity curation of our team. E�ects such as Radio Frequency Interference (RFI), and “dirty pixels” stemming from 
erroneous resampling in the GRD data, occur both randomly in the IW GRDH data and are di�cult to detect 
with an automatised procedure. To screen these artefacts, downsampled quick-look images at various scales have 
been generated and checked manually. �e clean and �nal S1GBM parameters were generated then by excluding 
artefact-carrying backscatter images.

�ermal noise is an additive background noise that is caused by microscopic motion of electrons due to SAR 
instrument temperature and can be observed when backscatter is very low (<−22 dB), e.g. over water or deserts 
and at VH-polarisation. Sentinel-1 IW (and EW) measurements are multi-swath observations and su�er from 
unequal noise e�ects in the sub-swaths, leading to discontinuous sharp changes in the intensity at inter-swath 
boundaries46. �e di�erent noise levels in the IW data-takes can by corrected through application of annotated 
thermal noise vectors, but only with the Sentinel-1 Instrument Processing Facility (IPF47) upgraded to version 
2.90 in March 2018 thermal noise could be reduced signi�cantly, and has been much less apparent since then. 
Consequently, in our 2016–17-based S1GBM, linear artefacts from thermal noise might be observed over areas 
with low backscatter, in particular over low-backscatter-areas like waters or deserts in the VH-mosaic.

Another problem occurred during the preprocessing of datasets that cross the antimeridian. �ese data sets 
could not be pre-processed successfully with SNAP v6.0 in the default Lat-Lon projection (to which SNAP’s 
geocoding module is optimised), simply due to discontinuity at the antimeridian. �erefore, the Azimuthal 
Equidistant projections for Asia and North America of the Equi7Grid system were directly used during the pre-
processing of the a�ected datasets.

Data Records
�e Sentinel-1 Global Backscatter Model (S1GBM) describes the C-band radar cross section of the Earth’s land 
surface of the years 2016–17, generated from Sentinel-1 IW GRDH backscatter normalised to the reference inci-
dence angle of 38°. In the Version 1.0 presented here, the S1GBM comprises two global mosaics describing the 
temporal mean of sigma nought backscatter σ0 (38, t) in VV- and VH-polarisation respectively.

Dataset structure. Analogous to the Sentinel-1 preprocessed input datacube, each mosaic is sampled at  
10 m pixel spacing, georeferenced to the Equi7Grid31, and divided into six continental zones (Africa, Asia, 
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Europe, North America, Oceania, South America, omitting Antarctica), which are further divided into square 
tiles of 100 km extent (“T1”-tiles). With this setup, the S1GBM consists of 16071 tiles over six continents, for VV 
and VH each, totaling to a data volume of 2.67 TB. For the purpose of this publication, the dataset is organised in 
twelve collections, one for each of the six continents and the two polarisations. See Table 1 for the summary of the 
collections’ �le names, tile counts, and data volume.

Dataset publication. �e dataset is published by ESA and hosted by the TU Wien Data Repository platform 
(TU Data), an institutional data repository for publication of data following the FAIR principles48. �e S1GBM 
dataset and its speci�cations can be found on

•	 on its ESA landing page49

•	 and via its Digital Object Identi�er (DOI)50

All of the twelve collections share this single DOI, but can be downloaded individually as zipped folders (.zip). 
�e long term availability of data is one of the core objectives of the TU Data repository, and the S1GBM data 
record will be maintained for a minimum of 10 years.

�e tiles’ �le-format is a LZW-compressed GeoTIFF holding 16-bit integer values, with tagged metadata on 
encoding and georeference. Compatibility with common geographic information systems as QGIS or ArcGIS, 
and geodata libraries as GDAL is given. In addition to the original data images, downsampled quicklook-�les of 
same geographic extent are available for all tiles, allowing previewing the data in a convenient manner.

File nomenclature. �e folder logic within a collection may be illustrated by the example of North America, 
tile “E064N036T1” and VH polarisation:

\S1GBM_VH_mean_mosaic_v1_EQUI7_NA010M\E064N036T1\
A �lename of one tile of a mosaic may be for example:
M20160104_20171230_TMENSIG38_S1-IWGRDH1VH-_——_B0104_NA010M_E064N036T1.tif
It de�nes the following:

•	 “M” for the actual main data, or “Q” for the quicklook-�le (for preview, see below).
•	 start- and end-time of input data to this mosaic tile, in the format YYYYMMDD
•	 the aggregated statistical parameter; for Version 1.0 this is always “TMENSIG38”, i.e. mean of backscatter 

normalised to 38°
•	 relating to the input data, the satellite and sensor mode identi�er “S1-IWGRDH1”, abbreviating Sentinel-1 

Interferometric Wide Swath mode that is Ground Range Detected at High-resolution
•	 the backscatter polarisation; so “VV” or “VH”
•	 the version of TU Wien’s internal processing engine, i.e. “B0104”
•	 the identi�er for Equi7Grid’s continental grid, with pixel sampling in meters, e.g., “NA010M” for North 

America and 10 m pixel size
•	 the identi�er for Equi7Grid’s tile within the continent, de�ned by the lower le� coordinate, and the tile extent; 

e.g. “E064N036” for 6400 km easting and 3600 km northing, and “T1” for 100 km tile extent to the east and north

Web-based data viewer. In addition to the data provision at the TU Data repository50, we set up at the EODC 
facilities an open web-based dataset viewer51, o�ering an intuitive pan-and-zoom exploration of the full S1GBM 
VV and VH mosaics. It was designed for use by both laymen and professional users who want to quickly browse 
the S1GBM, allowing them to get a visual impression of the mosaics. To ease browsing the dataset accessed from 
the repository, the EODC/TUW data viewer features a graphical overlay of the continental zones and the T1-tiles 
of the Equi7Grid.

Collection �le name Continent Tiles VH Tiles VV Volume

S1GBM_VH_mean_mosaic_v1_EQUI7_AF010M Africa 3775 320 GB

S1GBM_VV_mean_mosaic_v1_EQUI7_AF010M 3776 336 GB

S1GBM_VH_mean_mosaic_v1_EQUI7_AS010M Asia 4457 378 GB

S1GBM_VV_mean_mosaic_v1_EQUI7_AS010M 4457 379 GB

S1GBM_VH_mean_mosaic_v1_EQUI7_EU010M Europe 1339 100 GB

S1GBM_VV_mean_mosaic_v1_EQUI7_EU010M 1339 98 GB

S1GBM_VH_mean_mosaic_v1_EQUI7_NA010M North America 2669 223 GB

S1GBM_VV_mean_mosaic_v1_EQUI7_NA010M 2670 215 GB

S1GBM_VH_mean_mosaic_v1_EQUI7_OC010M Oceania 1786 144 GB

S1GBM_VV_mean_mosaic_v1_EQUI7_OC010M 1788 139 GB

S1GBM_VH_mean_mosaic_v1_EQUI7_SA010M South America 2041 169 GB

S1GBM_VV_mean_mosaic_v1_EQUI7_SA010M 2041 169 GB

 Total 16067 16071 2.67 TB

Table 1. �e ESA S1GBM data publication is organised at the TU Data repository in twelve collections, with 
information on tile count per continent and polarisation, and data volume. Note that for each of the 32138 tiles, 
an additional quicklook-�le is provided, yielding a total number of 64276 �les.
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Fig. 2 Example of the (a) S1GBM VH and (b) VV mosaics of the area of Bordeaux, France, compared with  
(c) the local Land Cover classes for the year 2015 of the Copernicus Global Land Service, and with  
(d) Sentinel-1 mean VV backscatter from the same observation period and all relative orbits covering the area, 
but not normalised for incidence angle (PLIA). (d) includes a mini-map of the same area plotting the number of 
Sentinel-1 observations contributing to (b) and (d) that is bound to Sentinel-1’s (heterogeneous) orbit coverage 
pattern.
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Technical Validation
With S1GBM’s characteristics as a global, PLIA-normalised, high-resolution C-band backscatter dataset, a direct 
validation experiment is not feasible since we lack matching reference backscatter data collected during airborne 
or ground based radar campaigns. Other existing global mosaics were generated based on di�erent time-spans, 
polarisations17, frequencies18, or do not share the novel feature of the PLIA-normalisation20.

On these grounds, we prefer to assess the characteristics of the S1GBM layers with respect to di�erent land 
cover types on a global scale, and to incorporate the gained knowledge into an easy-to-use classi�cation algo-
rithm for permanent water bodies (PWB). �is simple mapping experiment acts as an example and should on 
the one hand demonstrate the integrity and quality of the S1GBM mosaics (and document its limitations), and 
on the other hand, stimulate more advanced applications and ingestion-models by the remote sensing- and the 
wider user -communities. Our validation of the obtained PWB-map compares—over a representative and diverse 
set of eight world regions (see Fig. 1b)—the S1GBM mosaic with a reference water body map, as well as with 
true-colour imagery from the Sentinel-2 optical sensor. �is arrangement should also portray the shape and 
texture of the S1GBM mosaic and help the audience with the interpretation of the SAR imagery, which as stated 
at the outset, allows a unique view on the Earth’s surface.

In the following, 1) we examine in detail the appearance and spatial features of the S1GBM VV- and 
VH-mosaics over the region of Bordeaux, also investigating the effect of the PLIA-normalisation. Then, 2) 
we derive the characteristic C-band backscatter signature for global land classes. Finally, 3) we perform the 
PWB-experiment in eight world regions a) to evaluate the dataset’s integrity, b) to demonstrate its spatial infor-
mation and exemplify its use, and c) to comment on the S1GBM’s assets and caveats.

Detail example Bordeaux. Figure 2 gives an example of the land cover signal in the S1GBM VH and 
VV mosaics over Bordeaux, France. Comparing it with the recent PROBA-V-based Land Cover dataset of the 
Copernicus Global Land Service (CGLS LC10052), several surface features are apparent in the mosaics, including 
urban areas with varying density in both VV- and VH-channels. In the VH mosaic, a clear discrimination of forest 
areas (cf. with LC100’s broadleaf in brighter green, needle leaf in darker green) against crops (brighter yellow) and 
vineyards (darker yellow) is apparent. �e cross-polarised VH-backscatter is more sensitive to vegetation-density, 
-structure, and -status, as multiple scattering between branches and volume scattering increases the share of 
backscattered microwaves with changed polarisation. Most prominent, in both VH and VV, is the very large con-
trast between land surfaces and open waters with signi�cant lower backscatter signatures. �is is the basis for our 
PWB-mapping experiment discussed in detail in the subsequent section.

We would also like to draw the attention to the spatial detail carried by the S1GBM mosaics, with various 
features at deca- and hectometric scale shown for example in Fig. 2. For instance, one can see bridges, highways, 
railways, and airports in the Bordeaux metropolitan area in the south-west corner of the here displayed T1-tile 
(100 km extent). Also, in the west, from north to south, the shorelines of the Gironde estuary and its downstream 
rivers are clearly mapped, resolving small islands and narrow straits. Agricultural plots and forest sections may 
be di�erentiated especially in the VH mosaic, e.g. with particular structures in the north-west corner. For further 
exploration, users may visit the open web-based S1GBM viewer51 o�ering a pan-and-zoom exploration of the full 
S1GBM VV- and VH-mosaics.

Figure  2b,d allows the comparison of the S1GBM VV backscatter mosaic (which underwent the 
PLIA-normalisation) against the mean of non-normalised Sentinel-1 VV backscatter from the same observation 
period (not part of the dataset publication; just for comparison). As discussed above, radar backscatter is strongly 
dependent to PLIA, and hence Sentinel-1 SAR images are subject to the observation geometry de�ned by the 
mission’s relative orbit con�guration and the overlapping pattern (cf. global map in Fig. 1b). One can clearly see 
this impact in Fig. 2d, where data from all local orbits are averaged in their native orbit geometry (i.e. mean of σ0 
(θro, t), resulting to characteristic linear artefacts of backscatter discontinuities along the limits of the (repeating) 
orbit footprints. �e mini-map of the Bordeaux-T1-tile in Fig. 2d plots the number of input Sentinel-1 scenes, 
also re�ecting the heterogeneous coverage pattern induced by the di�erent number of overlapping relative orbits 
(from 2 to 4 in this area), each with a di�erent local PLIA-range, generally. Notably, the triangular zone covered by 
only 2 orbits (yellow, 194 scenes) is a zone that features a PLIA-spread that is not large enough to reliably estimate 
the local PLIA-slope β. �is zone is part of the pixel domain where we applied the static slope value of −0.13 dB/° 
to the S1GBM mosaic, with a resulting backscatter image that is free from orbit-related artefacts (Fig. 2b). We 
note that the sections covered by 3 or 4 orbits in this example are normalised with the regular regression slope, 
letting us conclude that our approach yields a smooth mosaicking impression in areas of mixed coverage density.

Backscatter signature analysis. Delving into above concept that SAR backscatter characteristics in the 
S1GBM are determined by land cover, we analysed the backscatter signature for the global land surface for each 
major land cover class (LCC). We globally aggregated data from the normalised S1GBM VV and VH mosaics 
per LCC and formed the backscatter distribution within each LCC, allowing the discrimination of typical SAR 
backscatter signatures for a speci�c land cover class.

Land cover de�nitions. As land cover dataset, we selected the above-mentioned PROBA-V-based CGLS LC100 
for its full global coverage and the (for global datasets) relatively high spatial resolution with a pixel spacing of 
100 m. To allow a fast pixel-by-pixel comparison, we resampled the CGLS LC100 to the Equi7Grid at 10 m using 
nearest-neighbour-downsampling. A�er a �rst inspection of backscatter signatures, we grouped the 23 LCC of 
the LC100 to 13 major LCC, accounting for the similarity between certain classes: Respective open and closed 
forest classes were aggregated to evergreen needle leaf forest, evergreen broad leaf forest, deciduous needle leaf forest, 
and deciduous broad leaf forest, and herbaceous wetland was grouped with herbaceous vegetation. Table 2 lists the 
main statistics per land cover and the group aggregations.
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C-band backscatter signatures. �e C-band backscatter signatures of our major 13 LCC are plotted for VV- and 
VH-polarisation as distribution-density-“heatlines” in the upper part of Fig. 3, illustrating the global average 
backscatter levels of each surface class, and the variance within. Forest and water-body classes have a very narrow 
distribution, whereas snow and ice and bare vegetation have a greater spatial backscatter variability. Snow and 
ice packs o�en have a heterogeneous structure from its complex genesis involving melting and freezing phases, 
leading to a mixture of surface- and volume-scattering when observed by radar. Likewise, the LCC bare vegeta-
tion comprises very di�erent surfaces dominated by rocky, sandy, or mountainous surfaces, each governed by a 
distinct backscatter behaviour and hence create the wide spread within this LCC.

�e LCC-heatlines in Fig. 3a,b are approximately ordered by the mean backscatter value. On top, one can �nd 
the two water LCCs with a very low backscatter level that is caused by mirror-like-re�ection away from the sensor, 
followed by bare and herbaceous vegetation LCCs that are dominated by dry conditions and hence are generally 
weak scatterer. �e LCCs moss & lichen, shrubs, and agriculture feature medium backscatter and variation thereof. 
Higher backscatter levels are observed over the forest LCCs, where volume and multiple scattering become more 
dominant, as well as over the LCC urban & built up, where corner re�ections acting as echo cause the strongest 
radar backscatter.

When comparing VV and VH polarisation, the biggest di�erence is in the overall level of backscatter, with 
about 7 dB between both polarisations across all LCCs. �e order of LCCs as a function of mean backscatter 
is mostly the same for VV and VH, except for the water and ice classes. Interestingly, the open sea class shows 
a steeper drop from VV to VH, whereas shrubs show a comparatively small drop. We found that the strongest 
changes in the backscatter distributions are apparent in the non-forest vegetation classes, e.g. for bare vegetation 
and agriculture, supporting our initial assumptions on the sensitivity of Sentinel-1 VH backscatter to complex 
vegetation dynamics and crop varieties.

Permanent water body mapping. Following up to what we have already seen along the rivers in Fig. 2, 
water bodies (represented by the LCCs open sea and permanent water bodies) show a most distinctive backscatter 
signature in relation to other land cover classes (cf. 3a-b). E�ectively, water surfaces show in radar images a strong 
contrast with land surfaces. �e reason for this are the di�erent microwave scattering mechanism over water- and 
land-surfaces and the side-looking geometry of SAR systems. A specular re�ection of the radar pulses by the water 
surfaces leads to backscatter intensities received by the sensor that are much lower than for most other land cover 

ID Name Mean σVV
0 Mean σVH

0 Std σVV
0 Std σVH

0

0 No input data available −10.54 −18.71 4.38 5.75

111 Closed forest, evergreen needle leaf −10.20 −16.16 1.58 1.71

113 Closed forest, deciduous needle leaf −11.61 −18.18 1.30 1.53

112 Closed forest, evergreen, broad leaf −8.08 −14.00 1.66 1.47

114 Closed forest, deciduous broad leaf −9.63 −15.35 1.57 1.61

115 Closed forest, mixed −9.84 −15.69 1.18 1.24

116 Closed forest, unknown −10.22 −16.45 2.37 2.73

121 Open forest, evergreen needle leaf −11.00 −17.23 1.97 2.16

123 Open forest, deciduous needle leaf −12.30 −19.13 1.69 2.06

122 Open forest, evergreen broad leaf −9.21 −14.93 2.11 1.90

124 Open forest, deciduous broad leaf −10.52 −16.31 1.86 1.87

125 Open forest, mixed −10.32 −16.25 1.64 1.73

126 Open forest, unknown −10.85 −16.88 2.23 2.49

20 Shrubs −12.32 −18.52 2.60 2.93

90 Herbaceous wetland −13.28 −20.86 2.76 3.36

100 Moss and lichen −11.89 −20.87 2.96 3.65

40 Agriculture −11.87 −19.03 2.21 2.81

50 Urban/built up −7.94 −15.02 3.28 2.89

70 Snow and ice −9.16 −15.73 5.07 6.05

30 Herbaceous vegetation −13.71 −21.05 3.06 3.63

60 Bare vegetation −15.75 −22.98 5.17 4.36

200 Open sea −18.85 −28.28 2.15 1.75

80 Perm. water bodies −18.85 −26.42 2.53 2.28

— Evergreen needle leaf forest −10.25 −16.23 1.62 1.76

— Deciduous needle leaf forest −11.61 −18.19 1.30 1.54

— Evergreen, broad leaf forest −8.09 −14.01 1.67 1.48

— Deciduous broad leaf forest −9.85 −15.61 1.63 1.67

— Herbaceous vegetation −13.68 −21.04 3.04 3.62

Table 2. Sentinel-1 backscatter statistics per land cover class (LCC) of the CGLS LC100 dataset, mean and 
standard deviation, for the S1GBM mosaics in VV and VH polarisation. Classes combined in this study are 
shown without a LC100 ID value.
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types. With the S1GBM VV- and VH-mosaics at hand, we exploited this discriminative feature of water bodies and 
employed a simple permanent water body mapping method. Unlike the backscatter mosaics of the S1GBM, the 
obtained PWB map can be validated directly, as we have available matching global water body maps as a reference. 
Moreover, the experiment should demonstrate the ease of realising a land cover mapping application in short time, 
exploiting the novel S1GBM data and its high-resolution radar imagery of the Earth’s land surfaces.

Based on above insights from the Sentinel-1 backscatter signature analysis, our �rst step was to spatially merge 
all water- and all land-LCCs and build the combined backscatter signatures for VV and VH (Fig. 3c,d). �e water 
distribution (all water classes; bright blue) is plotted for both polarisations next to the non-water distribution (all 
land classes, bright brown), already demonstrating an acceptable feature separation. However, as one can see in 
the heatlines above, water has still some signi�cant overlap with some land LCCs, e.g. with bare vegetation, herba-
ceous vegetation, and moss & lichen. Naturally, this translates to a considerable overlap in the merged distributions 
below, especially in the VH case and for moss & lichen. We concluded that for these LCCs no robust separability 
against water bodies is given in the S1GBM data and excluded the three classes from further PWB-mapping. Also, 
we dropped the LCC open sea in further processing as we limit the PWB experiment to inland surfaces (that are 
also covered by the reference dataset). �e backscatter distributions of the PWB LCC and the selected land LCCs 

Fig. 3 Results from the S1GBM C-band backscatter signature analysis for major land cover classes, which 
are provided by the 100 m Land Cover Version 2.0 product of CGLS. �e heatlines in (a) and (b) show the 
S1GBM’s normalised backscatter distribution within the total area of each major land cover class, for VV and 
VH, respectively. In preparation for the mapping of permanent water bodies (PWB), (c) and (d) show the 
distributions for the globally combined water- and land- surfaces, with the combined classes indicated by blue 
and brown bars in (a) and (b) legends. For the PWB-mapping, three land cover classes have been excluded due 
to the lack of clear separability against the water classes, i.e. due to largely overlapping distributions. �e selected 
thresholds for VV and VH mosaics used in our PWB-mapping algorithm are indicated as red lines.
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are shown in dark blue and brown (permanent water bodies and selected land classes in Fig. 3c,d), with a noticeably 
improved separability, especially in VH polarisation.

As a next step, evoking the theory of Bayesian inference with equal priors for binary classification, we 
obtained a statistically optimal global threshold for VV and VH, each. In this respect, we identi�ed two thresh-
olds, −15.0 dB for VV and −22.9 dB for VH polarisation, which we applied in a third step as an upper-bound 
backscatter-value on the complete S1GBM mosaics to map the global PWBs. Note again that the LCCs bare vege-
tation, herbaceous vegetation, moss & lichen, and open sea are not included in the PWB-mapping and are masked 
in all later results.

Although the VV and VH mosaics are redundant to some degree, the consideration of both channels is most 
advantageous for the PWB-mapping. First, the classi�cation based on Bayesian inference is more robust when 
resulting from two discriminations. Second, while the VH mosaic o�ers a better separability between water and 
non-water (having less overlap in the distributions and hence less false positive and negative classi�cations), and 
the heatline of the PWB-LCC is better de�ned in VH, the VV mosaic o�ers in general a higher spatial detail due 
to its stronger backscatter signal and hence more favourable signal-to-noise ratio.

By applying the obtained thresholds to the normalised S1GBM mosaics as simple classi�cation rules

σ ≤ − .(38) 15 0 dB (2)0
VV

σ ≤ − .(38) 22 9 dB (3)0
VH

and through joining them with logical “AND”, we were able to produce a global PWB map in less than two hours, 
using 70 parallel cores on the VSC-3 supercomputer.

Evaluation of S1GBM mosaics and PWB map. To evaluate our S1GBM permanent water body (PWB) 
map, we chose as a reference dataset the Global Surface Water (GWS23) from the European Commission’s Joint 
Research Centre (JRC-EC). �e GSW o�ers globally at a 30 m native sampling di�erent variables on water bodies, 
e.g. annual seasonality, occurrence, recurrence, or maximum extent, and is based on 36 years of Landsat data in 
its newest version (GSW1_2). Although the annual seasonality for 2015 or 2016 was not accessible from version 
GSW1_2 at the time of writing this manuscript, we found the Seasonality 2015 dataset of the GSW1_0 version suit-
able as a reference. Pixels valued with seasonality “12” (i.e. all months) are labelled permanent water and constitute 
our reference PWB map, which we warped by means of bilinear resampling to the Equi7Grid at a 10 m pixel spacing.

�e evaluation presented in this paper was carried out on a representative and diverse set of eight world regions 
(see locations in Fig. 1b). For each region, classi�cation results were assessed by a pixel-by-pixel comparison between 
the PWB map from S1GBM and from the GSW reference. Having such binary maps (water vs. non-water) it was 
straightforward to generate an “accuracy layer” representing the four elements of the commonly used confusion 
matrix, i.e. true positives, false positives, false negatives, and true negatives, to discuss the skill of the S1GBM to map 
PWBs. Areas belonging to the four excluded LCCs were masked in the result plots. Furthermore, to give some visual 
guidance in the evaluation regions, we acquired from the Copernicus Sentinel-2 Global Mosaic (S2GM) service the 
RGB-composite for the year 201953 (the mosaic for 2015 was available only over Europe).

In the following, we present results for four large-scale regions (500 km × 500 km) in Fig. 4, and for four 
small-scale regions (120 km × 120 km) in Fig. 5. For each region, the S1GBM VV mosaic is displayed on the le� 
panel (space-saving/omitting the VH mosaic, which contributes likewise to the PWB mapping), the accuracy 
maps showing the performance against the GSW reference in the centre panel, and the Sentinel-2 RGB-composite 
to aid visual interpretation on the right panel. The accuracy maps are annotated with the respective User’s 
Accuracy (UA) and Producer’s Accuracy (PA), as the percentage of the agreement between the two PWB-maps.

Large-scale examinations. Figure 4a–c shows the southern part of Finland, an area accommodating a multitude 
of small and large post-glacial lakes. �ose are clearly visible in dark colours representing low backscatter values 
in the S1GBM mosaic, while the other parts of the country (which is dominated by vast forests) shows rather 
uniform medium backscatter. �e optical RGB-composite from Sentinel-2 does not feature the same accentua-
tion of the lakes, troubled by remainders of cloud coverage in the yearly mosaic. �e PWB accuracy map shows 
perfect agreement between S1GBM and GSW, with an UA and PA of 100% each. We identi�ed two reasons for 
the excellent performance: First, the C-band backscatter signatures of the predominant land covers in Finland, 
such as forests, cities, agriculture, are well distinguishable against water bodies and hence allow an almost sterile 
PWB-mapping. Second, northern Europe is well covered by the Sentinel-1 mission and the S1GBM has been built 
with a high data density, letting us expect the best mosaic quality.

Moving to the region of the Lake Superior Basin in Canada and USA presented in Fig. 4d–f, we encounter a 
very similar, cold-temperate environment, but with a substantial higher share in spacious inland water bodies. 
Also here, the accuracy map shows a perfect agreement between S1GBM and GSW, which, in our interpretation, 
is clearly because of good feature separability in the SAR image. Particularly remarkable is that North America 
is much less covered by Sentinel-1 than Europe and that the imperfect modelling of the PLIA-dependency over 
water surfaces (as apparent e.g. in the east section of Lake Superior) does not impair the S1GBM PWB-mapping. 
Generally, imperfect PLIA-normalisation of SAR images is prominent over water bodies, whose specular re�ec-
tion regime is characterised by a very strong PLIA-gradient (i.e. the slope β). However, we note that also the 
Sentinel-2 mosaic has striping artefacts bound to orbit footprints, and additionally su�ers from cloud cover. �e 
latter is a common problem in optical observation of higher latitudes, but is without e�ect in SAR imagery.

Figure 4g–i depicts the situation for a section of the Albertine Ri� Valley in eastern Africa with its lake sys-
tem. Re�ecting to a great deal the region’s diverse �ora, which is displayed in many green and brown tones in the 
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Fig. 4 For four example sites at the large scale (500 km extent), the S1GBM VV mosaic (le�) is contrasted with 
classi�cation results from the S1GBM PWB mapping against the PWB taken from JRC Global Surface Water 
(GSW) in 2015 (centre), and with the RGB-composite of the Copernicus Sentinel-2 Global Mosaic (S2GM) for 
the year 2019 (right). Box outlines are shown in global overview in Fig. 1b.
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Fig. 5 For four detailed example sites (120 km extent), the S1GBM VV mosaic (le�) is contrasted with 
classi�cation results from the S1GBM PWB mapping against the PWB taken from JRC GSW in 2015 (centre), 
and with the RGB-composite of the Copernicus S2GM for the year 2019 (right). Box outlines are shown in 
global overview in Fig. 1b.

https://doi.org/10.1038/s41597-021-01059-7


1 5SCIENTIFIC DATA |           (2021) 8:277  | https://doi.org/10.1038/s41597-021-01059-7

www.nature.com/scientificdatawww.nature.com/scientificdata/

RGB-composite, the S1GBM VV mosaic shows a much more heterogeneous pattern than in the above examples. 
�e forested sections in the west show distinct higher backscatter values than the savanna sections in the east, 
and also other geomorphological features correspond well with the radar and optical mosaic. Concerning the 
PWB-mapping, we see again perfect agreement, but with one large exception: the eastern end of Lake Albert is 
entirely labelled in red as false land, suggesting that these water areas are missed in the S1GBM PWB map (what 
can be con�rmed a�er a quick check with common thematic maps). In this area we see the impact of the rela-
tively poor input data density of about only 50 Sentinel-1 scenes (cf. Figure 1b), and apparently, we overlooked 
the impact of a few images with outlying backscatter levels during the manual quality curation. Moreover, the 
three Sentinel-1 relative orbits covering this area create almost identical viewing angles and yield a very small 
PLIA-range, troubling our backscatter normalisation. As a result, striping artefacts appear not only over water 
bodies (cf. Canada example) but also over land (in north-west part Fig. 4g), while, however, the Sentinel-2 mosaic 
is likewise a�ected by striping issues (cf. Figure 4i), for other reasons, though.

The last row in Fig. 4(j–m) is centred at Bangladesh and displays the confluence of the Ganges and 
Brahmaputra streams, which are joined downstream by the Meghna river and ultimately discharge into the Bay 
of Bengal. Also in this region, the geomorphological features perceivable in the RGB-composite are re�ected well 
by strong textural patterns in the S1GBM mosaic, promoting its broader use in land cover applications (note also 
the zoom-in plotted in Fig. 5j–m). �e PWB-mapping results are inconclusive, as rivers of all sizes are correctly 
mapped, but many pixels are labelled in yellow as false waters. We consider this disagreement between S1GBM 
and GSW to be most likely a result of the di�erent temporal resolutions of the two datasets, as the S1GBM is a 
two-year data aggregation reduced to single layers, whereas the GSW allows monthly snapshots of water bod-
ies. For example, the Hoar ecosystem—which appears as yellow bulb in the north-east of Fig. 4k—is a large 
monsoon-fed lagoon system that is labelled by the GSW with seasonality-values ranging from 9 to 12 months. 
In the S1GBM mosaics, which are built using temporally averaged backscatter, these areas are obviously domi-
nated by the high occurrence of water surfaces and act therefore as “most-of-the-time water bodies”. Some more 
vindication comes from the Sentinel-2 yearly mosaic, which also draws the Hoar area with a water texture. We 
conclude on this matter that seasonal water bodies are not properly modelled by our simple approach with Eq. 3, 
and it would need additional inputs from variance measures like the backscatter standard deviation.

Small-scale examinations. Figure 5 depicts the small-scale example regions with respect to the PWB-mapping 
experiment. �e �rst row in a-c) zooms to the Swiss lakes in central Europe and both, the radar and the opti-
cal mosaic, feature a high level of heterogeneity and detail, with many individual forests, cities, valleys, rivers, 
alpine lakes, and with the airport north of Zurich resolvable (in the centre-le� of the box). �e results from the 
PWB-mapping are very good with high UA- and PA-values, but with two anomalies: First, the southern arm of Lake 
Lucerne (in the south-west) shows some red segments of false land along the mountain �anks reaching into the lake. 
A�er inspection of the S1GBM mosaics we can state that this is clearly an artefact from the terrain modelling with 
the rather coarse, 90 m-sampled VFP SRTM Digital Elevation Model (DEM) during the Sentinel-1 preprocessing. At 
the time of the project, we selected the VFP DEM35 for its complete global coverage and its manually-checked qual-
ity, and accepted the coarse resolution (with respect to the 10 m-sampled Sentinel-1 SAR data). �e second small 
anomaly can be found in the Alps in the south of the image, with the west-end of the Klöntalersee labelled in yellow 
as false water. �e S1GBM is artefact-free at this location, and a�er checking the GSW’s seasonality, we hypothesise 
that ice covers this mountain lake during winters and leads to the di�erent interpretation.

Figure 5d–f presents the area around the con�uence of the Amazon and Tapajós streams in central Pará in Brazil. 
Here, the rivers ramify into a multitude of lagoons and channels at various sizes, forming a complex system of water 
bodies. Fortunately, while the Sentinel-2’s RGB mosaic appears impure and rugged from contamination with the fre-
quent cloud coverage in the central tropics, the Sentinel-1 mosaic o�ers a clear image that fully resolves the capillary 
structure of the water bodies and its shorelines. We consider this a remarkable feature, also recognising the very low 
input data density of the S1GBM mosaics in this area (cf. Figure 1b). Concerning the PWB-mapping, we obtained 
a good agreement with the GSW’s reference, labelling most PWBs correctly and misclassifying only small sections 
of the lagoons and river-arms. �e false-water deviations are bound again to the seasonality of those segments 
that are most of the time under water, much alike to the situation in Bangladesh discussed around Fig. 4j–m. �e 
red-labelled areas highlight water bodies which are mapped by the GSW but not by the S1GBM, and are of particular 
interest, as they exemplify that water surfaces seen by optical sensors are not necessarily identical to those seen by 
radars54. Swamp-like structures and waters with out-growing vegetation show a completely di�erent SAR signature 
and hence might be distinguishable from open waters within a SAR image.

�e third small-scale example is the Great Salt Lake in Utah, USA, as displayed in Fig. 5g–i. �e S1GBM o�ers 
many details of Salt Lake City’s structures in the south-east, and of the mining facilities at the eastern shorelines of 
the lake, as also visible in the RGB-composite. Obviously, the radar image does not account for the di�erence in 
salinity between the north- and south-section of the Great Salt Lake that is visible in the optical image. However, 
our S1GBM PWB method maps correctly—contrary to the GSW reference—the east-west rail causeway splitting 
the lake, which one can see as a red line in the accuracy map in Fig. 5h. With its pronounced semi-arid climate, 
this region shows a di�erent behaviour than above examples. �e dry conditions and the sparse vegetation with 
its weak scattering trouble seriously the S1GBM PWB-mapping, with many false water pixel all around the area. 
Here, we see the weak performance of the simple threshold approach with Eq. 3 in regions with a general low 
backscatter from land, and hence small contrast to water bodies.

Figure 5j–m zooms into the Sundarbans at the southern shorelines of Bangladesh, with its multifaceted sur-
face and its complex river-deltas. Both, the true-colour image from Sentinel-2 and the VV-mosaic from Sentinel-1 
produce a feature-rich image and highlight the mangrove forest in the southern section with strong green colour 
or high backscatter, respectively. Adjacent to the north, the rice and bean agriculture draws large contrast patterns 
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in the satellite images. For the PWB-mapping, a similar result as from the larger view on this region (cf. Figure 4k) 
is obtained, with all rivers and channels correctly classi�ed, but with a substantial overestimation of permanent 
water bodies in areas of high water seasonality. To what extent rice �elds and its managed inundations play a role 
here is le� unanswered by the data, though, as managed rice �elds typically show signi�cant jumps in seasonal 
backscatter time series.

Usage Notes
�e Sentinel-1 Global Backscatter Model (S1GBM) presents a new perspective on Earth’s land surface, opening 
up the radar vision on land-cover and land-usage. It comprises a set of globally harmonised backscatter mosaics, 
mapping for the period 2016–17 the land C-band microwave re�ectivity in two polarisations expressed as σ0 
(sigma nought) values. �e mosaics are based on incidence-angle-normalised and quality-curated radar imagery 
observed by the Synthetic Aperture Radar (SAR) sensors onboard the Sentinel-1 satellites.

�e S1GBM Version 1.0 provides at a 10 m pixel sampling two complete global land mosaics of mean backs-
catter normalised to an incidence angle of 38°, one for VV- and one for the VH-polarisation of the radar waves. 
Although similar to some extent, these two polarisation channels describe surface and vegetation properties with 
di�erent sensitivity and intensity, and depict valuable input to mapping methods of land cover or usage, soil com-
position, geomorphology, and vegetation structure. While the VH mosaic o�ers higher separability of vegetation 
features, the VV mosaic o�ers in general a cleaner impression thanks to its stronger signal and less noise.

�e here presented S1GBM backscatter signature analysis provides for major global land cover classes the 
characteristical C-band backscatter signatures of major land cover classes in VV- and VH-polarisation. (i.e. sta-
tistical values for mean and standard deviation; see Fig. 3 and Table 2).

In our chosen experiment of mapping permanent water bodies (PWB), we demonstrated the ease of integrat-
ing the S1GBM into land cover classi�cation procedures. With the large- (Fig. 4) and small-scale examples (Fig. 2 
and Fig. 5) discussed in the technical validation section, we spotlighted typical characteristics of the mosaics and 
illustrate the physical appearance of land surfaces in the Sentinel-1 CSAR data.

�e mapping of PWB—applying a simple threshold approach to the S1GBM VV and VH mosaics—yielded 
very satisfying results, with almost perfect performance in biomes of the temperate and cold climates in the mid- 
and high-latitudes (e.g. in Switzerland, Finland, Canada). While arid and barely vegetated zones are excluded 
from the PWB-experiment due to our approach’s inability to di�erentiate robustly between dry soil and water 
(also owing to its simplicity), also semi-arid areas pose challenges (e.g. Great Salt Lake). Most of the disagree-
ment between the S1GBM PWB map and the Landsat-based reference from JRC-GSW appears over areas with 
a high water-seasonality, i.e. areas that are covered by water during most months of the year. Our fast and simple 
PWB-method, applied to two years of Sentinel-1 observations reduced to single layers, not surprisingly, was not 
capable of correctly classifying such highly dynamic water bodies. However, particular cases of water bodies with 
ice-cover or emerged plants were categorised di�erently in the SAR and GSW maps, opening up possibilities in 
future water mapping endeavours. Here, we underline that the de�nition of water boundaries must be understood 
by its context, as water bodies and their outlines are di�erently perceived from in-situ, optical sensors, or radars 
(e.g. in respect to shallow or vegetated edges).

From the technical validation of the S1GBM presented here and demonstrating its use for PWB-mapping, we 
conclude that the overall quality of the normalised Sentinel-1 mosaics is very good. �e Sentinel-1 backscatter 
data from the years 2016–17 is aggregated comprehensively to PLIA-normalised mosaics, albeit that the normal-
isation is not perfect over sparsely covered areas of the low-latitudes and some water bodies with a problematic 
con�guration of just one or two image-geometries/orbits. �e few detected remaining artefacts from the input 
preprocessed data within the global mosaics (e.g. Lake Albert) constitute a local degradation of the S1GBM’s 
quality, though we would like to stress that these were e�ectively marginalised through our manual quality checks 
during the generation of the S1GBM. In spite of the locally rather sparse Sentinel-1 coverage, the obtained mosa-
ics of the subtropics and the tropics appears to be of excellent quality and might even outperform optical imagery, 
as the radar signal is undisturbed by clouds.

In conclusion, the S1GBM o�ers a new independent information source for the analysis of the global land surface 
and the inland water extent, and it provides insight into processes related to the geometric and dielectric properties of 
the soil and vegetation. With this, it is most suitable for supporting the design and veri�cation of upcoming C-band 
radar sensors, and we are convinced it will advertise the use of radar imagery and its rich information content.

Code availability
�e S1GBM mosaics were produced with geodata management so�ware and scienti�c algorithms contained 
in the SAR Geophysical Retrieval Toolbox (SGRT v2.4) so�ware suite, which embeds also open-access python 
libraries (GDAL36, NumPy45) and Sentinel-1 preprocessing functions of the SNAP v6.0 toolbox30. �e SGRT suite 
has been developed by TU Wien and is not openly accessible, and is only available under conditions to project- 
and research-partners of TU Wien.

For the usage of the Equi7Grid we provide data and tools via the openly accessible python package on 
GitHub33.

Furthermore, we encourage users to use TU Wien’s open-source Python package yeoda, a datacube storage 
access layer that o�ers functions to read, write, search, �lter, split and load data from the S1GBM datacube. �e 
yeoda package is openly accessible on GitHub55.
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