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Abstract 
Normative modeling is an emerging and innovative framework for mapping individual 

differences at the level of a single subject or observation in relation to a reference model. It 

involves charting centiles of variation across a population in terms of mappings between biology 

and behavior which can then be used to make statistical inferences at the level of the individual. 

The fields of computational psychiatry and clinical neuroscience have been slow to transition 

away from patient versus “healthy” control analytic approaches, likely due to a lack of tools 

designed to properly model biological heterogeneity of mental disorders. Normative modeling 

provides a solution to address this issue and moves analysis away from case-control comparisons 

that rely on potentially noisy clinical labels. In this article, we define a standardized protocol to 

guide users through, from start to finish, normative modeling analysis using the Predictive 

Clinical Neuroscience toolkit (PCNtoolkit). We describe the input data selection process, provide 

intuition behind the various modeling choices, and conclude by demonstrating several examples 

of down-stream analyses the normative model results may facilitate, such as stratification of 

high-risk individuals, subtyping, and behavioral predictive modeling. 

 

 

 

Keywords: normative modeling, computational psychiatry, individual differences, precision 

medicine, software tutorial, lifespan neuroscience, brain growth charting 
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Introduction 

Clinical neuroscientists have recently acknowledged two realities that have disrupted the way 

research is conducted: first, that to understand individual differences it is necessary to move 

away from group average statistics 
1–7

 and, second, that the classical diagnostic labels of 

psychiatric disorders are not clearly represented in the underlying biology
8–11

. Despite this 

awareness and an increasing interest in quantifying individual differences, the field has been 

slow to transition away from case-control comparisons that aim to contrast patient versus healthy 

control groups and assume that clinical groups are distinct and homogenous. A key barrier that 

has impeded progress is a lack of alternative analysis methods, designed to model variation 

across individuals, also known as heterogeneity
12

. Nearly all existing techniques for connecting 

the brain to behavior operate at the group-level and provide no path to individual-level 

inference
13–15

. Normative modeling is a framework for understanding differences at the level of a 

single subject or observation while mapping these differences in relation to a reference model 

(Figure 1). It involves charting centiles of variation across a population in terms of mappings 

between biology and behavior, which can then be used to make statistical inferences at the level 

of the individual, akin to the use of growth charts in pediatric medicine (Figure 1A). The practice 

of normative modeling in clinical neuroscience was developed to provide additional information 

beyond what can be learned from case-control modeling approaches. Case-control thinking 

assumes that the mean is representative of the population, when it may not be (e.g., if the clinical 

population is diffuse or comprised of multiple sub-populations). Therefore, normative modeling 

has become a leading tool for precision medicine research programs and has been used in many 

clinical contexts
16

.  
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Figure 1 Conceptual Overview of Normative Modeling. A) Classical example of normative 

modeling: the use of height and weight growth charting in pediatrics. B) Case-control models 

(left) theoretically make assumptions that there is a boundary that can separate groups and that 

there is within-group homogeneity. In reality (right), there is nested variation across controls and 

patient groups and within-group heterogeneity, resulting in unclear separation boundaries. 

Normative modeling is well equipped to handle this reality. C) An example application of 

normative modeling in computational psychiatry using neuroimaging data. Mean cortical 

thickness (y-axis) is predicted from age (x-axis) using a training set consisting of multi-site 

structural MRI from neurotypical controls and a test set consisting of neurotypical controls and 

patient groups. Every dot indicates the deviation score for a single individual from normal 

development. D) Regression model equation and design matrix setup for the model shown in 

panel C.  

 

Neuroscience has historically brought together scientists from diverse educations, for 

example, some from a clinical background and others having a mathematics background. The 

interdisciplinary nature introduces a challenge in bridging the gap between technical and clinical 

perspectives. This is a key challenge that aligns with the aims of the open-science movement and 

brain-hack community
17

, in other words, to distill the essential components of the analytic 

workflow into a consistent and widely applicable protocol. This helps to avoid ‘research debt’, 

i.e., a lack of ideas being digested
18

. This distiller mindset is crucial for confronting research debt 
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and embracing paradigm shifts in thinking, such as moving from case-control comparisons to the 

normative modeling framework.  

The purpose of this work is to distill the methods of normative modeling, an advanced 

analysis technique, into an actionable protocol that addresses these challenges in that it is 

accessible to researchers within the diverse field of clinical neuroscience. We distill the essential 

components of a normative modeling analysis and provide a demonstrative analysis from start to 

finish using the Predictive Clinical Neuroscience Toolkit software. We describe the input data 

selection process, give an overview of the various modeling choices, and conclude by 

demonstrating several examples of downstream analyses the normative model results may 

facilitate, such as stratification of high-risk individuals, subtyping, and behavioral predictive 

modeling.  

Development of the protocol  

Normative modeling has a long history that relates to statistics and measurement theory 

and has many applications from medicine to economics to neuroscience. Familiar use cases of 

normative modeling include growth charting in pediatrics, neurocognitive tests, and interpreting 

graduate school test score percentiles (i.e., scoring 90
th
 percentile on the MCAT). The 

mathematical and computational development of normative modeling has been fine-tuned
19–22

 

and currently exists as an open-source software python package, the Predictive Clinical 

Neuroscience toolkit (PCNtoolkit), which we focus on in this manuscript. This toolkit 

implements many commonly used algorithms for normative modelling and supports multiple 

industry standard data formats (e.g., NIFTI, CIFTI, text formats). Extensive documentation has 

been written to accompany this protocol and is available online through read the docs. This 

includes tutorials with sample data for all algorithm implementations, a glossary to help new 

users understand the jargon associated with the software, and a frequently asked questions page. 

An online forum for communicating questions, bugs, feature requests, etc. to the core team of 

PCNtoolkit developers is also available. We have developed these open-source resources to 

promote and encourage individual differences research in computational psychiatry using 

normative modeling.  

Applications and comparison with other methods 

Normative modeling has been applied to many research questions in computational 

psychiatry and other fields, including in autism spectrum disorder
23–25

, attention deficit 
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hyperactive disorder
26,27

, Alzheimer’s disease
28

, bipolar disorder, and schizophrenia
29–31

. 

Crucially, these applications have shown that normative modelling can detect individual 

differences both in the presence of strong case-control differences
30

 and in their absence
24

. This 

highlights the value and complementary nature of understanding individual variation relative to 

group means.  These applications have primarily focused on predicting regional structural or 

functional neuroimaging data (i.e., biological response variables) from phenotypic variables (i.e., 

clinically relevant covariates) such as age and sex. Age creates a natural, time-varying dimension 

for mapping normative trajectories and is well suited to applications in which deviations of an 

individual manifest from a typical trajectory of brain development or ageing. However, other 

phenotypes that have been used in neuroimaging predictive modeling studies such as general 

cognitive ability
32,33

, social cognition, or sustained attention
34,35

 are also attractive possibilities to 

use as covariates, thereby defining axes for observing deviation patterns. Normative modeling 

has also been used to learn mappings between reward sensitivity and reward related brain 

activity
36

.  

It is important to emphasize that normative modeling is a general regression framework 

for mapping sources of heterogeneity, refocusing attention on individual predictions rather than 

group means (e.g., diagnostic labels), and detecting individuals who deviate from the norm. 

Therefore, it is not limited to a specific algorithm or mathematical model, although we 

recommend certain algorithms based on the research question and available input data. The 

algorithms in the PCNtoolkit tend to favor Bayesian over frequentist statistics, as there are 

certain features of Bayesian approaches that facilitate better normative modeling estimation. For 

example, having a posterior distribution over the parameters help to better separate different 

sources of uncertainty, e.g., separating variation (‘aleatoric uncertainty’) from modelling (or 

‘epistemic’) uncertainty. These different use cases of normative modeling (algorithm selection, 

predicting brain from behavior or behavior from the brain) are explained in-depth in the 

experimental design section.  

There is a long history of using regression methods to learn mappings between brain and 

behavior
37,38

. Brain Basis Set modeling (BBS)
14,39,40

, Connectome predictive modeling 

(CPM)
13,41

, and canonical correlation analysis (CCA)
42,43

 have become mainstream methods for 

linking brain and behavior. These methods have demonstrated the feasibility of brain-behavior 

mapping and laid the foundation for individual differences research to thrive. While these 
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approaches have generated much curiosity and excitement, they are limited in their ability to 

provide inference at the level of the individual and only provide estimates of the mean (i.e., 

without associated centiles of variation). Most papers using these tools only report the overall 

predictive model performance, collapsing information across hundreds or thousands of people 

into a single number (e.g. model accuracy or regression performance)
40,41,44,45

. The normative 

modeling framework takes these ideas a step further to quantify and describe how individuals 

differ.  Case-control inference (e.g., mass univariate group t-testing) and classification (patient 

vs. control) examples are perhaps the most interesting comparison to the normative modeling 

framework. Normative models reveal a different side of the data -- that the classical diagnostic 

labels of psychiatric disorders are not clearly represented in the underlying biology, meaning 

patient groups are not well defined by a unifying neurosignature -- and provide clear evidence 

for the limitations of case-control paradigms. Brain age models are also in the same family as 

normative models but generally have a narrower focus on interpreting accelerated/decelerated 

aging
46,47

 or improving prediction accuracy
48

. Brain age models only allow for interpreting 

centiles of variation in terms of age, which is limited and does not have a clear interpretation in 

terms of biological variation across individuals. 

Overview of the procedure 

Experimental design 

There are many choices and considerations that should be carefully planned before 

embarking on a normative modeling analysis – the decision points can be grouped into the 

following themes: data selection, data preparation, algorithm/modeling, and 

evaluation/interpretation (Figure 2). Creating the training dataset that will serve as the 

“normative” reference curve is the first important decision. Ideally, the training dataset will be a 

large and representative sample, and the included subjects should not be missing vital 

demographic (age, sex) or biological (neuroimaging) data. However, data imputation may be 

used if necessary but should be used cautiously. In most research studies, data are missing not at 

random, and we interpret more than just mean effects. In this case, mean imputation will bias 

results and other forms of imputation should be considered
49,50

. It is important that the reference 

cohort provides good coverage (complementary covariates) of the test set (e.g., clinical) 

population. For example, it would not be sensible to model age ranges of childhood and 

adolescence in the reference cohort and have the test cohort consist of late adulthood ages.  
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It is rare for a single scanning site to acquire large enough samples that are an accurate 

representation of the general population. Therefore, it is typically necessary to pool data obtained 

across multiple MRI centers. Some projects, such as the ABCD study
51

, have begun to 

harmonize scanning protocols because multi-site pooling was planned prior to data collection. In 

contrast, other projects, such as ENIGMA
52

, combine data post-collection and not have 

harmonized scanning sessions prior to data collection. If possible, to eliminate additional sources 

of variance, multi-site pooled data should be preprocessed using identical pipelines and software 

versions. However, due to data sharing restrictions and privacy concerns regarding health data, 

raw data may be unavailable, making pre or post data collection harmonization efforts 

impossible. Data harmonization techniques, such as COMBAT
53–56

, aim to remove site-related 

variance from the data as a preprocessing step before further analyses are run. There are some 

issues with harmonization, principally that all sources of variance that are correlated with the 

batch-effects (i.e., site-related variance) are removed which can unintentionally remove 

important, unknown, clinically relevant variance from the data. COMBAT also requires that the 

user have access to all the data when harmonizing which does not bode well with data privacy 

concerns. We therefore do not recommend users focus on data harmonization techniques when 

preparing their data sets for normative modeling. Hierarchical Bayesian Regression (HBR)
21,22

 

implemented in the PCNtoolkit has been thoroughly developed and tested to address these 

challenges when using multi-site data in normative modeling. HBR estimates site-specific mean 

effects and variations in the normative model estimation stage using a Bayesian hierarchical 

model, which produces site-agnostic deviation scores (z-statistics). This distinction between 

harmonization techniques (i.e., COMBAT) and HBR-normative modeling is very important 

when using deviation scores as features in subsequent interpretation analyses, as harmonization 

has been shown to overexaggerate confidence in downstream analyses
57

.  

 The next choice should be regarding which covariates to include. One of the main 

criteria to include a covariate is the relevance to the posed research question. In normative 

modeling, usually we are interested in studying the deviations from the norm of the population, 

in other words, we are more interested in residuals. Thus, when we include a covariate in the 

design matrix for estimating the normative model, we are mainly interested in removing its effect 

from the residuals (thus deviations) than investigating its effect on the neuroimaging variable. 

Normative modeling is a tool to study unknowns (that are encoded in the deviations). To do so, 
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we need to first account for known variation in the data by regressing them out of the data (thus 

we include the knowns in the covariates), and then we interpret the residual variation in the 

deviation scores. For example, if you want to know the effect of smoking on the ventral striatum, 

that is not confounded by other substance use, you should include substance use variables (e.g., 

drinks per week, etc.) in the covariate matrix, estimate the normative model, and then correlate 

the ventral striatum deviation score (that has the effect of drinking removed from it) with 

smoking frequency. When pooling data from multiple sites, the available measures across sites 

may influence the selection of covariates because ideally, the variables should be consistent 

across sites. For example, you should not use different versions of a cognitive test, as they could 

test for different dimensions of general cognitive ability. For neurodevelopmental or lifespan 

model, the suggested minimum covariates to include are age, sex, site (using random- or fixed-

effects), and optionally a metric of data quality (i.e., mean framewise displacement or Freesurfer 

Euler number). Modeling site is very important; however, an exhaustive explanation is outside 

the scope of this protocol but see 
20,21

 for an in-depth account of modeling site variation. 

Diagnostic labels could also be included as covariates to utilize the variance explained by these 

labels without constraining the mapping to only reflect case-control differences. Furthermore, 

additional biological covariates could also be included, for example blood biomarkers, or 

structural brain measures if predicting functional brain measures. Additional or alternative 

covariates may include other demographics (race, ethnicity, gender, education level, marital 

status, household income) and cognitive variables.  

Next, it is necessary to decide on the resolution of the input brain data. The resolution of 

predictions is important to consider while keeping in mind the increasing computational 

complexity with modeling smaller units. Vertex or voxel-level modeling of brain data provides 

high-resolution deviation maps. Still, ROI-level modeling may allow for easier 

interpretation/visualization of the output deviation maps and will have a lower penalty in 

multiple comparison correction (if doing post-hoc analysis) on the deviation maps.  

After the data have been carefully chosen and curated, it is time to move onto the 

normative modeling implementation. There are several algorithms for implementing a normative 

model including Gaussian process regression
58

, Bayesian linear regression
19,59

, hierarchical 

Bayesian regression
21,22

, generalized additive models of location, scale, and shape
20

, neural 

processes
60

, random feature approximation
61

, quantile regression
62

 and many of these are 
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implemented in the PCNtoolkit software package. The algorithms have different properties 

depending on their ability to model non-linear effects, scaling to large data sets (in terms of 

computation time), handling of random or fixed effects (e.g., to model site effects), their ability 

to model heteroscedastic or non-Gaussian noise distributions and their suitability for use in a 

federated or decentralized learning environment. Gaussian process regression (GPR) was widely 

used in the beginning phases of normative modeling, which can flexibly model non-linear effects 

but does not computationally scale well when the training data increases (i.e., beyond a few 

thousand data points). In this work, we focus on Bayesian linear regression (BLR), which is 

highly scalable and flexible. For example, it can be combined with likelihood warping to model 

non-Gaussian effects. Hierarchical Bayesian regression (HBR) is another appealing choice as it 

has been used to better address multi-site datasets and allows for transfer learning (e.g., 

prediction for unseen sites) and can be estimated in a federated learning framework.

Figure 2 Practical Overview of Normative Modeling Framework. The workflow consists of 

four stages: data selection, data preparation, algorithm & modeling, and evaluation & 

interpretation, which are visualized by the numbered shaded blue boxes. The steps involved at 

each of these stages are summarized in the box below and highlighted in the images above. 
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Expertise needed to implement the protocol 

We aimed to make this protocol user-friendly to the diverse community of neuroscience, 

including those with a non-technical background. The fundamental objective of this protocol is 

to learn how to implement the normative modeling framework via the PCNtoolkit software 

without being an expert in statistics and machine learning. You will be given enough knowledge 

to set up training and test sets, understand what data should be going into the model, interpret 

results, and make inferences on the results. Prerequisites of this protocol are basic familiarity 

with the Python programming language, a computer with WIFI, and a stable internet connection. 

Complete code, example data, and extensive documentation accompany this protocol; thus, 

writing code from scratch is unnecessary. Of course, it is our intention for readers to be inspired 

by this protocol and to use the normative modeling framework in new ways than presented here. 

If you wish to use the framework presented in this protocol beyond the provided code, familiarity 

with the Linux command line, bash scripting, setting up virtual environments, and submitting 

jobs to high-performance clusters would also be helpful.  

Limitations 

Big data requires automated QC 

As datasets grow to meet the requirements of becoming population-level or big data, 

there is typically a need to rely on automated quality control metrics
63

. This means there is 

potential to unintentionally include poor quality data, which could, in turn, affect the results. The 

training and test dataset used in this protocol has been manually quality checked by visualizing 

every subject’s raw T1w volume with their corresponding Freesurfer brain-mask as an overlay 

using an online (JavaScript-based) image viewer. Quality checking code and further instructions 

for use is made available on GitHub. These images were inspected for obvious quality issues, 

such as excess field-of-view cut-off, motion artifacts, or signal drop-out. Subjects that were 

flagged as having quality issues were excluded from the sample. Users should consider manually 

quality checking their own data if they wish to add on additional samples to the dataset. 

Multi-site confounds 

Pooling data from multiple sites is often a necessary step to create diverse datasets and 

reach sufficient sample sizes for machine learning analyses. When combining data from different 

studies, several challenges arise. First, there are often different MRI scanners at each site that 

also have different acquisition parameters. These MRI hardware and software divergences give 
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rise to substantial nuisance variance that must be properly accounted for when modeling the data. 

Second, there may be sampling differences, for example due to different inclusion criteria and 

definitions of diagnostic labels at each site. For example, one site may use the Structured Clinical 

Interview for DSM-5 (SCID-5) administered by a clinician or trained mental health professional 

who is familiar with the DSM-5 classification and diagnostic criteria, while another site may not 

have these resources in their study and therefore relies on self-report questionnaire data to define 

clinical labels. There is likely to be dissimilarities in the available demographic, cognitive, and 

clinical questionnaire data across sites as well which needs to be considered when deciding 

which studies to include in the training set. There is a careful balance that should be considered 

regarding the benefits gained from a new site joining the sample versus the nuisance site related 

variance that accompanies the addition of new sites. 

Univariate nature 

The PCNtoolkit can run models in parallel to speed up computation time; however, there 

is still a univariate nature, meaning a separate model is fit for each brain region. This univariate 

approach does not address the spatial autocorrelation
64–66

 or functional heterogeneity (functional 

mis-registration) present in (f)MRI data
67

. This is an extra critical consideration when using 

functional MRI as the input. When using fMRI, you should consider using a hyperalignment 

algorithm (functional alignment)
68,69

 to properly model the functional regions, as the spatial 

overlap of regions across individuals is not guaranteed with functional areas. Progress in 

addressing spatial autocorrelation in the context of normative modeling has been made
70

, but 

modeling spatial autocorrelation is a difficult problem that requires further work.  

Materials 

Equipment 

• Computing infrastructure: a Linux computer or HPC (SLURM or Torque) with enough 

space to store the imaging data of the train and test set. 

• If a Linux computer or server is unavailable, this protocol can also be run in 

Google Colab (for free). If using Google Colab, only a computer with an internet 

connection and modern internet browser (e.g., Chrome or Firefox) installed is 

necessary.  

• Python installation.  
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• Recommended: Anaconda or virtual environment to manage the required python 

packages. 

• PCNtoolkit python package version 0.20 (and dependencies) installed via pip. 

• Covariates and response variables. Examples of these are provided with this tutorial. 

• Demographic and behavioral data used as predictor variables 

• Age, sex/gender, site/scanner ID, race/ethnicity, cognition, data quality 

metric (Euler number if structural, mean framewise displacement if 

functional) 

• Biological data to be predicted. An example structural MRI dataset is provided 

with this tutorial. 

• Structural MRI cortical thickness, surface area, subcortical volume 

• Functional MRI: parcellated task activation maps, resting-state networks 

Procedure 

Figure 3 Overview of Resources for Running a Normative Modeling Analysis. A) Detailed 

documentation, including installation instructions, input/output descriptions of all classes and 

functions implemented in the python package, tutorials for all algorithms, frequently asked 

questions, a glossary explaining acronyms and other jargon, references to existing normative 

modeling literature, and a citation guide, is available online. B) Example of the documentation 

showing the required input, expected output of the main function used in the pcntoolkit software, 

the estimate function. C) All of the code and data used in this protocol is available to run in the 

12 

 

e, 
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cloud via Google Colab. Additional tutorials (shown under the tutorials header in panel A) are 

also available to run in Google Colab.  

 

Step 1: Install necessary packages and download the tutorial data 

Timing = 1-3 minutes. 

git clone https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo.git 
# set this path to the git cloned PCNtoolkit-demo repository --> Uncomment whichever line you 
need for either running on your own computer or on Google Colab. 
#os.chdir('/Users/saigerutherford/repos/PCNtoolkit-demo/') # if running on your own computer, use 
this line (change the path to match where you cloned the repository) 
#os.chdir('PCNtoolkit-demo/') # if running on Google Colab, use this line 
import os 
pip install -r requirements.txt 

 

 

Step 2: Prepare covariate data 

Timing = 5-8 minutes. 

For this tutorial we will use data from the Human Connectome Project Young Adult 

study, CAMCAN, and IXI to create a multi-site dataset. Our first step is to prepare and combine 

the covariate (age & sex) data from each site. 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
import seaborn as sns 
import joypy 
from sklearn.model_selection import train_test_split 
from pcntoolkit.normative import estimate, evaluate 
from pcntoolkit.utils import create_bspline_basis, compute_MSLL 
hcp = pd.read_csv('data/HCP1200_age_gender.csv') 
cam = pd.read_csv('data/cam_age_gender.csv') 
ixi = pd.read_csv('data/IXI_age_gender.csv') 
cam_hcp = pd.merge(hcp, cam, how='outer') 
cov = pd.merge(cam_hcp, ixi, how='outer') 
sns.set(font_scale=1.5, style='darkgrid') 
sns.displot(cov, x="age", hue="site", multiple="stack", height=6) 
cov.groupby(['site']).describe() 

 

 

Step 3: Prepare brain data 

Timing = 10-15 minutes. 

Next, we will format and combine the MRI data. We are using cortical thickness maps that are 

created by running recon-all from Freesurfer (version 6.0). We need to merge the left and right 

hemisphere text files for each site, and then combine the different sites into a single dataframe. 

We reduce the dimensionality of our data by using ROIs from the Desikan-Killiany atlas.  

cam = pd.read_csv('data/CAMCAN_aparc_thickness.csv') 
hcpya = pd.read_csv('data/HCP1200_aparc_thickness.csv') 
ixi = pd.read_csv('data/IXI_aparc_thickness.csv') 
hcpya_cam = pd.merge(hcpya, cam, how='outer') 
brain all = pd.merge(ixi, hcpya cam, how='outer')  
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We also want to include the Euler number as a covariate. So, we extracted the Euler number 

from each subject's recon-all output folder into a text file and we now need to format and 

combine these into our brain dataframe. 

hcp_euler = pd.read_csv('data/hcp-ya_euler.csv') 
cam_euler = pd.read_csv('data/cam_euler.csv') 
ixi_euler = pd.read_csv('data/ixi_euler.csv') 
hcp_euler['site'] = 'hcp' 
cam_euler['site'] = 'cam' 
ixi_euler['site'] = 'ixi' 
hcp_euler.dropna(inplace=True) 
cam_euler.dropna(inplace=True) 
ixi_euler.dropna(inplace=True) 
hcp_euler['rh_euler'] = hcp_euler['rh_euler'].astype(int) 
hcp_euler['lh_euler'] = hcp_euler['lh_euler'].astype(int) 
cam_euler['rh_euler'] = cam_euler['rh_euler'].astype(int) 
cam_euler['lh_euler'] = cam_euler['lh_euler'].astype(int) 
ixi_euler['rh_euler'] = ixi_euler['rh_euler'].astype(int) 
ixi_euler['lh_euler'] = ixi_euler['lh_euler'].astype(int) 
hcp_cam_euler = pd.merge(hcp_euler, cam_euler, how='outer') 
df_euler = pd.merge(ixi_euler, hcp_cam_euler, how='outer') 

 

 

We need to center the Euler number for each site. The Euler number is very site-specific so to 

use the same exclusion threshold across sites we need to center the site by subtracting the site 

median from all subjects at a site. Then we will take the square root and multiply by negative one 

and exclude any subjects with a square root above 10. If possible, your data should be visually 

inspected to verify that the data inclusion is not too strict or too lenient. Subjects above the Euler 

number threshold should be manually checked to verify and justify their exclusion due to poor 

data quality. This is just one approach for automated QC used by the developers of the 

PCNtoolkit. Other approaches such as the ENIGMA QC pipeline or UK Biobank’s QC pipeline 

63
 are also viable options for automated QC.  

df_euler['avg_euler'] = df_euler[['lh_euler','rh_euler']].mean(axis=1) 
df_euler.groupby(by='site').median() 
df_euler['site_median'] = df_euler['site'] 
df_euler['site_median'] = df_euler['site_median'].replace({'hcp':-43,'cam':-61,'ixi':-56}) 
df_euler['avg_euler_centered'] = df_euler['avg_euler'] - df_euler['site_median'] 
df_euler['avg_euler_centered_neg'] = df_euler['avg_euler_centered']*-1 
df_euler['avg_euler_centered_neg_sqrt'] = 
np.sqrt(np.absolute(df_euler['avg_euler_centered_neg'])) 

brain = pd.merge(df_euler, brain_all, how='inner') 
brain good = brain.query('avg euler centered neg sqrt < 10') 

 

 

Step 4: Merge covariate & brain dataframes 

Timing = 3-5 minutes. 

Even though the normative modeling code needs the covariate and features (cortical thickness) in 

separate text files, we first need to merge them together to make sure that we have the same 

subjects in each file and that the rows (representing subjects) align. 
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# make sure to use how="inner" so that we only include subjects that have data in both the 
covariate and the cortical thickness files  
all_data = pd.merge(brain_good, cov, how='inner') 
# Create a list of all the ROIs you want to run a normative model for 
roi_ids = ['lh_MeanThickness_thickness', 
           'rh_MeanThickness_thickness', 
           'lh_bankssts_thickness', 
           'lh_caudalanteriorcingulate_thickness', 

           'lh_superiorfrontal_thickness', 
           'rh superiorfrontal thickness'] 

 

 

Step 5: Format dataframe to run normative model 

Timing = 3-5 minutes. 

Exclude rows with NaN values and separate the brain features and covariates into their own 

dataframes.  

from sklearn.model_selection import train_test_split 
all data = all data.dropna()  

all_data_features = all_data[[subset=roi_ids]] 
all data covariates = all data[['age','sex','site']]  

 

Right now, the sites are coded in a single column using a string. We need to instead dummy 

encode the site variable so that there is a column for each site and the columns contain binary 

variables (0/1). The pandas package has a built-in function, pd.get_dummies to help us format 

the site column this way. 

all_data_covariates = pd.get_dummies(all_data_covariates, columns=['site']) 
all_data['Average_Thickness'] = 
all data[['lh MeanThickness thickness','rh MeanThickness thickness']].mean(axis=1) 

 

 

Take a sneak peek to see if there are any super obvious site effects. If there were, we would see a 

large separation in the fitted regression line for each site. 

sns.set_theme(style="darkgrid",font_scale=1.5) 
c = sns.lmplot(data=all_data, x="age", y="Average_Thickness", hue="site", height=6) 
plt.ylim(1.5, 3.25) 
plt.xlim(15, 95) 
plt.show()  

 

Step 6: Train/Test split 

Timing = 3-5 minutes. 

We will use 80% of the data for training and 20% for testing. We stratify our train/test split using 

the site variable to make sure that the train/test sets both contain data from all sites. The model 

wouldn't learn the site effects if all the data from one site was only in the test set. If your test set 

includes all patients, it is important to also include some controls (from the same site as patients) 

in the test set. To investigate the hypothesis that patients have more extreme deviation patterns 
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than controls, you need to verify that it is because they are patients not because they are in the 

test set, and you can check this by also including controls in the test set. In other words, you 

cannot separate site variation from diagnostic variation if you do not have control reference data.  

X_train, X_test, y_train, y_test = train_test_split(all_data_covariates, all_data_features, 
stratify=all data['site'], test size=0.2, random state=42)  
 

Confirm that your train and test arrays are the same size (rows). You do not need the same size 

columns (subjects) in the train and test arrays, but the rows represent the covariate and responses 

which should be the same across train and test arrays.  

tr_cov_size = X_train.shape 
tr_resp_size = y_train.shape 
te_cov_size = X_test.shape 
te_resp_size = y_test.shape 
print("Train covariate size is: ", tr_cov_size) 
print("Test covariate size is: ", te_cov_size) 
print("Train response size is: ", tr_resp_size) 
print("Test response size is: ", te_resp_size)  

Save out each ROI to its own file. We set up the normative model so that for each response 

variable, Y (e.g. brain region) we fit a separate model. While the estimate function in the 

PCNtoolkit can handle having all the Y’s in a single text file, for this tutorial we are going to 

organize our Y's so that they are each in their own text file and directory. 

for c in y_train.columns: 
y_train[c].to_csv('resp_tr_' + c + '.txt', header=False, index=False) 
X_train.to_csv('cov_tr.txt', sep = '\t', header=False, index = False) 
y_train.to_csv('resp_tr.txt', sep = '\t', header=False, index = False) 

for c in y_test.columns: 
y_test[c].to_csv('resp_te_' + c + '.txt', header=False, index=False) 
X_test.to_csv('cov_te.txt', sep = '\t', header=False, index = False) 
y_test.to_csv('resp_te.txt', sep = '\t', header=False, index = False) 

! if [[ ! -e data/ROI_models/ ]]; then mkdir data/ROI_models; fi 
! if [[ ! -e data/covariate_files/ ]]; then mkdir data/covariate_files; fi 
! if [[ ! -e data/response_files/ ]]; then mkdir data/response_files; fi 
! for i in `cat data/roi_dir_names`; do cd data/ROI_models; mkdir ${i}; cd ../../; cp 
resp_tr_${i}.txt data/ROI_models/${i}/resp_tr.txt; cp resp_te_${i}.txt 
data/ROI_models/${i}/resp_te.txt; cp cov_tr.txt data/ROI_models/${i}/cov_tr.txt; cp cov_te.txt 
data/ROI_models/${i}/cov_te.txt; done 
! mv resp_*.txt data/response_files/ 
! mv cov_t*.txt data/covariate_files/ 

 

 

Step 7: Run normative model 

Timing = 1-2 minutes per model (multiply by number of ROIs/models). 

# set this path to wherever your ROI_models folder is located (where you copied all of the 
covariate & response text files to in Step 4) 
data dir = '/Users/saigerutherford/repos/PCNToolkit-demo/data/ROI models/'  

 

When we split the data into train and test sets, we did not reset the index. This means that the 

row numbers in the train/test matrices are still the same as before splitting the data. We will need 
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the test set row numbers of which subjects belong to which site to evaluate per site performance 

metrics, so we need to reset the row numbers in the train/test split matrices. 

x_col_names = ['age', 'sex', 'site_cam', 'site_hcp', 'site_ixi'] 
X_train = pd.read_csv('data/covariate_files/cov_tr.txt', sep='\t', header=None, 
names=x_col_names) 
X_test = pd.read_csv('data/covariate_files/cov_te.txt', sep='\t', header=None, names=x_col_names) 
y_train = pd.read_csv('data/response_files/resp_tr.txt', sep='\t', header=None) 
y_test = pd.read_csv('data/response_files/resp_te.txt', sep='\t', header=None) 
X_train.reset_index(drop=True, inplace=True) 
X_test.reset_index(drop=True, inplace=True) 

y_train.reset_index(drop=True, inplace=True) 
y test.reset index(drop=True, inplace=True)  

Extract site indices so that we can evaluate the test metrics independently for each site. 

cam_idx = X_test.index[X_test['site_cam' ]== 1].to_list() 
hcp_idx = X_test.index[X_test['site_hcp'] == 1].to_list() 
ixi_idx = X_test.index[X_test['site_ixi'] == 1].to_list() 
 
# Save the site indices into a single list 
sites = [cam_idx, hcp_idx, ixi_idx] 
 
# Create a list with sites names to use in evaluating per-site metrics 
site_names = ['cam', 'hcp', 'ixi'] 

  

Basis expansion 

Now, we set up a B-spline basis set that allows us to perform nonlinear regression using a linear 

model. This basis is deliberately chosen to not to be too flexible so that in can only model 

relatively slowly varying trends. To increase the flexibility of the model you can change the 

parameterization (e.g., by adding knot points to the B-spline basis or increasing the order of the 

interpolating polynomial). Note that in the neuroimaging literature, it is more common to use a 

polynomial basis expansion for this. Piecewise polynomials like B-splines are superior to vanilla 

polynomial basis expansions because they do not introduce a global curvature. For further details 

on the use of B-splines see Fraza et al
19

.  
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# Create a cubic B-spline basis (used for regression) 
xmin = 10#16 # xmin & xmax are the boundaries for ages of participants in the dataset 
xmax = 95#90 
B = create_bspline_basis(xmin, xmax) 
# create the basis expansion for the covariates for each of the  
for roi in roi_ids:  
    print('Creating basis expansion for ROI:', roi) 
    roi_dir = os.path.join(data_dir, roi) 

    os.chdir(roi_dir) 
    # create output dir  
    os.makedirs(os.path.join(roi_dir,'blr'), exist_ok=True) 
    # load train & test covariate data matrices 
    X_tr = np.loadtxt(os.path.join(roi_dir, 'cov_tr.txt')) 
    X_te = np.loadtxt(os.path.join(roi_dir, 'cov_te.txt')) 
    # add intercept column  
    X_tr = np.concatenate((X_tr, np.ones((X_tr.shape[0],1))), axis=1) 
    X_te = np.concatenate((X_te, np.ones((X_te.shape[0],1))), axis=1) 
    np.savetxt(os.path.join(roi_dir, 'cov_int_tr.txt'), X_tr) 
    np.savetxt(os.path.join(roi_dir, 'cov_int_te.txt'), X_te) 
     
    # create Bspline basis set  
    Phi = np.array([B(i) for i in X_tr[:,0]]) 
    Phis = np.array([B(i) for i in X_te[:,0]]) 
    X_tr = np.concatenate((X_tr, Phi), axis=1) 
    X_te = np.concatenate((X_te, Phis), axis=1) 
    np.savetxt(os.path.join(roi_dir, 'cov_bspline_tr.txt'), X_tr) 
    np.savetxt(os.path.join(roi_dir, 'cov_bspline_te.txt'), X_te) 

  

Prepare output structures 

# Create pandas dataframes with header names to save out the overall and per-site model 
evaluation metrics 
blr_metrics = pd.DataFrame(columns = ['ROI', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) 
blr_site_metrics = pd.DataFrame(columns = ['ROI', 'site', 'y_mean', 'y_var', 'yhat_mean',  

'yhat_var', 'MSLL', 'EV', 'SMSE', 'RMSE', 'Rho']) 

 

Estimate the normative models 

In this step, we estimate the normative models one at a time for each ROI. In principle, we could 

also do this on the whole data matrix at once (e.g., with the response variables stored in a 

n_subjects by n_brain_measures NumPy array or a text file). However, doing it this way 

gives us some extra flexibility in that it does not require that the subjects are the same for each of 

the brain measures. This code fragment will loop through each region of interest in the roi_ids 

list (set a few code blocks above) using Bayesian Linear Regression and evaluate the model on 

the independent test set. It will then compute error metrics such as the explained variance, mean 

standardized log-loss and Pearson correlation between true and predicted test responses 

separately for each scanning site. We supply the estimate function with a few specific arguments 

that are worthy of commenting on: 

• alg = 'blr': specifies we should use Bayesian Linear Regression.  
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• optimizer = 'powell': use Powell's derivative-free optimization method (faster in this case 

than L-BFGS) 

• savemodel = False: do not write out the final estimated model to disk 

• saveoutput = False: return the outputs directly rather than writing them to disk 

• standardize = False: Do not standardize the covariates or response variables 

One important consideration is whether to re-scale or standardize the covariates or responses. 

Whilst this generally only has a minor effect on the final model accuracy, it has implications 

for the interpretation of models and how they are configured. If the covariates and responses 

are both standardized, the model will return standardized coefficients. If (as in this case) the 

response variables are not standardized, then the scaling both covariates and responses will 

be reflected in the estimated coefficients. Also, under the linear modelling approach 

employed here, if the coefficients are unstandardized and do not have a zero mean, it is 

necessary to add an intercept column to the design matrix. This is done in the code block 

above. 
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# Loop through ROIs 
for roi in roi_ids:  
    print('Running ROI:', roi) 
    roi_dir = os.path.join(data_dir, roi) 
    os.chdir(roi_dir) 
      
    # configure the covariates to use. Change *_bspline_* to *_int_* to  
    cov_file_tr = os.path.join(roi_dir, 'cov_bspline_tr.txt') 
    cov_file_te = os.path.join(roi_dir, 'cov_bspline_te.txt') 
     
    # load train & test response files 
    resp_file_tr = os.path.join(roi_dir, 'resp_tr.txt') 
    resp_file_te = os.path.join(roi_dir, 'resp_te.txt')  
     
    # run a basic model 
    yhat_te, s2_te, nm, Z, metrics_te = estimate(cov_file_tr,  
                                                 resp_file_tr,  
                                                 testresp=resp_file_te,  
                                                 testcov=cov_file_te,  
                                                 alg = 'blr',  
                                                 optimizer = 'powell',  
                                                 savemodel = False,  
                                                 saveoutput = False, 
                                                 standardize = False) 
    # display and save metrics 
    print('EV=', metrics_te['EXPV'][0]) 
    print('RHO=', metrics_te['Rho'][0]) 
    print('MSLL=', metrics_te['MSLL'][0]) 
    blr_metrics.loc[len(blr_metrics)] = [roi, metrics_te['MSLL'][0],  

metrics_te['EXPV'][0], metrics_te['SMSE'][0], metrics_te['RMSE'][0],  
metrics_te['Rho'][0]] 

     
    # Compute metrics per site in test set, save to pandas df 
    # load true test data 
    X_te = np.loadtxt(cov_file_te) 
    y_te = np.loadtxt(resp_file_te) 
    y_te = y_te[:, np.newaxis] # make sure it is a 2-d array 
     
    # load training data (required to compute the MSLL) 
    y_tr = np.loadtxt(resp_file_tr) 
    y_tr = y_tr[:, np.newaxis] 
     
    for num, site in enumerate(sites):      
        y_mean_te_site = np.array([[np.mean(y_te[site])]]) 
        y_var_te_site = np.array([[np.var(y_te[site])]]) 
        yhat_mean_te_site = np.array([[np.mean(yhat_te[site])]]) 
        yhat_var_te_site = np.array([[np.var(yhat_te[site])]]) 
         
        metrics_te_site = evaluate(y_te[site], yhat_te[site], s2_te[site],  

y_mean_te_site, y_var_te_site) 
         
        site_name = site_names[num] 
        blr_site_metrics.loc[len(blr_site_metrics)] = [roi, site_names[num],  

y_mean_te_site[0], 
y_var_te_site[0], 
yhat_mean_te_site[0], 
yhat_var_te_site[0], 
metrics_te_site['MSLL'][0], 
metrics_te_site['EXPV'][0], 
metrics_te_site['SMSE'][0], 
metrics_te_site['RMSE'][0], 
metrics_te_site['Rho'][0]] 
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Anticipated Results 

There are multiple end products created from running a normative model analysis. First, 

the evaluation metrics for each model (brain region) are saved to a file. In this tutorial, we saved 

the metrics to a CSV file format, however, in the pcn.estimate() function you could set the 

argument ‘binary = True’ which would save the metrics in pickle (.pkl) format. Pickle format is 

good to use if you are estimating many models in parallel on a large dataset, as it is faster 

because it avoids reading/writing intermediate text files. These metrics are further summarized 

into per site metrics to check model fit for each site included in the test set. The short and full 

names of the evaluation metrics and a brief interpretation guide is summarized below in Box 1. 

The evaluation metrics can be visualized in numerous formats, histograms/density plots, scatter 

plots with fitted centiles, or brain-space visualizations. Several examples of these visualizations 

are shown in Figure 4. Quality checking the normative model evaluation metrics should be done 

to ensure proper model estimation. If a model fits well to the data, the evaluation metrics should 

follow a Gaussian distribution. The model estimation step should properly handle confounding 

site effects, nevertheless, it is also a good idea to check per site metrics to make sure the model is 

fitting all sites equally well and that there are no obvious site outliers.  

Box 1: Normative Model Evaluation Metrics  

Variable 

name 

Full name Definition Interpretation 

��  True data   

���  Predictive mean   

��
� Predictive noise 

variance  

Represents uncertainty in the 

data. 

 

���
��� Predictive 

modeling variance  

Represents uncertainty in 

model estimation. 

 

Z Deviation score A statistical estimate (Z-

score) of how much each 

subject deviates from the 

normative range.  

Z > 2 ‘extreme positive 

deviation’ 

Z < -2 ‘extreme negative 

deviation’ 

Rho Pearson 

correlation 

A measure of linear 

correlation between true and 
Ranges between -1 and 1. 

Closer to 1 = better model 
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between true and 

predicted 

responses 

predicted responses. It is the 

ratio between the covariance 

of true and predicted values 

and the product of their 

standard deviations.  

performance.  

pRho Parametric p-value 

for the Pearson 

correlation 

The probability of obtaining 

test results at least as 

extreme as the results 

actually observed, under the 

assumption that the null 

hypothesis is true. 

Ranges between 0 and 1. 

Closer to 0 = more 

statistically significant. 

SMSE Standardized mean 

squared error 

The square root of the 

squared residual between the 

mean prediction and the 

target at each test point, 

averaged over samples in the 

test set, normalized by the 

variance of the targets in the 

test set.  

Closer to 0 = better (more 

accurate) model 

performance.  

EV Explained variance 
The proportion to which the 

predicted value accounts for 

the variance of the true 

value. Sensitive to the mean 

fit, dependent on flexibility 

of the model.  

Closer to 1 = better model 

performance.  

MSLL Mean standardized 

log-loss 

The log loss minus the loss 

that would be obtained under 

the trivial model which 

predicts using a Gaussian 

with the mean and variance 

of the training data, averaged 

over the test set. Sensitive to 

the variance, penalizes the 

flexibility of the model.  

More negative = better 

model performance.  
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Figure 4 Visualization of Normative Model Evaluation Metrics. A) A ridge plot showing the 

distribution across all brain regions of the standardized mean squared error (SMSE), an 

evaluation metric that represents accuracy, visualized for each site in the test set. Visualizing for 

each test site can help identify if there are sites where the model is performing poorly. Ideally, 

the distribution will be Gaussian and should look similar across all sites. Small shifts in the mean 

across sites is to be expected and is acceptable. B) Explained variance is shown for cortical 

thickness of every brain region in the Destrieux parcellation) and volume of subcortical regions. 

Visualizing the evaluation metrics in brain space helps to identify patterns and see the big 

picture. C) The number of extreme deviations (both positive and negative) are counted for each 

individual in the test set, group ID is used to plot the distribution of the extreme deviation count 

for each group. A statistical test can be done on the count to determine if there is a significant 

difference between groups. Testing group differences in the count of deviations does not require 

there to be spatial overlap of the deviations within the group (i.e., this test can account for 

within-group heterogeneity of deviations). D) The normative trajectory for an example brain 

region (lateral ventricle) showing age (x-axis) versus the predicted volume (y-axis). The centiles 

of variation are shown by the lines and shaded confidence intervals. Each subject in the test set is 

plotted as a single point. E-F) Extreme deviations, separated into positive (E) and negative (F), 

are summarized for each group. For each brain region, the number of subjects with an extreme 

deviation in that region is counted, then divided by the group sample size, to show the percent of 

subjects with an extreme deviation. These visualizations demonstrate the benefit of normative 

modeling as there is within group heterogeneity that other methods (i.e., case-control group 

difference testing) are not equipped to handle. Abbreviations: HC = Controls, MDD=Major 

Depressive Disorder, SZ=Schizophrenia, SAD=Social Anxiety Disorder, EP=Early Psychosis. 

  

There are many interesting analyses that can be conducted using the outputs of normative 

modeling (deviation scores). A full tutorial on each of these analyses is outside the scope of this 
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protocol. However, on GitHub, we include code examples (python notebooks that can be run via 

Colab) of the following post-hoc analysis: 

• Using deviation scores as predictors in a regression and classification. 

• Dimensionality reduction to get a latent representation of deviation scores.  

• Classical case-control testing (univariate t-tests) on deviation maps compared to 

univariate t-tests on the true data. 

A benefit of the PCNtoolkit software for normative modeling, that sets our approach 

apart from other implementations
71

, is the fine-scale resolution allowed by the model. Other 

normative modeling work
71

 has focused on modeling gross features such as total brain volume or 

gray matter volume, which is not adequate for normative modeling applied to mental health 

conditions and neurodevelopmental disorders, where the effects are subtle and widespread 

(individuals within a patient group tend to deviate in different regions, see Figure 4E-F) across 

the cortex and subcortex and averaging over large brain areas usually overlook these elusive 

psychiatric effects.    

Troubleshooting 

We re-iterate that there is additional documentation available online through read the docs 

including additional tutorials for other algorithm implementations (Gaussian Process Regression 

and Hierarchical Bayesian Regression), a glossary to clarify the jargon associated with the 

software, a reference guide with links to normative modeling publications, and a frequently 

asked questions page where many common errors (and their solutions) are discussed in detail.  

The problems encountered when troubleshooting a normative modeling analysis can fall into 

three categories: computing errors, data issues, and misunderstanding or misinterpreting the 

outputs. The computing errors might involve python or the computer hardware. Potential python 

errors may include installation of python or installation of the necessary packages and their 

dependencies. We recommend using Anaconda to install python 3.8 (required for this tutorial) on 

your system, and the use of a virtual environment for the PCNtoolkit to ensure that the packages 

required for normative modeling do not interfere with other python versions and packages you 

may have installed on your system. In general, it is good to have a virtual environment setup for 

each project or analysis. If you are unfamiliar with setting up virtual environments, and run into 

issues with python, it is always an option to run the analysis in the cloud via Colab which 
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eliminates the need to setup python on your own system. Hardware problems might include lack 

of memory to store the data or models running very slowly due to outdated hardware. These 

hardware errors do not have an easy solution, and we recommend using Google Colab to run 

normative modeling analysis if your personal computer or server is very slow or lacks the 

storage space. Data issues that may be encountered are data missing not at random (see 

Experimental Design section re: caution using data imputation), improperly coded data (i.e., 

strings instead of integers or floats, NaN values coded incorrectly), collinearity of columns in the 

covariate design matrix, or outlier data that does not make biological sense (i.e., negative cortical 

thickness values, negative age values). While these data error can be incredibly frustrating to 

troubleshoot, they can typically be fixed by careful quality checking of the input data and 

removal of bad ROIs or subjects as needed. Finally, an example of interpretation confusion may 

be poor model performance on a certain brain region or site. This can usually be addressed by 

returning to the input data for additional quality checking. 

 

Data Availability 

All data and code are available on GitHub in the format of a jupyter python notebook that 

can be run in the cloud (for free) using Google Colab. Examples of post-hoc analysis and code 

for visualizing the evaluation metrics can also be found on GitHub.  
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