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Abstract Even though shared-memory concurrency is a paradigm frequently used
for developing parallel applications on small- and middle-sized machines, experience
has shown that it is hard to use. This is largely caused by synchronization primitives
which are low-level, inherently non-deterministic, and, consequently, non-intuitive
to use. In this paper, we present the Nornir run-time system. Nornir is comparable
to well-known frameworks such as MapReduce and Dryad that are recognized for
their efficiency and simplicity. Unlike these frameworks, Nornir also supports process
structures containing branches and cycles. Nornir is based on the formalism of Kahn
process networks, which is a shared-nothing, message-passing model of concurrency.
We deem this model a simple and deterministic alternative to shared-memory concur-
rency. Experiments with real and synthetic benchmarks on up to 8 CPUs show that
performance in most cases scales almost linearly with the number of CPUs, when
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not limited by data dependencies. We also show that the modeling flexibility allows
Nornir to outperform its MapReduce counterparts using well-known benchmarks.

Keywords Parallel processing · Kahn process networks

1 Introduction

The introduction of commodity multi-core processors has spawned a wide interest
in parallel programming. It is, however, widely recognized that developing parallel
and distributed programs is inherently more challenging than developing sequential
programs. As a consequence, several frameworks that aim to make such development
easier have emerged, such as Google’s MapReduce [12], Yahoo’s PigLatin [28] which
uses Hadoop [2] as the back-end, Phoenix [31] and Microsoft’s Dryad [21]. All of
these frameworks are gaining popularity, but they lack a feature that is critical to
our application domains: the ability to model branching and iterative algorithms, i.e.,
algorithms containing feedback loops in their data-path.

Much of our research focuses on the execution of complex parallel programs, such
as real-time encoding of 3-D video streams, where cycles are more the rule than the
exception (see Fig. 6 for an example). Thus, we cannot use any of the existing frame-
works, so we have turned towards the flexible formalism of Kahn process networks
(KPN) [22]. KPNs retain the nice properties of MapReduce and Dryad, but in addition
support cycles. Even though KPNs are an inherently distributed model of computa-
tion, their implementation for shared-memory machines and its performance is worth
studying for many reasons, the main ones being determinism and composability. De-
terminism guarantees that a program, given the same input, will behave identically on
each run. This significantly eases debugging, which is otherwise a notoriously hard
problem with parallel and distributed computations. Composability guarantees that
assembling independently developed components yields the expected results.

In an earlier paper [38], we evaluated implementation options for KPNs on shared-
memory architectures. In a follow-up paper [39], we presented case studies of prob-
lem modeling with KPNs and compared the resulting KPN models with MapRe-
duce models. We showed that KPNs allow more natural problem modeling than
MapReduce, and that implementations of real-world tasks on top of Nornir outper-
form the corresponding MapReduce implementations optimized for multi-core ma-
chines. This paper expands our previous paper [40] with more detailed descriptions
and further performance experiments. The implementation details of Nornir, which
we describe in this paper, are somewhat different than the implementations of our
previous KPN run-times described in [38, 39]. Most notably, we have added support
for pluggable scheduling policies to allow easy experimentation. We also investigate
the performance and scalability characteristics of Nornir using a set of benchmarks on
a workstation-class machine with 8 cores. The experiments reveal some weaknesses
of our current implementation, but indicate nevertheless that KPNs are a viable pro-
gramming model for parallel applications on shared-memory architectures.

The rest of this paper is organized as follows. In the next section, we present a brief
overview of related work. In Sect. 3, we present the properties and basic ideas behind
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KPNs, and follow up with the description of Nornir implementation details in Sect. 4.
In Sect. 5, we describe the benchmarks we designed and report our performance
results. We summarize the paper and present concluding remarks in Sect. 6.

2 Background and related work

A lot of research has been dedicated to addressing the challenge of parallel and dis-
tributed programming, which has led to the development of many tools, programming
languages and frameworks. Here, we give a short overview of this work—for a more
detailed summary, please refer to [37].

2.1 Low-level tool support

Low-level tools can be roughly categorized into those enabling shared-state concur-
rency and those enabling message-passing concurrency. Shared-state concurrency has
traditionally been most easily accessible from imperative programming languages
such as C, C++ and FORTRAN. These languages have little built-in support for con-
currency, so the developers must use the operating system’s threading facilities or
3rd-party libraries, such as threading building blocks [20], which encapsulate com-
mon concurrency patterns. Another choice is OpenMP [33], which is an extension of
C, C++ and FORTRAN oriented mostly towards loop-level parallelism. μC++ [6] is
another extension of the C++ programming language, which introduces a number of
concurrent programming concepts, such as cooperatively-scheduled co-routines [23]
and tasks that run in parallel and are scheduled preemptively.

Message-passing concurrency has traditionally been used for implementing pro-
grams running in different address spaces or on different machines. Erlang [3] is
an example of a pure functional programming language with built-in support for
message-passing concurrency. In Erlang, processes (actors) communicate by send-
ing messages via mailboxes, and the run-time provides extensive support for failure
detection and recovery.

In most other languages, message-passing concurrency is delegated to library sup-
port, the most prominent examples of which are parallel virtual machine (PVM) and
message passing interface (MPI). PVM [30] aims at support for heterogeneous con-
current computing, creating an illusion of a distributed virtual machine. It thus pro-
vides means for process and resource control and fault-tolerance along with commu-
nication primitives. MPI [26], on the other hand, is somewhat narrower in scope than
PVM. Its main task is to support efficient point-to-point communication and some
complex collective operations. Data types may be automatically serialized for net-
work transport, and newer MPI versions have added many new features like dynamic
process management and parallel I/O.

The tools described above provide sufficient mechanisms for building distributed
and parallel applications, but they leave the definition of higher-level abstractions and
policies to developers. For example, PVM and MPI enable inter-task communication,
but do not endorse any particular application structure or concurrency model. In this
respect, large players (Google and Microsoft in particular) have identified common
patterns of distributed computations and packaged them in easier-to-use frameworks,
which we describe in the next section.
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2.2 High-level frameworks

Industrial actors have developed solutions for simplified distributed processing of
large data quantities. Examples are Google’s MapReduce [12], Yahoo’s PigLatin pro-
gramming language [28], Microsoft’s Dryad [21] and Cosmos systems as well as the
programming language Scope [8], and IBM’s System S and programming language
SPADE [14]. Dryad, Cosmos and System S have many properties in common: all use
directed graphs to model computations and execute them on a cluster of machines. In
addition, System S supports cycles in graphs, while Dryad supports non-deterministic
constructs. Thus, the deterministic subset of the Dryad system is also a subset of the
KPN framework, while the expressiveness of System S is equivalent to that of KPNs.
However, not much is known about these systems and their availability is limited.

MapReduce [12] has become one of the most cited paradigms for expressing
parallel computations. Unlike the above systems, which define task-parallel mod-
els, MapReduce defines a data-parallel model based on keys and values. While the
original MapReduce paper specifies the programming model rather informally, Läm-
mel [24] has used the Haskell [19] programming language to rigorously define the se-
mantics of the MapReduce model and Sawzall programming language [29]; there he
also discusses parallelization issues. Google’s MapReduce implementation supports
fault-tolerant distributed execution in clusters. Others have re-implemented MapRe-
duce for clusters (Hadoop [2], an open-source implementation in Java), multi-core
machines [31], the Cell BE architecture [11] and even for GPUs [18], all of which
bear witness of its popularity. Map-Reduce-Merge [9], adds a merge step to efficiently
process data relationships among heterogeneous data sets, and to be able to execute in
parallel join algorithms of relational algebra, operations not directly supported by the
plain MapReduce model. The same issues are also addressed by Oivos [35], which
in addition provides a more expressive, declarative programming model. Finally, re-
ducing the added overhead of layering software on top of MapReduce is the goal of
Cogset [36] where the processing architecture is changed to increase performance.

In our work, however, we are generally interested in real-time processing of mul-
timedia content. This requires high performance and repeated non-trivial sequences
of processing steps, but the above frameworks are mostly targeted towards off-line
batch processing of data. MapReduce, Dryad and Cosmos are not able to model iter-
ative algorithms; in addition the rigid MapReduce semantics are not a good fit for all
problems [9, 37], which may lead to unnaturally expressed solutions and decreased
performance [39]. Finally, Google’s recent patent on MapReduce [13] may prompt
commercial actors to look for an alternative framework.

In this respect, the KPN framework is a viable alternative, but, in practice, very
few general-purpose KPN run-time implementations exist. Known examples include
the Sesame project [34], the process network framework [1, 27], YAPI [10] and
Ptolemy II [5]. PNRunner, a part of the Sesame project, is an event-driven simu-
lator of embedded systems that employs KPNs for application modeling and sim-
ulation. However, since an event-driven simulation significantly slows down execu-
tion, Sesame is not suitable for executing KPNs where performance is important. The
process network framework supports distributed execution and deadlock detection in
KPNs, but only a 1:1 scheduling model. It would require substantial extensions to
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introduce support for m:n scheduling. YAPI is not a pure KPN implementation, as it
extends the semantics and thus introduces the possibility of non-determinism. In ad-
dition, it is unclear whether the implementation can use multiple CPUs.1 Ptolemy II
is a Java-based prototyping platform for experimenting with various models of com-
putation, and it spawns one thread for each Kahn process. The amount of code that
comprises the JVM would make it prohibitively difficult to experiment with low-level
mechanisms, such as context-switches.

Another framework based on the process network paradigm is StreamIt [17]. It is
a language and a run-time system for simplifying implementation of stream programs
described by a graph consisting of computational blocks (filters) having a single input
and output. Filters can be combined in fork-join patterns and loops but must provide
bounds on the number of produced and consumed messages, so a StreamIt graph is
actually a synchronous data-flow process network [25]. The compiler produces code
that can exploit multiple machines or CPUs, but their number is specified at compile-
time, i.e., a compiled application cannot adapt to resource availability.

Thus, all of the existing frameworks have some shortcomings that are difficult to
address, which has motivated us to implement a new KPN run-time from scratch.
Before describing the implementation details of Nornir, we shall first describe the
basic KPN semantics in the next section.

3 Kahn process networks

KPNs, MapReduce and Dryad have two important features in common, both of which
significantly simplify development of parallel applications: (1) communication and
parallelism are explicitly expressed in the application graph; (2) individual processes
do not have access to each other’s state and can be written in the usual sequential
manner. In addition, KPNs have a unique combination of other desirable properties:

– Determinism. KPNs are deterministic, i.e., each execution of a network produces
the same output given the same input,2 regardless of scheduling strategy.

– Reproducible faults. One consequence of determinism is that faults are consistently
reproducible, which is otherwise a notoriously difficult problem with parallel and
distributed systems. Reproducibility of faults greatly eases debugging.

– Composability. Another consequence of determinism is that processes can be com-
posed: connecting the output of a process computing f (x) to the input of a process
computing g(x) is guaranteed to compute g(f (x)). Therefore, small KPNs can be
developed and tested individually and later put together to perform more complex
tasks.

– Deterministic synchronization. Synchronization is embodied in the blocking
receive operation. Thus, developers need not use other, low-level and non-

1Inspection of source code indicates that some support for multiple CPUs is built into YAPI. Experiments
on Solaris, however, have revealed that YAPI never actually uses more than a single CPU.
2Provided that processes themselves are deterministic.
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Fig. 1 An example KPN. i1 and i2 are external input channels to the network (assumed to be numbers),
o is the external output channel, and i′1 is an internal channel. The inputs and the output are related by the
formula o = 2i1 + i2

deterministic synchronization mechanisms such as mutexes and condition vari-
ables.3

– Arbitrary communication graphs. Whereas MapReduce and Dryad restrict devel-
opers to a parallel pipeline structure [37] and directed acyclic graphs (DAGs),
KPNs allow cycles in the graphs. Because of this, they can directly model iterative
algorithms. With MapReduce and Dryad this is only possible by manual iteration,
which incurs high setup costs before each iteration [31].

– No prescribed programming model. Unlike MapReduce, KPNs do not require that
the problem be modeled in terms of processing over key-value pairs. Consequently,
transforming a sequential algorithm into a Kahn process often requires minimal
modifications to the code, consisting mostly of inserting communication state-
ments at appropriate places.

A KPN [22] has a simple representation in the form of a directed graph with
processes as nodes and channels as edges, as exemplified in Fig. 1. A process encap-
sulates data and a single, sequential control flow, independent of any other process.
Processes are only allowed to share data by sending messages over channels. Chan-
nels are infinite FIFO queues that store discrete messages. Channels have exactly one
sender and one receiver process on each end (1:1 communication), and every process
can have multiple input and output channels. Sending a message to the channel al-
ways succeeds (from the KPN model point of view), but trying to receive a mes-
sage from an empty channel blocks the process until a message becomes available.
Testing for available messages is not permitted. These properties define the opera-
tional semantics of KPNs and make the Kahn model deterministic, i.e., the history of
messages produced on the channels does not depend on the process execution order.
Every model that relaxes one of these conditions, e.g. allowing non-blocking reads
or polling, results in non-deterministic behavior.

The theoretical model of KPNs described so far is idealized in two ways: (1) it
places few constraints on process behavior, and (2) it assumes that channels have
infinite capacities. These assumptions are somewhat problematic because they allow
the construction of KPNs that need unbounded space for their execution. However,
any real implementation is constrained to run in finite memory. A common (partial)
solution to this is to assign capacities to channels and redefine the semantics of send
to block the sending process if the delivery would cause the channel to exceed its
capacity. Under such send semantics, an artificial deadlock may occur, i.e., a situation

3Inexperienced developers expect that mutexes and condition variables wake up waiting threads in FIFO
order, whereas the wake-up order is in reality implementation-dependent and often non-deterministic.
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where a cyclically dependent subset of processes blocks on send, although they would
continue running in the theoretical model. The algorithm of Geilen and Basten [15]
resolves the deadlock by traversing the cycle to find the channel of least capacity and
enlarges it by one message, thus resolving the deadlock.

It also is worth noting that KPNs are not a universal solution for the inherently dif-
ficult problem of developing parallel and distributed applications. Even though deter-
minism is a desirable property from the standpoint of program development, it limits
the application areas for KPNs. For example, a disk scheduler is a simple use-case
that cannot be appropriately modeled with KPNs. The scheduler must periodically
serve all clients in some order, say round-robin, to preserve fairness. However, since
read is blocking, absence of requests from one client can indefinitely postpone serv-
ing of requests from other clients. Such use-cases mandate use of other frameworks,
or relaxing the KPN formalism by introducing non-deterministic construct(s) such as
m : n channels and/or polling, which would reduce its conceptual value.

4 Nornir

The Nornir run-time system is implemented in C++, and runs on Windows and
POSIX operating systems (Solaris, Linux, etc.). The implementation4 consists of a
Kahn process (KP) scheduler, message transport and deadlock detection and resolu-
tion algorithms.

4.1 Process scheduler

Nornir implements both preemptive 1:1 and cooperative m:n scheduling models. In
the 1:1 model, one OS thread is used for each KP, blocking mutexes are used to pro-
tect the channels, and condition variables are used as the sleep/wake-up mechanism.
We have investigated this approach in an earlier paper [38] and showed that the m:n
scheduling model is considerably more efficient. Because of this, we focus here on
the m:n scheduling model, which we have also used for our performance evaluations.

With an m:n model (see Fig. 2), many KPs are time-multiplexed onto one OS
thread, which we call runner. Since the m:n scheduler is cooperative, a KP runs un-
interrupted until it exits or encounters a blocking point. In our implementation, KPs
yield implicitly only in message send and receive operations. However, since KPs
may use all UNIX system calls, they can perform I/O in the usual way. In that case,
I/O operations may block without causing the calling KP to block or yield. The run-
ner executing the KP will be blocked and unable to dispatch another KP. This can be
avoided by using either asynchronous I/O or dedicated runners for KPs that perform
I/O.

The m:n scheduler uses user-mode code to switch contexts between a KP and
the scheduler core. On Solaris and Linux running on AMD64, we employ opti-
mized, hand-crafted assembly code for context-switch; on other platforms we use
OS-provided facilities: fibers on windows, and swapcontext() on POSIX. The
latter is inefficient because each context-switch requires a system call to save and
restore the signal mask.

4Code is available at http://simula.no/research/networks/software.

http://simula.no/research/networks/software
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Fig. 2 KP scheduling: each
runner has its own private
run-queue (small circles)
containing ready KPs (small
black squares), and is executing
at most one KP at any given
time. Runners in Nornir are
bound to different CPUs, so they
never compete with each other,
but they compete with other
threads and processes on the
machine

Fig. 3 Queue operations in
work-stealing. CPU i accesses
its own queue only at the front,
while it steals tasks from other
CPUs only from the back

4.2 Scheduling policies

Since KPNs are deterministic, they provide great freedom in implementing the
process scheduler: any fair scheduler results in a KPN execution that generates the
full output.5 In this context, fairness means that the execution of a ready process will
not be indefinitely postponed.

We have thus made Nornir configurable with different scheduling policies. In ad-
dition to the classical work-stealing [4] algorithm, we have also implemented and
evaluated a modified work-stealing algorithm and a scheduling algorithm based on
graph-partitioning [7]. The latter tries to balance the computational load evenly while
reducing the amount of inter-CPU synchronization and communication.

The work-stealing algorithm [4] is illustrated in Fig. 3. When the KPN is started
on a system with m CPUs, m runner threads (“runners”) are created and pinned to
different CPUs. Each runner has a private run-queue of ready KPs and executes the
KP at the front of its queue (dispatch). If this queue is empty, it tries to steal a KP from
the back of the queue of a randomly chosen runner. KPs that become ready (unblock)
are added at the front of a queue. We use two algorithms for determining this queue.
The original algorithm always prepends a newly unblocked KP to the queue of the

5If the scheduler is not fair, the output will be correct, but possibly shorter than it would be under a fair
scheduler.
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CPU that executes that currently running KP which triggered the unblocking (WS-
CUR). This algorithm causes performance problems for some workloads, including
the scatter-gather kind of load. They are caused by high contention over run-queues
when stealing. We have therefore modified the work-stealing algorithm so that an
unblocked KP is placed on the last CPU that executed it [41] (WS-LAST). We do
not use the non-blocking queue described in [4]; instead we use an ordinary mutex
per run-queue. This not only simplifies the implementation, but is also required for
implementing our WS-LAST modification since the non-blocking queue does not
support all of the operations needed to support the modified algorithm. This might
become problematic on machines with many cores, but we deemed that introducing
the additional complexity of a non-blocking queue was unnecessary at this stage of
our research.

The graph-partitioning algorithm assigns weights to the nodes and edges in the
process graphs. The weight of a node is proportional to the processing power re-
quired by the KP and the weight of an edge is proportional to the communication
volume between the two processes incident to that edge. The algorithm tries to parti-
tion the graph into disjoint sets of nodes so that all node subsets have approximately
equal total node weights. In addition, the algorithm tries to minimize the cut cost, i.e.,
the total weight of edges crossing partitions. Graph-partitioning is an NP-hard prob-
lem, so we have implemented a heuristic based on the work presented by Catalyurek
et al. [7].

4.3 Message transport

In KPNs, channels have a twofold role: (1) to interact with the scheduler, i.e., block
and unblock processes on either side of the channel, and (2) to transport messages.
The initial capacity of the channel may be specified when the channel is first created;
if omitted, a default capacity is used.

Interaction with the scheduler is needed particularly for the cases of a full or empty
channel. Receiving from an empty channel or sending to a full channel blocks the act-
ing process. Similarly, receiving from a full channel or sending to an empty channel
unblocks the process on the other side of the channel.

Message transport over channels is protected by mutexes that are essentially im-
plemented by busy-waiting, but yield to the scheduler for every failed locking at-
tempt. Combined with the user-space work-stealing scheduler, this is less wasteful
than a spinlock and much faster than a full-fledged sleep/wake-up mechanism. Fur-
thermore, since channels are 1:1, at most two processes compete for access to any
given channel, so the expected number of spins in the case of contention on a channel
is very small.

Since KPs are executing in a shared address space in our implementation, it is still
possible that they modify each other’s state6 and thus ruin the KPN semantics. There
are at least two ways of implementing a channel transport mechanism that lessens the
possibility of such occurrence:

6C++ is an inherently unsafe language, so there is no way of preventing this.
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– A message can be dynamically allocated and a pointer to it sent in a class that
implements move semantics (e.g., auto_ptr from the C++ standard library).

– A message can be physically copied to/from channel buffers which is, in our case,
done by invoking the copy-constructor.

We initially implemented the first approach, which requires dynamic memory
(de-)allocation for every message creation and destruction, but is essentially zero-
copy. Our current implementation uses the second approach because measurements
on Solaris have shown that memory (de-)allocation, despite having been optimized by
using Solaris’s umem allocator, has larger overhead than copying as long as the mes-
sage size is less than ∼256 bytes. We have not tested sub-allocators separately; the
performance would likely be very similar to message copying with a small constant
message size.

Since C++ is a statically-typed language, our channels are also strongly-typed, i.e.,
they carry messages of only a single type. Since communication ports (endpoints of a
channel; used by processes to send and receive messages) and channels are parame-
terized with the type of message that is being transmitted, compile-time mechanisms
prevent sending messages of wrong types. Furthermore, the run-time overhead of dy-
namic dispatch based on message type is eliminated. Nevertheless, if dynamic typing
is desired, it can be implemented by sending byte arrays over channels, or in a more
structured and safe manner by using a standard solution such as or C++ with run-time
type information or Boost.Variant (see http://www.boost.org).

As KPs have only blocking read at their disposal, it is useful to provide an indi-
cation when no more messages arrive on the channel (EOF). One way of doing this
is to send a message with specific value that indicates EOF. However, all values of a
type (e.g., int) might be meaningful in a certain context, so no value is available to
encode the EOF indication. In such cases, one would be forced to use solutions that
are more cumbersome and that impose additional overhead (for example, dynamic
memory allocation with NULL pointer value representing EOF). We have therefore
extended channels by introducing support for EOF indication: the sender can set the
EOF status on the channel when it has no more messages to send. After EOF on the
channel has been set, the receiver is able to read the remaining buffered messages.
After all messages have been read, the next call to the port’s recv method returns
false immediately (without changing the target message buffer), and the next recv
call block the process permanently.

4.4 Deadlock detection and resolution

Deadlock detection and resolution make it possible to execute many7 KPNs in finite
space. Each time a process would block, either on read or on write, a deadlock detec-
tion routine is invoked. Since communication is 1:1, read and write are blocking and
polling is forbidden, it is straightforward to notice when a ring of blocked processes
is closed. The deadlock detection and resolution algorithm in our current implemen-
tation uses a centralized data-structure (the blocking graph) and thus must run while

7As demonstrated in [37], it is possible to construct KPNs that are under no circumstances executable in
finite space.

http://www.boost.org
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holding a single global mutex. If no cycle is found, the KP is blocked and this fact is
recorded in the blocking graph. Otherwise, the capacity of the smallest channel in the
cycle is increased by one, as suggested by [15]. Similarly, when a process receives
from a full channel, the upstream KP is unblocked and the blocking graph updated.

4.5 Accounting

We have implemented a detailed accounting system that enables us to monitor many
different aspects of Nornir’s run-time performance, such as CPU time used by each
process, number of context-switches, number of loop iterations in waiting on spin-
locks, number of process thefts, number of messages sent to processes on the same
or a different CPU. We have measured (see [38] for methodology) that a single trans-
action, consisting of [send → context switch → receive] operations, takes 1.4 μs
with accounting enabled. When accounting is disabled, this time drops to ∼0.68 μs.
The largest overhead in our accounting mechanism stems from the measurement of
per-KP CPU time, which requires a system call immediately before a KP is run and
immediately after a KP returns to scheduler.

5 Performance evaluation

We have evaluated performance aspects of Nornir in particular, but also of the KPN
modeling paradigm in general:

– Effects of scheduling policies on performance.
– Scalability of Nornir with respect to KPN size and parallelism granularity.
– Performance consequences of using MapReduce or KPNs for modeling parallel

applications.

To investigate these issues, we have designed and implemented four synthetic work-
loads: an H.264-encoding process graph, an Advanced Encryption Standard (AES)
encryption algorithm, a random process network and a pipeline. In addition, we have
implemented the canonical MapReduce example, word-frequency program, on top
of Nornir in two ways: (1) by implementing the exact MapReduce semantics within
the KPN framework and using it to solve the word-frequency problem, and (2) by
designing and implementing a KPN that is best suited for the problem. Lastly, we
have compared the performance of both of our solutions to the solution implemented
on top of Phoenix [31], which is a MapReduce implementation designed specifically
for multi-core machines.

In the following subsections, we first describe our experimental setup and method-
ology and proceed to present results in the order outlined above. Workloads are de-
scribed in detail as they are encountered.

5.1 Methodology

The test programs have been compiled as 64-bit with GCC 4.3.2 and maximum op-
timizations (-m64 -O3 -march=opteron). Nornir has been compiled with ac-
counting turned on, since this is necessary to study performance effects of deadlock
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detection. We have run them on an otherwise idle 2.6 GHz AMD Opteron machine
with 4 dual-core CPUs, 64 GB of RAM running Linux kernel 2.6.27.3. Each data
point is median8 of 9 consecutive measurements of the total real (wall-clock) running
time. This metric is most representative because it accurately reflects the real time
needed for task completion, which is what the end-users are most interested in.

All benchmarks, except those of Sect. 5.2, have been configured to use our modi-
fied work-stealing algorithm and initial channel capacity of 64 messages, with dead-
lock detection enabled.

5.2 Choice of scheduler

As stated in Sect. 4.1, a KPN yields identical results when run by any fair schedul-
ing algorithm, but the running time may be highly dependent on the chosen algo-
rithm. In this section, we investigate the relative merits of the original work-stealing
algorithm (WS-CUR), our modified version (WS-LAST) and the method based on
graph-partitioning (GP). In order to separate performance effects of scheduling and
deadlock detection, the latter has been turned off for this series of experiments. Nev-
ertheless, all benchmarks did finish without any artificial deadlock problems.

5.2.1 Original vs. modified work-stealing

We have performed extensive comparison of application running times under WS-
CUR and WS-LAST policies. We have found that both algorithms lead to very similar
application performance,9 except on a specific type of workload where WS-LAST is
clearly superior.

The KPN for this workload, which we have named scatter-gather, is shown in
Fig. 4. This structure is typical for embarrassingly-parallel problems, i.e., problems
that can be split into parts that can be processed independently of each other. The AES

Fig. 4 Scatter-gather topology

8We have investigated also correlation with other quantities, such as rate of steal attempts. Using median
allowed us to use the values of other measured variables as is. Mean value would not correspond to any
particular measurement, and it would be unclear how the values of other measured quantities could be
interpolated. The observed variation in running times is small, so the difference between using median and
mean is negligible.
9We have used also the other workloads described later in this paper for our comparisons. On all of our
measurements, the difference between mean running times under WS-CUR and WS-LAST was within
2%, most often in favor of WS-LAST.
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Fig. 5 Scatter-gather on 8 CPUs: speedup and steal rate vs. number of workers

encryption benchmark described later is an example of such a problem. There are
also workloads that proceed in stages, where all sub-problems of one stage must be
finished before starting work on the next stage; in such cases KP P0 acts as a barrier.
An example of such a situation is the synchronization between Map and Reduce
stages of a MapReduce computation. The scatter-gather benchmark executes in m

rounds. In each round, P0 first sends a single message to each of the n workers, and
then waits to receive the same number of replies from each worker. The workers
are oblivious to the round-based execution: a worker just receives a message, uses
a fixed amount of CPU time t and sends a reply to P0. For the results shown in
Fig. 5, we have used m = 12500, t = 10−4 seconds, and varied n over the set n ∈
{8,16,32,64,128,192,256}. Thus, the total useful work performed by all workers
is W = nmt = 1.25n CPU seconds.

Compared to running the whole workload on a single core, we can observe that
speedup increases with the number of workers. For example, using 256 workers, WS-
CUR achieves a speedup of 5.7 whereas WS-LAST achieves a speedup of 7.6. As can
be observed from Fig. 5, the speedup is directly related to the reduction in the num-
ber of steal attempts per second. The number of steal attempts is reduced because
WS-LAST actively distributes the load over all CPUs, thus significantly reducing
contention over the run-queues. WS-CUR, on the other hand, always wakes up all
workers to the same CPU, i.e., the one on which P0 is running. This creates signifi-
cant contention over a single run-queue at the beginning of each round, which leads
to significant loss of performance. This contention-reducing property will be even
more important for future applications as the number of cores in computer systems is
steadily increasing.

5.2.2 Modified work-stealing vs. graph-partitioning

Scheduling based on GP needs a mechanism that can detect load-imbalance and trig-
ger repartitioning when the load-imbalance has become intolerably high. For that
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purpose, we measure the idle time accumulated by all runners and trigger repartition-
ing when it exceeds a preset constant threshold τ .

GP has complex performance characteristics which require running an extensive
set of benchmarks across different parameter sets. Due to the complexity of accu-
rately characterizing GP behavior, we only list our main conclusions and refer the
reader to [37] for full details.

Application running time Compared to GP, WS-LAST yields in general best perfor-
mance on all workloads. Provided that there is enough parallelism in the program and
that a process performs a sufficient amount of work each time it is scheduled, WS-
LAST always achieves speedup almost proportional to the number of CPUs. Speedup
using GP, however, is always significantly lower—in some pathological cases, pro-
grams running under GP on multiple CPUs take longer to execute than when running
on a single CPU.

To illustrate this, we used the H.264 benchmark10 that simulates the data flow in an
H.264 codec. Figure 6 shows our H.264 KPN, which is only a slight adaptation of the
encoder block diagram found in [32]. The functional blocks of the H.264 encoding
process are implemented as KPs using synthetic loops to spend the same amount of
time for each “encoded” frame that would be used by a real codec. We have obtained
these timings by profiling x264, which is an open-source H.264 encoder implemen-
tation, and mapping the results to the shown process graph. Since the P, MC and
ME stages together use more than 50% of the total CPU time, we have parallelized
each of these stages in the same way as shown in Fig. 4. The input video consists
of a series of discrete frames, and the encoder operates on small parts of the frame,
called macroblocks, typically 16 × 16 pixels in size. The encoder consists of “for-
ward” and “reconstruction” data-paths which meet at the prediction block (P). The

Fig. 6 H.264 block-diagram, adapted from the H.264 white paper [32] where the inputs to the codec are
the current (Fn) and reference (Fn−1) frames. Here, each square block assumes the role of P0 in Fig. 4
and has attached n workers

10This example demonstrates that feedback loops are not only a matter of convenience, but actually essen-
tial. The H.264 benchmark is a synthetic workload for the expressive power of a programming framework.
Thus, as already argued in the introduction, neither MapReduce nor Dryad can be used to implement the
H.264 encoder.
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Fig. 7 Median running times for WS-LAST and GP on 1, 2, 4, 6 and 8 CPUs

role of the prediction block is to decide whether the macroblock is encoded by using
intra-prediction (relative to macroblocks in the current frame Fn) or inter-prediction
(relative to macroblocks in the reference frame(s) Fn−1). The encoded macroblock
goes through the forward path and ends at the entropy coder (EC), which is the fi-
nal output of the encoder. The decision on whether to apply intra- or inter-prediction
is based on factors such as the desired bandwidth and quality. To be able to estimate
quality, the codec needs to apply transformations inverse to those of the forward path,
and determine whether the decoded frame satisfies the quality constraints.

In Fig. 7, we plot the performance results for both GP and WS-LAST running
the H.264 benchmark. The main reason of performance degradation with increasing
number of workers is the limited parallelism available in the H.264 network. Under
GP, runners accumulate idle time faster than our simple heuristics for deciding when
to rebalance the load is able to catch up. This means frequent repartitioning, which is
protected by a single mutex, and process migration. These operations are performed
hundreds of times per second, leading to severe performance degradation.

Variance of application running times Our experiments have confirmed that GP in-
deed fulfills its design goal of reducing traffic between processes on different CPUs.
However, we have also observed that its load-balancing properties are rather poor.
This is illustrated using a random network that is a directed graph consisting of a
source KP, a number of intermediate KPs arranged in nl layers (user specified) and
a sink KP (see Fig. 8 for an example). The number of KPs in each layer is randomly
selected between 1 and the user-specified maximum number m. The intention of this
construction is to mimic, with fine granularity, network protocol graphs or parallelism
in algorithms. The network may have additional back-edges that create cycles, with
each node being constrained to have at most one back-edge, be it outgoing or incom-
ing. The workload is generated by sending and receiving messages that contain plain
integers; each integer denotes the amount of CPU time that the receiving KP spends
on processing, using a synthetic loop, before sending a reply or receiving another
message. More specifically, the source KP sends n messages, each containing a fixed
amount of work corresponding to w seconds of CPU time. A KP reads a single mes-
sage from each of its ni inputs and adds them together to compute the total amount
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Fig. 8 A random graph with
212 nodes, 333 edges and 13
cycles with the source node on
bottom and sink node on top

t of CPU-time that is to be consumed. Then, the KP runs a synthetic loop to use the
number of CPU seconds proportional with t , and then it distributes t to its no forward
out-edges. A message representing �t/no� seconds of CPU time is sent to each of
the no forward out-edges; if t is not divisible by no then the remainder is added to
the last outgoing edge. Lastly, if a KP has a back-edge, a message is sent/received
(depending on the edge direction) along that channel. As such, the workload w in a
single message sent from the source KP equals the workload w collected by the sink
KP. Messages sent along back-edges do not contribute to the network’s workload;
their purpose is solely to generate more complex synchronization patterns. The total
CPU load W generated by the network is determined by the formula W = nT/d , with
each single message representing a CPU load of w = T/d CPU seconds. Here, T is
the number of iterations of our synthetic loop that uses 1 second of CPU time on the
benchmark machine, and d is a quantity that we have named work division factor.
For example, when d = 10,000, each message by the source represents 10−4 seconds
(100 μs) of CPU time. This allows us to control the granularity of chunks into which
the total workload W is divided.11

Figure 9 shows a box-and-whiskers plot of the distribution of running times and
number of repartitionings for different values of the τ parameter; τ = 0 corresponds
to WS-LAST. As expected, larger τ causes fewer repartitionings. However, it has
very little influence on the running time. When τ ≥ 72, the minimal measured running
times are approximately constant, and around ∼5 s (WS-LAST achieves running time
of ∼2.5 s), while the maximal running times vary widely. In general, the variance
of running times for any given τ is large, i.e., the running time of any given experi-
ment run is very unpredictable and uncorrelated with the repartitioning frequency. We

11Note that T/d equals the maximum work performed by any single KP. The lower bound on the amount
of work performed by any KP is T/md where m is the maximal number of KPs in any layer.
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Fig. 9 Illustration of GP variance in running time for the Random workload on 8 CPUs and d = 1000,
which is one step past the WS peak speedup. x-axis is the value of the idle time parameter τ for the GP
policy, and τ = 0 shows the results for WS

deem that this is the biggest drawback of GP-based scheduling and therefore recom-
mend that users perform extensive performance tests with their particular workloads
before employing GP-based scheduling in production.

Traffic patterns As explained earlier, the GP algorithm is designed to satisfy two
mutually incompatible constraints: balance the load across multiple CPUs and min-
imize the traffic between processes on different CPUs. We have observed that there
is much more local traffic under GP scheduling. For example, on the random graph
benchmark under GP on 8 CPUs, at least 70% of all messages are communicated
between KPs on the same CPU for all values of work division factor. On the same
benchmark under WS-LAST, at most 20% of all messages constitute local traffic, and
this ratio decreases as work division increases.

Based on these results, we use WS-LAST for the rest of the experiments evaluating
different application scenarios. Note, however, that we are running on a single, multi-
core machine. When the communication cost increases, for example by extending
the investigation to a compute cluster, the benefit of using graph-partitioning will
increase (but this is subject to further experiments).

5.3 Scalability of Nornir

We have used several different benchmarks to evaluate scalability of Nornir as well as
the overheads of centralized deadlock detection. To this end, we present results from
H.264, AES, random graph and pipeline benchmarks. We are generally interested in
speedup over one CPU and in factors that cause the speedup to be less than the ideal.

5.3.1 H.264

In the first experiment, we have used the artificial H.264 encoding workload described
in Sect. 5.2.2 (see block diagram in Fig. 6). We have configured the benchmark to en-
code 30 video frames at rate of 1 frame per second (fps), with the number of workers
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Fig. 10 H.264: performance of “encoding” 30 frames at ∼1 fps

varying from 1 to 512 in steps of powers of two. From the results in Fig. 10, we
can observe that the performance gets slightly better as the number of workers per
stage increases up to the number of CPUs, and remains constant afterwards. The best
achieved speedup on 8 CPUs is only ∼2.8; this limitation is caused by data depen-
dencies in the algorithm.

5.3.2 AES

The AES encryption is performed in ECB mode, resulting in a typical example of an
embarrassingly parallel workload, i.e., a task that can be divided into subtasks that can
execute completely independently of each other.12 The AES KPN is the same as the
KPN shown in Fig. 4; this topology is in fact common for all embarrassingly parallel
algorithms. The source P0 hands out equally-sized memory chunks to n workers
where the exchanged messages are carrying only pointer-length pairs (16 bytes in
total). When a worker receives a message, it encrypts the chunk in-place with the
128-bit AES algorithm using several passes and sends the reply message back to the
source KP.

In this benchmark, we have set the total block size to 228 bytes (256 MB), and the
total number of workers has been varied from 1 to 2048. P0 (refer to Fig. 4) partitions
the memory block into as many non-overlapping chunks as there are workers and
sends each chunk to a worker for encryption. The number of encryption passes has
been set to 40 so that the total running time is sufficiently high. The results, shown
in Fig. 11, show perfect linear speedup with the number of CPUs (running times of
80 and 10 s on 1 and 8 CPUs), as soon as the number of workers becomes greater or
equal to the number of CPUs. When w < 8 the speedup is limited only by the lack of
work to be assigned to all available CPUs; in particular, for w = 1, the speedup is 1
because there is only a single worker process encrypting the whole block.

12ECB mode should never be used in practice; CTR mode is far more secure and also yields embarrass-
ingly parallel workload.
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Fig. 11 AES encryption benchmark

5.3.3 Random network

The scalability of Nornir using the Random benchmark described in Sect. 5.2.2 is
shown in Fig. 12(a). This plot shows the absolute running times of a random graph
with cycles at different values of d , whereas Fig. 12(b) shows speedup over run-
ning time on 1~CPU. In our experiments, we have set n = d . As d increases to 100,
the available parallelism in the network increases, and the running time decreases;
in Fig. 12(b) we see that d = 100 achieves perfect speedup on multiple CPUs. At
d = 1000, running time starts increasing linearly with d , and grows faster on more
CPUs. This is caused by frequent deadlock detections, as witnessed by Fig. 13,
which shows the number of started deadlock detections per second of running time.
Since deadlock detection uses a global lock to protect the blocking graph, this limits
Nornir’s scalability on this benchmark. A possible way of avoiding this problem, in
our current implementation, is to increase default channel capacity to a larger value.
A long-term solution is implementing a distributed deadlock detection and resolution
algorithm [1].

5.3.4 Pipeline

A pipeline does the same kind of processing as the random network, except that each
layer has exactly one process and each process takes its only input from the preceding
process in the pipeline. In all previous benchmarks, the communicated messages have
been rather small (less than 32 bytes). We have used a pipeline consisting of 50 stages
to study the impact of message size on performance. As previously, d messages have
been generated by the source process, each containing 1/d seconds of CPU time.
A noticeable slow-down (see Fig. 14) happens regardless of message size and only
at d = 105, which is equivalent to 10 μs of work per message, which is only 7 times
greater than the time needed for a single transaction (defined in Sect. 4.5). The drop in
performance is proportional to message size and the number of CPUs. Copying larger
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Fig. 12 Benchmark results of a the random directed graph shown in Fig. 8 in 50 layers. The x-axis is not
uniform

messages consumes more time and causes greater contention over channel locks with
increasing number of CPUs.

5.4 Comparison with MapReduce

KPNs are generally more flexible than MapReduce in that more general process
graphs, e.g., with branches and cycles, can be processed. However, an interesting
issue is how these two models perform for applications they both can execute. To
evaluate whether the KPN model has any performance advantages over the MapRe-
duce model, we have therefore implemented the word count application, which is the
canonical MapReduce example (more examples are given in [37]). We used Nornir to
process a MapReduce-version of Word Count (KPN-MR) by constructing a MapRe-
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Fig. 13 Deadlock detection rate on the random graph benchmark

Fig. 14 Pipeline speedup for message sizes of 8, . . . ,2048 bytes and three different work divisions (d)

duce topology. In Fig. 15, KPN-MR is compared with Nornir and its more flexi-
ble process topology tailored to the problem (KPN-FLEX). We processed a data set
that is distributed with Phoenix and used for Phoenix MapReduce benchmarks [31],
where the files had the sizes 10, 50 and 100 MB. We can observe that the running time
decreases as more CPUs are used and that the KPN-FLEX version has several times
better performance than the KPN-MR version. Our results indicate that both the KPN-
MR and KPN-FLEX implementations scale approximately logarithmically with the
number of CPUs: the program running time decreases approximately linearly with
each doubling of the number of runners. We believe that the speedup is sub-linear
because of two factors: algorithmic complexity of sorting, which is O(n logn), and
the effects of deadlock detection. We also observe that KPN-FLEX is consistently
faster than KPN-MR, by a factor of 3–6.7, and the speedup is proportional with the
problem size.



Z. Vrba et al.

Fig. 15 Running times of the word frequency program on 10, 50 and 100 MB data sets, using KPN-FLEX
and KPN-MR solutions
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Table 1 Mean running times in seconds (t ) of the word frequency programs for Phoenix, KPN-MR and
KPN-FLEX. Speedup is the speedup factor over Phoenix

Size Phoenix KPN-MR KPN-FLEX

t t Speedup t Speedup

10 0.30 0.32 0.94 0.11 2.73

50 0.98 1.86 0.53 0.37 2.65

100 2.04 4.23 0.48 0.74 2.76

We have also compared the performance of our KPN-FLEX and KPN-MR im-
plementations with Phoenix [31], which is a MapReduce implementation designed
specifically for multi-core machines. We have run Phoenix with its default settings,
which means that it uses as many threads in each of the Map and Reduce stages
as there are CPUs on the machine. Table 1 compares the Word Count results of
Phoenix, KPN-MR and KPN-FLEX. The KPN-MR program is consistently slower
than Phoenix, by a factor of 1.06 on the 10 MB file, and by a factor of about 2 on
50 MB and 100 MB files. This result is not very surprising since Phoenix is opti-
mized for running MapReduce programs, while our KPN run-time includes supports
for arbitrary directed graphs of communicating processes. However, the KPN-FLEX
program, by having the ability to use data structures that are more suited to the given
task (hash tables) and avoiding unnecessary work that MapReduce semantics requires
(extra sort), achieves about 2.7 times better performance than Phoenix.

5.5 Summary

We have evaluated several aspects of Nornir: scalability of the scheduler with the
number of processes and CPUs, overhead of message-copying and overhead of cen-
tralized deadlock-detection and resolution. Our findings can be summarized as fol-
lows:

– Nornir can efficiently handle a large number of processes. Indeed, in the embar-
rassingly parallel AES benchmark, it achieved an almost perfect linear speedup of
7.5 on 8 CPUs with 2048 processes.

– Message sizes up to 512 bytes have negligible impact on performance. The cost of
message copying starts to be noticeable at message sizes of 2048 bytes. Protecting
channels with mutexes has negligible performance impact on 8 CPUs.

– As shown by the pipeline benchmark, context-switch and message-passing over-
head starts to have a noticeable impact on the overall performance when the amount
of work per message is less than ∼7 times the transaction time (see Sect. 4.5).

– The centralized deadlock detection and resolution algorithm can cause serious scal-
ability and performance problems for certain classes of applications. In our evalu-
ation, this was the case only for the random graph benchmark.

– Again, as shown by the random graph benchmark, the default channel capacity of
64 bytes, which we have used in our benchmark, can be too small in certain cases.
Increasing it would mitigate overheads of deadlock detection, but it would also
increase memory consumption.
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– Performance can be further increased by turning off detailed accounting in cases
where it is not needed.

– We have not noticed any scalability problems using mutexes for protecting the
scheduler’s queues instead of using non-blocking queues proposed by Arora et
al. [4], except in the scatter-gather benchmark. There, our WS-LAST variant
largely mitigates the problem.

– Compared to MapReduce models, Nornir using KPNs is more flexible, and outper-
forms both applications running in Nornir following the MapReduce model and the
Phoenix implementation of MapReduce [31] for multi-core machines.

Although there is room for improvement in Nornir (especially in deadlock detec-
tion), our results indicate that message-passing and KPNs in particular are a viable
programming model for high-performance parallel applications on shared-memory
architectures.

6 Conclusion and future work

In this paper, we have described the implementation details of Nornir, our run-time
environment for executing parallel applications specified in the high-level framework
of Kahn process networks. KPNs allow branches and cycles in the communication
graph of the program, a feature crucial for implementing iterative algorithms such as
H.264 encoding. Nornir thus complements existing frameworks such as MapReduce
and Dryad. We have shown that even for problems without branches and cycles, the
flexibility of KPNs makes it possible to design solutions that outperform the solutions
cast into the MapReduce framework.

We have evaluated Nornir’s efficiency with several synthetic applications (H.264
encoding, random KPN, pipeline, AES) on an 8-core machine. Our results indicate
that Nornir can scale well, but that in certain cases (random KPN) the centralized
deadlock detection is detrimental for performance, and that a default channel capacity
of 64 bytes is too small for some applications. We have also experienced that copying
semantics of message-passing have a slight but noticeable impact on performance at
message sizes of ∼2048 bytes. Furthermore, Nornir can support parallelism at fine
granularity: its overhead becomes noticeable at processing time of 10 μs per message,
which is ∼7 times greater than the combined overhead of scheduling and message-
passing.

Our study of scheduling policies has led to two results that are significant also
outside the context of KPNs. First, we have developed a simple improvement of the
work-stealing algorithm that performs as well as the original algorithm but does not
exhibit pathologically bad performance with scatter-gather types of workloads. Sec-
ond, we were the first to evaluate performance of unstructured workloads on multi-
core machines when scheduled by a scheduler based on graph-partitioning. We have
shown that graph-partitioning not only performs worse than work-stealing but also
has very unpredictable running times, an aspect not discussed by Catalyurek et al. [7].
The latter finding is relevant also in the context of resource provisioning in distributed
systems where the same types of algorithms are used.
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The first, and most important, step in our future work is increasing Nornir’s scal-
ability by replacing a centralized deadlock detection algorithm with a distributed
one [1]. This will also be the first step towards a distributed version of Nornir, execut-
ing on a cluster of machines. For building a distributed version of Nornir, we plan to
use MPI to implement message-passing between KPs running on different machines.
Further performance increases can be gained by using non-blocking data structures.
In the scheduler, we might need to use the non-blocking queue presented in [4] in-
stead of mutexes in order to support scalability beyond 8 CPUs. We might also use
a single-producer, single-consumer FIFO queue [16] to avoid yielding between en-
queue and dequeue attempts. Since yielding implies switching to a new control flow
and a new stack, we expect that this improvement will further increase performance
by reducing pressure on data and instruction caches.
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