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Abstract. A coupling of a spectral wave model with a non-

linear phase-resolving model is used to reconstruct the evo-

lution of wave statistics during a storm crossing the North

Sea on 8–9 November 2007. During this storm a rogue wave

(named the Andrea wave) was recorded at the Ekofisk field.

The wave has characteristics comparable to the well-known

New Year wave measured by Statoil at the Draupner plat-

form 1 January 1995. Hindcast data of the storm at the near-

est grid point to the Ekofisk field are here applied as input

to calculate the evolution of random realizations of the sea

surface and its statistical properties. Numerical simulations

are carried out using the Euler equations with a higher-order

spectral method (HOSM). Results are compared with some

characteristics of the Andrea wave record measured by the

down-looking lasers at Ekofisk.

1 Introduction

A number of studies addressing rogue waves have been con-

ducted theoretically, numerically, experimentally and based

on the field data in the last decade. The occurrence of rogue

waves, their generation mechanism, and detailed dynamic

properties are now becoming clear. The state-of-the-art re-

view on extreme and rogue waves can be found in recent re-

view papers and books such as Socquet-Juglard et al., (2005),

Dysthe et al., (2008), Kharif et al., (2009), Osborne (2010),

Slunyaev (2010) and Onorato et al., (2013).

Predictions given by theoretical and numerical wave mod-

els accounting for nonlinearities beyond the second order in

deep water such as HOSM (higher-order spectral method),

nonlinear Schrödinger equations (NLS), the Dysthe model

and the conformal method, compare well with experimental

results (e.g., Onorato et al., 2006a; Galchenko et al., 2010;

Shemer et al., 2010; Toffoli et al., 2010a; Slunyaev et al.,

2012; Oberhagemann et al., 2012).

Unfortunately, there are few studies available based on

field data, partly due to the limited number of rogue waves

recorded in the ocean. Investigations of meteorological and

oceanographic (met-ocean) conditions, in which extreme and

rogue waves occur, together with field analyses of wave time

series are of importance for a getting better insight of the

mechanisms generating these abnormal waves.

It should be noted, however, that field data are usually

recorded in 17–30 min periods every third hour and there-

fore are affected by sampling variability (uncertainty due to

limited number of observations) making it more difficult to

drawn firm conclusions from a field data analysis (see Bitner-

Gregersen and Hagen, 1990, 2003). Further, met-ocean con-

ditions between each 3 h measurement are assumed to be

stationary due to lack of information about their variability

within the 3 h time period. There are some locations where

continuous measurements of sea surface elevation are taken;

however, they are spare. It is important to note that sea states

recorded continuously every 17–30 min are usually not re-

maining stationary; therefore, not justifying the combination

of 17–30 min wave records in one longer wave record. Thus,

sampling variability will also be present in 17–30 min wave

records extracted from the continuous measurements and in

statistical properties derived from them.

A long wave time series is needed to obtain reli-

able estimates of extreme values of sea surface elevation
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Figure 1. Location of the Ekofisk field.

characteristics and of their probability of occurrence, which

are of importance for applications. The uncertainty due to

sampling variability will particularly affect the higher-order

statistical moments like skewness and kurtosis, which are

more unstable than the estimates of significant wave height

and spectral/zero-crossing wave period. To obtain reliable es-

timates of these higher-order statistical moments, 250–350

repetitions of a 17 min wave record will often be required,

as demonstrated by, for example, Bitner-Gregersen and Ha-

gen (2003). Therefore numerical wave models remain an im-

portant supporting tool in an analysis of field data.

As pointed out by Tomita (2009), both the numerical non-

linear wave models and the wave spectral models can be uti-

lized in research of extreme and rogue waves and their use

is encouraged. The complimentary nature of these models

is clear; they give different information about a sea state.

A spectral wave model (e.g., the WAM model) provides

sea state description only in a form of the two-dimensional

wave spectrum but does not give any information about

the instantaneous position of the sea surface in a given sea

state. Note also that it accounts for wind forcing and reso-

nant wave interactions but not for quasi-resonance interac-

tions, which are responsible for occurrence of modulational

instability and hence rogue waves (Onorato et al., 2013).

Phase-resolving wave models, however, provide the water

surface elevation from which statistical properties of indi-

vidual waves can be extracted and include quasi-resonance

interactions. Further, these nonlinear wave models allow sim-

ulating a wave record for the required time duration and, by

repeating the 17–30 min simulations, significantly reducing

the uncertainty due to sampling variability in estimated sea

surface characteristics and their probability of occurrence.

Table 1. Characteristics of the Andrea and New Year waves.

Wave parameters Andrea wave Draupner wave

Hs 9.2 m 11.9 m

Tp 13.2 s 14.4 s

Cmax 15.0 m 18.5 m

CF = Cmax/Hs 1.63 1.55

Hmax 21.1 m 25.0 m

HF = Hmax/Hs 2.3 2.1

Although the spectral wave model as well as the nonlinear

numerical wave model are computationally intense, the great

advance in enhancing computer power has made the coupling

between these models feasible.

In the present study we demonstrate the complementary

nature of the wave spectral model WAM and the numer-

ical nonlinear wave model based on the Euler equations

and solved with the HOSM proposed in West et al. (1987).

The coupling is applied to investigate statistical properties

of surface oscillations during the particularly severe Andrea

storm, which crossed the central part of the North Sea on 8–

9 November 2007. During this storm, on 9 November 2007 a

rogue wave called Andrea was recorded at the Ekofisk field

(Magnusson and Donelan, 2013). This wave is comparable in

characteristics, both with respect to the wave height and wave

crest criterion, to the well-known New Year wave (called also

the Draupner wave) measured by Statoil at the Draupner plat-

form on 1 January 1995 (Haver and Anderson, 2000).

The paper is organized as follows: Sect. 2 describes the

Andrea storm and the Andrea wave. Section 3 addresses

hindcast data used in the analysis while Sect. 4 is dedicated

to characteristics of the Andrea storm and comparison of nu-

merical results to some characteristics of the Andrea wave

recorded at the Ekofisk field. Conclusions are summarized in

Sect. 5.

2 The Andrea storm and the Andrea wave

A low pressure area entered the northern North Sea on

8 November 2007. It covered southern Norway and moved

in the morning of 9 November towards southern Sweden.

Strong westerly winds (50–55 knots) followed the low pres-

sure area and a high wave field (significant wave height of

10–11 m) was built up in the north area of the Ekofisk field

(see Fig. 1) in the afternoon of 8 November 2007. The wind

slightly decreased at Ekofisk around 18:00–21:00 UTC (uni-

versal time coordinated); from 22 to 19 m s−1. The strongest

wind field passed the northeast and east of Ekofisk on

9 November around 06:00 UTC and generated waves of up

to 11–12 m (for details see Magnusson and Donelan, 2013).
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Figure 2. History of significant wave height, spectral wave period

and sea state steepness for the total sea during the Andrea storm.

The Andrea wave was recorded at Ekofisk by the down-

looking lasers just past 00:00 UTC on 9 November 2007.

This wave is comparable in characteristics to the well-known

New Year wave (the Draupner wave) measured by Statoil at

the Draupner platform on 1 January 1995 (Haver and An-

derson, 2000). The characteristics of the Andrea wave, as

reported by Magnusson and Donelan (2013), are compared

to the New Year wave ones in Table 1. Hs denotes the sig-

nificant wave height, Tp the spectral peak period, Cmax the

maximum crest height in the wave record, Hmax the max-

imum zero-downcrossing wave height with the crest Cmax,

CF is the maximum crest factor (crest criterion), HF is the

maximum height factor (height criterion).

CF > 1.3 (or > 1.2) and HF> 2 within a 20 min wave

record represent simplified definitions of a rogue wave (see

e.g. Bitner-Gregersen and Toffoli, 2012). If both criteria are

fulfilled a rogue wave can be classified as a double rogue

wave (Krogstad et al., 2008). As seen in Table 1 both the

New Year wave as well as the Andrea wave can be called a

double rogue wave. Note that both waves are recorded in the

North Sea from the platforms located over a water depth of

ca. 75 m.

3 Hindcast data

The hindcast data used in this study were retrieved from

the European Centre for Medium-Range Weather Forecast

(ECMWF) archive. Wave parameters were acquired at the

nearest grid point to Ekofisk. The data cover the period of

the Andrea storm history from 00:00 UTC 8 November 2007

to 00:00 UTC 11 November 2011 and are stored every 6 h.

The selected grid point is at a water depth of 74 m and within

a distance of ca. 50 km from the Ekofisk field. The data in-

clude the wind speed as well as the significant wave height

and spectral peak period for the total sea, wind sea and swell.

The components of the wind sea are those that are still under

the influence of the local wind forcing and are detected as the

part of wave spectrum where the wind input source term is

positive. The remaining part of the wave spectrum is consid-

ered as swell (see, e.g., Hauser et al., 2005, for details).

Figure 2 shows a history of the total significant wave

height, spectral period and related sea state steepness dur-

ing the Andrea storm. The significant wave height reaches its

maximum at 06:00 UTC on 9 November 2007. This is con-

sistent with the findings of Magnusson and Donelan (2013)

based on the NORA10 (Norwegian 10 km Reanalysis

Archive) hindcast data developed at the Norwegian Meteo-

rological Institute with major support from a consortium of

oil companies (see e.g., Aarnes et al., 2011). The maximum

wave height of 9.8 m is associated with the largest spectral

peak period and the highest sea state steepness of 0.14 dur-

ing the storm. It should be noted that the same high steep-

ness is observed before the significant wave height reaches

its maximum. Because the hindcast data are sampled every

6 h it is not possible to detect the steepness at 00:40 UTC on

9 November 2007, when the Andrea wave was recorded at

the Ekofisk field.

The probability of occurrence of rogue waves is related

to mechanisms generating them. It is interesting to note that

the output from a wave spectral model can be utilized when

indicating a mechanism responsible for the occurrence of a

rogue wave (e.g. Tamura et al., 2009), even though it may

not always allow reaching the firm conclusions. We illustrate

this below for the Andrea wave recorded at Ekofisk during

the Andrea storm.

The recognized mechanisms responsible for the occur-

rence of rogue waves can be classified as follows (Onorato et

al., 2006a, b, 2010, 2013; Toffoli et al., 2011; Didenkulova,

2010; Didenkulov and Pelinovsky, 2011; Sergeeva et al.,

2011, 2013):

– linear Fourier superposition (frequency or angular linear

focussing)

– wave–current interactions

– crossing seas

– quasi-resonance nonlinear interactions (modulational

instability)

– shallow water effects.

These mechanisms have also been considered in order to in-

dicate a possible phenomenon responsible for generating the

Andrea wave.

The linear focusing is occurring very seldom and be-

cause the present study is addressing nonlinear waves the

linear focusing has been eliminated from further consider-

ations. Further, no strong current has been reported in the

Ekofisk area representing the intermediate water depth ocean

zone. Therefore wave–current interactions and shallow wa-

ter effects seem not to be responsible for the occurrence

of the Andrea wave.

www.nat-hazards-earth-syst-sci.net/14/1407/2014/ Nat. Hazards Earth Syst. Sci., 14, 1407–1415, 2014
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Figure 3. History of significant wave height for wind sea and swell

during the Andrea storm.

The two remaining rogue wave generation mechanisms,

namely crossing seas and quasi-resonance nonlinear interac-

tions (modulational instability), could be regarded as the only

possible candidates that generated the Andrea wave. In order

to select one of them the time history of wind sea and swell

during the Andrea storm has been studied.

Figure 3 shows evolution of significant wave height for

wind sea and swell during the Andrea storm at the nearest

grid point to Ekofisk. Wind sea clearly dominates the total

sea during the growth, peak and decay of the storm. Most of

the time the significant wave height of swell is only slightly

above 1 m, much lower than the wind sea significant wave

height, which mostly reaches 10 m at the peak of the storm.

Therefore the total sea of the Andrea storm is dominated by

wind sea. The wind sea and swell have approximately the

same energy (the significant wave height around 1 m) only at

the beginning and end of the storm.

It is well established that two wave trains with similar en-

ergy and frequencies traveling at particular angles can trigger

modulational instability and be responsible for the formation

of rogue waves (Onorato et al., 2006a, 2010). Such results

have been confirmed through recent numerical simulations

of the Euler equations and experimental work performed in

the MARINTEK Laboratories (Toffoli et al., 2011). The in-

vestigations have showed that the kurtosis, a measure of the

probability of occurrence of extreme waves, depends on an

angle β between the crossing wave systems. The maximum

value of kurtosis is achieved for 40 < β < 60. No such con-

ditions where wind sea and swell have the same energy and

spectral peak frequency and are crossing each other under the

angle 40 < β < 60 have been identified in the hindcast data

from the Andrea storm. The ECMWF hindcast data seems to

point out that the Andrea wave might have occurred in the

sea state more prone to extreme waves as a result of modula-

tional instability (i.e., the sea state with relatively high steep-

ness and not a particularly broad spectrum).

This conclusion is supported by Figs. 4 and 5 present-

ing evolution of the directional wave spectrum during the

Andrea storm at the location considered. One wave system

is seen in the period from 18:00 UTC 8 November 2007 to

06:00 UTC 9 November 2007 within which the Andrea wave

was recorded.

4 Numerical simulations

Numerical simulations have been carried out to get further in-

sight into the Andrea storm characteristics. Short-term wave

records at the sampling interval of 6 h have been generated

by solving the Euler equations with the HOSM as proposed

by West et al. (1987).

In the case of constant water depth (h = 74 m in this

study), the velocity potential 8(x,z,t) of an irrotational,

inviscid, and incompressible liquid satisfies the Laplace’s

equation everywhere in the fluid. The boundary conditions

are such that the vertical velocity at the bottom (z = −74) is

zero, and the kinematic and dynamic boundary conditions

are satisfied for the velocity potential 9(x,y,t)= 8(x,y,

η(x,y,t),t) on the free surface; that is, z = η(x,y,t) (see Za-

kharov, 1968). The expressions of the kinematic and dynamic

boundary conditions are as follows:

9t + gη +
1

2
(92

x + 92
y ) −

1

2
W 2(1 + η2

x + η2
y) = 0, (1)

ηt + 9xηx + 9yηy − W(1 + η2
x + η2

y) = 0, (2)

where the subscripts denote the partial derivatives, and

W(x,y, t) = 8z|η represents the vertical velocity evaluated

at the free surface.

The time evolution of an initial surface elevation can be

calculated from Eqs. (1) and (2). For this study, we have

used the HOSM, which was independently proposed by West

et al. (1987) and Dommermuth and Yue (1987). A compar-

ison of these two approaches (Clamond et al., 2006) has

shown that the formulation proposed by Dommermuth and

Yue (1987) is less consistent than the one proposed by West

et al. (1987) as it does not converge when the amplitude is

very small; the latter, therefore, has been applied herein. The

advantage of HOSM in comparison to other methods is that

it allows simulating a large number of random realizations

of the surface elevation, within a reasonable computational

time, without limitations in terms of the spectral bandwidth.

HOSM uses a series expansion in the wave slope of the

vertical velocity W(x,y, t) about the free surface. In the

present study we have considered a third-order expansion so

that the four-wave interaction is included (see Tanaka, 2001,

2007). Under these circumstances, the solution presented

herein is not fully nonlinear. The expansion is then used to

evaluate the velocity potential 9(x,y, t) and the surface el-

evation η(x,y, t) from Eqs. (1) and (2) at each instant of

time. The time integration is performed by means of a fourth-

order Runge–Kutta method with a time step 1t = Tp/200

(Tp is the spectral peak period). All aliasing errors generated

in the nonlinear terms are removed (see West et al., 1987,

and Tanaka, 2001, for details). A small time step is used to

Nat. Hazards Earth Syst. Sci., 14, 1407–1415, 2014 www.nat-hazards-earth-syst-sci.net/14/1407/2014/
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Figure 4. Evolution of the directional wave spectrum during the Andrea storm, from 00:00 UTC 8 November 2007 to 06:00 UTC 9 Novem-

ber 2007.

Figure 5. Evolution of the directional wave spectrum during the Andrea storm, from 12:00 UTC 9 November 2007 to 11 November 2007

18:00 UTC .

minimize the energy leakage. Throughout the simulations the

variation of total energy remains lower than 0.5 %.

The model works under the assumption that the water

depth is uniform. At the Ekofisk area, including the location

considered, the variation of bottom topography is negligible

and hence such an assumption does not affect the end re-

sult of the simulations. It is worth mentioning, however, that

where bottom topography is changing wave dynamics could

be affected and thus a variable bathymetry should be consid-

ered (e.g., the numerical model of Fructus and Grue, 2007).

The HOSM requires as input an initial sea surface and

velocity potential with periodic boundary conditions. For

the purpose of the present study, the initial conditions are

extracted from the hindcast wave spectrum. Initially, the

spectrum E(ω,θ) is converted into a wavenumber spectrum

E(kx,ky) with the linear dispersive relation. An input surface

www.nat-hazards-earth-syst-sci.net/14/1407/2014/ Nat. Hazards Earth Syst. Sci., 14, 1407–1415, 2014
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Figure 6. Time histories of the crest ratio CF= Cmax / Hs, skew-

ness and kurtosis in the period 8–11 November 2007 (Amax is the

maximum amplitude equal to Cmax).

is then extracted by means of an inverse Fast Fourier Trans-

form with random amplitude and random phase approxima-

tion. Under these circumstances, the initial surface is lin-

ear (and hence normally distributed). The nonlinearity, both

in terms of bound wave and free wave modes, is automat-

ically built by the Euler equations (cf. Dommermuth 2000;

Ducrozet et al., 2007; Toffoli et al., 2010b). The velocity po-

tential is then calculated from the surface elevation in accor-

dance with linear wave theory.

Note that the converted wavenumber spectrum does not

ensure constant 1kx and 1ky , which are needed to ensure

period boundaries. Furthermore, standard output spectra only

contain a very limited amount of frequencies and the re-

sulting surface would be too course for statistical analysis.

Therefore, in order to force periodic boundaries and refine

the surface, wavenumbers are redefined by subdividing the

domain from 0 to kmax into a much larger number of modes

spaced at constant intervals. The concurrent values of en-

ergy are obtained by linear interpolation. Note that this pro-

cedure may induce a shift in the peak period if the num-

ber of modes is not large enough. This is due to the fact

that the new wavenumbers may not necessarily coincide with

the original modes. To overcome this difficulty, 256 modes

were applied in the present analysis in order to maintain the

peak period unchanged.

It is interesting to mention that Dommermuth (2000)

pointed out that initializing a nonlinear model with a lin-

ear surface poses problems due to the generation of spuri-

ous modes, which are nonphysical. Both the bound and free

waves are affected by generations of standing waves mak-

ing the free surface rougher than it should be. Dommer-

muth (2000) proposed an adjustment procedure that elimi-

nates the spurious generation of standing waves. The analysis

of regular wave packets indicates that the initial growth rate

of the Benjamin–Feir instability is delayed because of the

presence of standing waves but there is no apparent effect on

the growth rate. The effect on irregular wave fields, however,

is not completely clear yet. Nonetheless, comparisons of sta-

Figure 7. Temporal evolution of skewness, kurtosis and Amax/A0

(A0 denotes the initial amplitude used in the simulations while

Amax is the maximum amplitude (crest)), 8 November 2007,

18:00 UTC.

tistical properties of the surface elevation from HOSM sim-

ulations initialized with linear surface (thus no adjustments)

and laboratory experiments in directional wave basins (see,

e.g., Toffoli et al., 2010a, 2013, for infinite and finite water

depth, respectively) showed a very good agreement both in

terms of spatial/temporal evolution and maximum values of

statistical moments.

In the definition of the initial surface, 1x and 1y were

selected in order to ensure 10 wavelengths in the physical

domain. The initial surface has been let to evolve according

to Eqs. (1) and (2) for 70 peak periods. According to lab-

oratory experiments (see e.g., Toffoli et al., 2010a), this is

sufficient to ensure the full development of modulational in-

stability (the mechanisms responsible for the formation of

rogue waves), during typical stormy conditions. More gener-

ally, the timescale for the development of modulational insta-

bility and hence rogue waves is proportional to the (ka)−2,

where k is the dominant wave number and a is half the sig-

nificant wave height. In order to have statistically significant

results, 150 repetitions of the wave surface with different

sets of random amplitudes and phases (see e.g., Toffoli et

al., 2008, 2010a) have been simulated.

Figures 4 and 5 show evolution of the directional wave

spectrum in the period 00:00 UTC 8 November 2007–

18:00 UTC 11 November 2007 covering the time history of

the Andrea storm. These spectra have been transformed to

the wavenumber spectra E(kx,ky) and used as an input to

the numerical HOSM simulations.

Time histories of the crest ratio CF = Cmax/Hs, skewness

and kurtosis in the period 8–11 November 2007 (the An-

drea storm time history) derived from the HOSM simulations

are shown in Fig. 6 (Amax denotes the maximum amplitude

Nat. Hazards Earth Syst. Sci., 14, 1407–1415, 2014 www.nat-hazards-earth-syst-sci.net/14/1407/2014/
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Figure 8. Temporal evolution of skewness, kurtosis and Amax/A0

(A0 denotes the initial amplitude used in the simulations while

Amax is the maximum amplitude (crest)), 9 November 2007,

00:00 UTC.

equal to Cmax). The HOSM model predicts the maximum

crest ratio Cmax / Hs = 1.4 and the corresponding kurtosis of

3.35. Note that the crest ratio for the Andrea wave is higher,

Cmax / Hs = 1.63 (see Table 1), but the difference between

the two ratios could be expected as the location considered is

in the distance of 50 km from the Ekofisk field.

Temporal evolution of skewness, kurtosis and Amax/A0

(A0 denotes the initial amplitude used in the simulations)

within the 70Tp time period obtained from the HOSM sim-

ulations of the peak time of the Andrea storm (18:00 UTC

8 November 2007, 00:00 UTC 9 November 2007, and

06:00 UTC 9 November 2007) are shown in Figs. 7, 8 and 9,

respectively. In the location considered, the maximum kurto-

sis is observed already after 30 Tp s simulations at 18:00 UTC

on 8 November 2007. The results presented in Figs. 6–9 point

out that coupling of the wave spectral model and the nonlin-

ear phase-resolving model could predict the occurrence of

the Andrea wave.

It is interesting to note that a sea state capable of triggering

rogue waves occurred several times during the Andrea storm

history at the considered location. North Sea scatter diagrams

of Hs and Tp indicate that sea states with similar steepness

may occur frequently in some locations of the North Sea.

Scatter diagrams, however, do not give any information about

the frequency–directional wave spectrum and therefore firm

conclusions regarding occurrence of rogue-prone sea states

cannot be reached by studying scatter diagrams alone.

5 Conclusions

The study shows how the wave spectral WAM model and the

HOSM model can be coupled to forecast/hindcast the occur-

Figure 9. Temporal evolution of skewness, kurtosis and Amax/A0

(A0 denotes the initial amplitude used in the simulations while

Amax is the maximum amplitude (crest)), 9 November 2007,

06:00 UTC.

rence of extreme and rogue waves. The complimentary na-

ture of these wave models is demonstrated by studying the

Andrea storm, which raged over the northern North Sea in

November 2007.

The considered location is approximately 50 km from

the Ekofisk field, where the Andrea wave was recorded and

therefore the wave characteristics derived from the numerical

simulations cannot be uncritically compared with those of the

Andrea wave. However, the results point out that coupling

of a spectral wave model with a nonlinear phase-resolving

model is able to predict the occurrence of an extreme wave

event.

A spectral model coupled with the HOSM model provides

statistical information about waves based on the actual hind-

cast/forecast spectrum, whether this is bimodal or unimodal.

The coupled model’s output allows deriving, among other

wave properties, a distribution of sea surface elevation, the

maximum wave crest, skewness and kurtosis. The proposed

approach, although demonstrated for the Andrea storm, is of

general character and can be applied to investigations of any

other storm. Further, it represents a good supporting tool for

an analysis of field data.

It needs to be noted that HOSM cannot be applied for pre-

diction of rogue waves in very steep sea states because it does

not include wave breaking. Although a wave spectral model

like WAM provides valuable input to HOSM simulations the

commonly used 6 h sampling interval may present a limita-

tion when studying extreme and rogue waves; important in-

formation between sampling intervals may be missed.

The analysis shows that when the Andrea storm is pass-

ing the North Sea rogue waves can be expected in several

locations, not only at Ekofisk where the Andrea wave was

www.nat-hazards-earth-syst-sci.net/14/1407/2014/ Nat. Hazards Earth Syst. Sci., 14, 1407–1415, 2014
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recorded. Rogue waves are produced during a storm’s devel-

opment; when a storm builds up and when it weakens, in the

location considered by the study. They are not observed when

the storm reaches the largest Hs.

Uncertainties associated with the WAM and HOSM

model, which will affect the presented results, have not

been investigated in this study. Further investigations are still

called for to evaluate impact of these uncertainties on ex-

treme and rogue wave predictions.

The approach for coupling the wave spectral model with

the nonlinear phase-resolving model presented herein can be

considered for use with forecasting purposes. Although these

models are computationally intense, the great advance in en-

hancing computer power has made the coupling between

them feasible.
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