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The Notch pathway is increasingly attracting attention as a source of therapeutic targets for
cancer. Ligand-induced Notch signaling has been implicated in various aspects of cancer
biology; as a consequence, pan-Notch inhibitors and therapeutic antibodies targeting one
or more of the Notch receptors have been investigated for cancer therapy. Alternatively,
Notch ligands provide attractive options for therapy in cancer treatment due to their more
restricted expression and better-defined functions, as well as their low rate of mutations in
cancer. One of the Notch ligands, Jagged1 (JAG1), is overexpressed in many cancer types,
and plays an important role in several aspects of tumor biology. In fact, JAG1-stimulated
Notch activation is directly implicated in tumor growth through maintaining cancer stem
cell populations, promoting cell survival, inhibiting apoptosis, and driving cell proliferation
and metastasis. In addition, JAG1 can indirectly affect cancer by influencing tumor microen-
vironment components such as tumor vasculature and immune cell infiltration. This article
gives an overview of JAG1 and its role in tumor biology, and its potential as a therapeutic
target.
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Jagged1 (JAG1) is one of the five canonical ligands for Notch recep-
tors expressed by mammalian cells. Along with Jagged2 (JAG2), it
belongs to the Serrate/Jagged family,as opposed to the Delta/Delta-
like family of ligands (DLL1, DLL3, and DLL4) (1, 2). JAG1, like
the other canonical ligands, binds to Notch receptors and trig-
gers activation, an interaction involving the Delta/Serrate/Lag-2
(DSL) domain of the JAG1 extracellular region (3, 4) (Figure 1).
The JAG1 DSL domain is also responsible for its binding to
the CD46 complement regulator, and this interaction is impli-
cated in the functionality of T-helper cells (5). Of note, the
binding and activating ability of JAG1 is tightly regulated by
Notch receptor glycosylation (6–8). Recently, binding of the N-
terminal C2 domain to phospholipid bilayers has been iden-
tified as a novel mechanism of modulating Notch activation
induced by JAG1 (9). In addition, a number of publications
indicate that the JAG1 intracellular domain can be released via
γ-secretase-mediated cleavage, and the processed fragment, con-
taining a PDZ-ligand motif at its C-terminus, has been reported
to induce intrinsic reverse signaling within the ligand express-
ing cell (10–13). A soluble JAG1 extracellular domain, generated
by ADAM17-mediated proteolytic cleavage, has also been impli-
cated in mediating paracrine Notch signaling between endothelial
cells and tumor cells (14), thus enabling Notch activation in more
distant cells.

Being a key component of the Notch signaling pathway, JAG1
plays an important role in both physiological and pathological
conditions, including embryonic development and cancer. Among
its physiological functions, it is worth noting that Jag1 gene knock-
out in mice causes severe vascular defects that are lethal in early
embryogenesis (15), and that JAG1 mutations in human beings

are responsible for Alagille syndrome, an inherited multi-organ
developmental disorder (16). In this review, we summarize what
has been discovered about the contribution of JAG1 to tumor biol-
ogy to date, and discuss the evidence supporting JAG1 as a valid
target for cancer therapy.

JAG1 INVOLVEMENT IN CANCER
Besides its role in Notch signaling in general (17), JAG1 has also
been proven to play roles in multiple aspects of cancer biol-
ogy, including tumor angiogenesis, neoplastic cell growth, can-
cer stem cells (CSCs), epithelial–mesenchymal transition (EMT),
the metastatic process, and resistance to therapy in several types
of cancer. Interestingly, JAG1 has been reported not only to be
expressed and to play a role in cancer cells but its expression and
activity have also been described in other cell types present in the
tumor microenvironment such as mesothelial (18) and endothe-
lial cells (14, 19), astrocytes (20), and osteoblasts (21). Importantly,
JAG1 expression can be induced by other signaling pathways that
are important in cancer such as TGF-β, WNT/β-catenin, IL-6, and
NF-κB, as well as by the Notch pathway itself (22–26). We will first
present and describe the mechanisms by which JAG1 exerts its
functions in tumor biology (Figure 2), and then discuss its role in
selected tumor types for which function and/or clinical relevance
have been most extensively reported.

TUMOR ANGIOGENESIS
Angiogenesis refers to the growth of new blood vessels from exist-
ing ones, which is important in normal physiological processes
such as embryonic development and wound healing. Angiogenesis
also plays a key role in cancer biology, and it is recognized as one of
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FIGURE 1 | Structure and function of human JAG1. JAG1 is a type I
transmembrane protein with an extracellular region featuring 16 epidermal
growth factor (EGF) repeats followed by a cysteine-rich domain (CRD). Notch
receptors bind to the DSL domain that is located N-terminal to the EGF
repeats. A C2 phospholipid recognition domain at the very N-terminus
reduces Notch activation upon binding to phospholipid bilayers. The CD46

recognition site largely overlaps with the Notch binding site. JAG1 can be
cleaved by ADAM17 metalloprotease to release soluble protein, mediating
paracrine Notch signaling on neighboring cells. It can also be processed
intramembranously by γ-secretase to release the intracellular domain, within
which the C-terminal PDZ-ligand motif is responsible for the intrinsic reverse
signaling induced by JAG1.

the hallmarks of cancer (27, 28). Sprouting angiogenesis, the main
mechanistic variant of this process, is initiated with endothelial
tip cell invasion, followed by a series of maturation steps includ-
ing lumen formation, and recruitment of perivascular cells. Notch
ligands expressed on endothelial cells, and their cognate recep-
tors on both endothelial and perivascular cells, smooth muscle
cells, and pericytes, are involved in multiple stages of blood ves-
sel formation from initial sprouting until vessel maturation (29,
30). DLL4 expressed by endothelial tip cells suppresses the tip
phenotype in neighboring stalk cells, thus maintaining a sufficient
number of endothelial cells for vascular integrity and adequate tis-
sue perfusion (7). In some models, JAG1 has been proven to have
the opposite effect in that it promotes endothelial cell prolifera-
tion and sprouting, and inhibits DLL4-induced Notch signaling
in endothelial cells (7). Thus, JAG1 deletion inhibits sprouting
angiogenesis, and JAG1 overexpression opposes DLL4 to promote
sprouting.

JAG1 is also indispensable for vascular smooth muscle cell
coverage of newly formed vessels, as well as in maintaining the
interaction between endothelial cells and the perivascular cells.
Endothelium-specific Jag1 deletion causes deficits in vascular
smooth muscle and fatal vascular defects (31). Endothelium-
expressed JAG1 induces αvβ3 integrin expression, which in turn
binds to VWF enriched on the basement membrane of the
endothelial cells, facilitating smooth muscle adhesion, leading
to vessel maturation. Genetic or pharmacologic disruption of
JAG1, Notch, αvβ3, or VWF suppresses smooth muscle cover-
age of nascent vessels and arterial maturation during vascular
development (32). The attachment of perivascular cells, such as
smooth muscle cells, in turn regulates JAG1 expression and signal-
ing through their surface-expressed Notch receptors. Perivascular
cell-expressed Notch3 can also be induced by endothelial JAG1 and
subsequently upregulates JAG1 expression on perivascular cells to
form an autoregulatory loop that promotes both their maturation
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FIGURE 2 | JAG1 in cancer biology. JAG1 expressed by cancer and/or
stromal cells induces tumor cell growth and inhibits their apoptosis. JAG1 also
induces and helps maintaining the cancer stem cell population, and enhances

metastasis formation by inducing EMT. Meanwhile, in the tumor
microenvironment, JAG1 promotes tumor-associated angiogenesis, and
inhibits tumor-specific immunity by inducing regulatory T (Treg) cells.

as pericytes and angiogenesis (33). Blockade of Notch signaling by
knocking down Notch3 or JAG1 expression abrogates angiogene-
sis. This role during both the early and late stages of angiogenesis
makes JAG1 the only Notch ligand for which such a broad function
has been identified.

JAG1 has been reported to be strongly expressed by tumor-
associated blood vessels, for example, in brain and ovarian cancer
(34, 35), where it can trigger Notch signaling in tumor cells
(angiocrine function) to promote tumor growth (19, 36, 37).
Functionally, head and neck squamous cell carcinoma (HNSCC)
tumors have been reported to secrete growth factors, such as
HGF and TGF-α, that act in an autocrine/juxtacrine fashion to
upregulate JAG1 expression through the MAKP pathway. This
tumor-expressed JAG1 then stimulates endothelial cell sprouting,
promoting angiogenesis and tumor growth in a mouse xenograft
model (38). Furthermore, JAG1 expression levels also correlate
with microvessel formation in human HNSCC tissues (38). A
JAG1 pro-angiogenic role has also been reported in ovarian cancer
models, where it was proven that Jag1 stromal silencing drastically
reduced tumor microvascular density and neoplastic growth (39).
All these points suggest that JAG1-targeted therapies could be of
benefit to cancer patients even in the absence of tumoral JAG1
expression due to its role in tumor angiogenesis.

CANCER STEM CELLS
The Notch pathway plays an important role in normal stem cell
biology, and this resulted in unacceptable levels of gastrointestinal
toxicity when pan-Notch ablation was attempted using γ-secretase
inhibitors (40, 41). Interestingly, unlike the Dll1/4 ligands, Jag1 was
found to be dispensable for the homeostasis of normal intestinal
stem cells (42), suggesting that JAG1 targeting is likely to have less
side effects.

In the context of cancer, a small, distinct subpopulation of cells
within tumors termed “cancer stem cells” (CSCs), tumorigenic
cells, or cancer-initiating cells has been identified in several tumor
types (43), including breast cancer (CD44+CD24−/lowlineage−

and Aldefluor+ cell fractions), colon cancer (CD133+ cells), and
cervical cancer (CD66+ cells). These cells are characterized by
their self-renewal, high clonogenic potential, and asymmetric divi-
sion producing daughter stem and differentiated cancer cells,
enabling them to regenerate a tumor even when injected in very
low numbers (44–51). CSCs are deemed to have increased inva-
sive potential and resistance to several anti-cancer treatments
and are often thought to be responsible for patient relapse and
metastasis (52, 53). Therefore, therapies specifically targeting
CSCs hold great potential for improving cancer treatment and
outcome.
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Notch signaling is important for both CSC maintenance and
self-renewal (54, 55). Notch1 and Notch4 have been reported to
have higher activity in the enriched breast CSC population, and
inhibition of Notch signaling reduced stem cell activity in vitro
and tumor formation in vivo (54, 56, 57). Similarly, Notch activity
is 10- to 30-fold higher in the colon CSC population, where it has
an important role in preventing apoptosis (58).

Several studies have functionally linked JAG1 to “stemness”
in cancer, and it appears to be the main ligand driving CSC
Notch signaling. In breast cancer, high levels of JAG1 pro-
mote stem cell self-renewal and potentiate mammosphere for-
mation in vitro (23). In this context, JAG1 seems to play a cen-
tral role in linking various pathways, involving well-established
cancer-related molecules such as Notch3, interleukin-6 (IL-6),
carbonic anhydrase IX (CAIX), and NF-κB (23, 26, 59, 60).
JAG1 involvement in breast CSC has also been confirmed by
mouse models in which mammary-specific deletion of Lfng, an
N-acetylglucosamine transferase that prevents Notch activation
by Jagged ligands, induces basal-like breast cancer with higher
Jag1 activity and enhanced CSC proliferation (61). Likewise, JAG1
has also been involved in CSC biology in other tumor types. For
example, JAG1 expressed by both tumor and endothelial cells plays
an important role in glioma/glioblastoma-initiating cells (36, 37).
Tumor-associated endothelial cell-expressed JAG1 has been also
described to mediate lymphoma (19) and colon CSC mainte-
nance. In the latter, soluble JAG1 produced by tumor-associated
endothelial cells promoted the CSC phenotype in human col-
orectal cancer cells (14). Overall, these data indicate JAG1 as an
important inducer of the stem cell phenotype in different cancer
types and, importantly, demonstrates that both tumor and stromal
JAG1 expression are relevant targets for CSCs.

EPITHELIAL–MESENCHYMAL TRANSITION, INVASION, AND
METASTASIS
The ability of tumor cells to invade the surrounding tissues and
the ability of tumor cells to colonize distant organs (metastatic
process) are both key features of aggressive cancers of pivotal clin-
ical relevance. In order to escape their local environment, epithelial
cells can exploit a reversible developmental program called EMT,
during which loss of epithelial features (e.g., E-cadherin expres-
sion and cell-to-cell adhesion) and the acquisition of mesenchymal
traits enables tumor cells to invade, resist apoptosis, disseminate
and, as more recently observed, acquire stem cell features (28, 62–
64). Notch signaling has been extensively studied in this context
(55), and several reports have described JAG1 involvement in EMT,
invasive potential, and metastasis particularly but not exclusively,
in breast cancer. JAG1-induced signaling in breast cancer inhibits
the epithelial phenotype via upregulation of the EMT master-
regulator SLUG, and promotes tumor growth and metastasis (65).
This is also reported to be important for TGFβ-induced EMT in
mammary gland cells (22). Furthermore, JAG1 can increase tumor
migratory and invasive behavior by inducing the urokinase-type
plasminogen activator (uPA), a well-known marker of recurrence
and metastasis (66). Finally, but not least, JAG1 has also been
shown to be involved in the tissue specificity of breast cancer dis-
semination since it has been described to have significant roles in
metastasis to the bone and brain (20, 21).

A role in EMT has also been described in cervical cancer,
where JAG1 expression correlates with the rapid induction of
phosphoinositol-3-kinase (PI3K)-mediated EMT (67); in hepato-
cellular carcinoma where it is repressed by the tumor-suppressor
RUNX3 (68); and in treatment-resistant pancreatic cancer cells,
where the JAG1-Notch2 axis controls several EMT transcrip-
tion factors such as SNAIL, SLUG, and ZEB1 (69). Pro-invasive,
migratory, and metastatic function has been also demonstrated
for prostate cancer, where high JAG1 expression has been clini-
cally linked to metastasis development and regulation of migra-
tion/invasion via NF-κB (70, 71), and for colon cancer, where
it mediates APEX1 pro-tumorigenic functions and induces the
metastasis markers MMP-2 and MMP-9 (72, 73). Overall, JAG1-
induced Notch signaling appears to be implicated in different
steps of the invasion/metastatic process. This, in conjunction with
the relevance demonstrated in different tumor types, suggests
JAG1 as an interesting therapeutic target to inhibit tumor cell
invasiveness/metastasis.

TUMOR CELL PROLIFERATION, CELL CYCLE REGULATION, DRUG
RESISTANCE, AND SURVIVAL
As for generalized Notch signaling, JAG1 can also directly
affect more basic cellular functions such as cell cycle progres-
sion/proliferation and apoptosis/cell survival. In several cancer
types, JAG1 induces tumor cell growth and promotes cell cycle
progression. For example, it can directly regulate the cell cycle and
induce proliferation by inducing cyclin D1 in breast cancer (74),
cyclin D1, cyclin E, and c-Myc in colon cancer (73), or by pro-
moting CDK2 kinase activity while repressing the p27 cell cycle
suppressor in prostate cancer cells (75). Similar pro-proliferative
functions have also been reported for glioma, myeloma, and ovar-
ian cancer (18, 39, 76, 77). As anticipated, JAG1 can also affect cell
death and there are several studies indicating that this Notch ligand
exerts anti-apoptotic functions, although a mechanism remains to
be fully elucidated. Interestingly, JAG1 can prevent both sponta-
neous apoptosis, for example, in glioma and prostate cancer cells
(71, 77), as well as chemotherapy-induced cell death. Examples
of the latter include lymphoma cells with respect to doxorubicin
(19), ovarian cancer and taxanes (39), and pancreatic cancer and
gemcitabine (69). While a role in spontaneous apoptosis preven-
tion informs us regarding a physiological role played by JAG1, its
role in chemo-protection represents a key finding as it highlights
the opportunity to treat unresponsive tumor cases via combina-
tion chemotherapy treatments that include JAG1-Notch signaling
blockade.

T-CELL REGULATION
A favorable tumor microenvironment is vital for cancer growth
and survival. Various immune cells are found within the prox-
imity of tumors, including T-cells, dendritic cells, macrophages,
neutrophils, etc., but rarely the natural killer (NK) cells that
are highly efficient in killing MHC downregulated tumor cells
(78). Importantly, in many cancer types, there is an enrichment
of T regulatory (Treg) cells capable of inhibiting tumor-specific
immune responses and thus helping tumor cells evade immuno-
surveillance (79). Treg cells, in combination with other factors,
such as myeloid-derived suppressor cells and cytokines, foster
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an immunosuppressive tumor microenvironment that supports
tumor growth. Notably, inhibitors to immune checkpoints such as
PD-1 and CTLA-4 can activate the tumor microenvironment and
are showing exciting promise in the clinic in a variety of cancer
types (78).

The induction and expansion of Treg cells in the tumor
microenvironment involves crosstalk between tumor cells and
dendritic cells, in which Notch signaling, and in particular JAG1-
induced Notch activation, plays an important role. JAG1-Notch3
signaling has been reported to be essential for Treg induction and
expansion stimulated by OX40L (80), whilst JAG1 expression in
antigen presenting cells induces antigen-specific Tregs (81, 82).
Furthermore, maturation of dendritic cells via JAG1 promotes
survival and proliferation of Tregs (83).

JAG1-induced Notch signaling may also have impact on CD4+

T helper (Th) cell activation through a recently identified inter-
action between JAG1 and CD46. CD46 (MCP) is a ubiquitously
expressed human type I transmembrane glycoprotein that was
originally discovered as a complement regulatory protein and then
a cell-entry receptor enabling viral infection. Activation of CD46
on CD4+ T-cells was shown to regulate the expression of Notch
and its ligands, and, furthermore, JAG1 was identified as an addi-
tional physiological ligand for CD46 (5). The JAG1 binding site
of CD46 overlaps with that of Notch receptors (5), and therefore,
crosstalk between the complement and Notch systems may also be
significant in cancer patients.

JAG1 IN INDIVIDUAL CANCER TYPES
There is a significant body of literature describing JAG1 func-
tionality in a variety of tumor types, which is summarized in
Table 1. The cancer types that have been most extensively studied
are discussed in more detail below.

BREAST CANCER
Multiple lines of evidence suggest that Notch signaling is involved
in breast cancer development, maintenance and metastasis, and
overexpression of Notch-1, -3, and -4 activated intracellular
domains in mice causes aggressive and metastatic mammary
tumors (115–119). Active forms of the Notch1 and Notch4 recep-
tors also transform both normal human and murine mammary
epithelial cells (116, 120, 121). When primary breast cancer sam-
ples are examined, accumulation of activated Notch1 and Notch3
is frequently observed in tumor cells (121, 122). Conversely, loss
of a Notch negative regulator, Numb, is found to be associated
with higher grade and worse prognosis in primary breast cancer
(121, 123), and suppression of Notch activity by Notch3 and CSL
knockdown promotes cancer cell apoptosis and inhibits tumor cell
growth (122).

Unlike Notch pathway activation in T-cell acute lymphoblastic
leukemia (T-ALL), which is mostly caused by Notch1 gene muta-
tions, the induction of Notch signaling in breast cancer (and other
carcinomas) is predominantly associated with ligand-dependent
mechanisms of activation. Studies indicate that JAG1 is the most
prominent ligand involved in this aberrant Notch activation in
breast cancer. JAG1 mRNA and protein are overexpressed in this
tumor type,with high expression levels correlating with poor prog-
nosis (84, 85). Functionally, in vitro JAG1 knockdown inhibits

tumor cell growth inducing cell cycle arrest (74). JAG1-stimulated
Notch signaling induces uPA, which is a validated marker of recur-
rence, high metastasic risk, and death from breast malignancy (66).
JAG1 has a proven role in regulating breast CSC numbers (23, 26),
EMT (65), and the metastatic process (21).

Two overlapping subtypes, triple negative (TN) breast cancer
lacking estrogen receptor (ER), progesterone receptor (PR), and
Her2 receptors, and basal-like breast cancer, which is generally
associated with BRCA1 activation, are normally more aggres-
sive and have poorer prognoses (124). These subtypes of breast
cancers generally have higher levels of JAG1 expression, which
correlate with reduced disease free survival (DFS). In contrast, the
less aggressive luminal subtype, which is more associated with
BRCA2 mutations, has lower JAG1 expression (74, 87, 88). In
addition, a rare aggressive cell population in luminal-like cancers,
lumino-basal cells, shares a gene signature with basal-like cancer,
and their responsiveness to hormone therapy can be enhanced
by blocking Notch signaling. Although a specific role for JAG1
was not investigated, these cells do have higher JAG1 expression
than typical luminal-like cancers (125). These observations have
also been confirmed by functional studies in breast cancer mouse
models in which Jag1 played a key role in inducing a basal-like
phenotype (61).

CERVICAL CANCER
Cervical cancer is the second most common cancer in women.
Infection by high-risk human papillomavirus (HPV) such as HPV-
16 and HPV-18, and the continued expression of viral oncoprotein
E6 and E7 is linked to its development and progression (126).

The first indication for the involvement of Notch signaling in
cervical cancer was the consistent pathway activation observed in
this tumor type and in cervical metaplastic tissues but not in nor-
mal specimens (127). Furthermore, Notch1 expression correlates
with disease progression, with little or no protein expression in
normal cervical epithelium and high expression in precancerous
and cancer tissues (128). Importantly, Notch1 protein is detected
at high levels in the nucleus, indicating that activated Notch signal-
ing may contribute to the progression of HPV-associated cervical
neoplasia. Notch activation seems to contribute to cervical cancer
development through its co-operation with HPV-16 E6 and E7
oncoproteins. Notch activation synergizes with HPV proteins in
the transformation of immortalized human keratinocytes and pri-
mary keratinocytes (129, 130), and co-expression of the activated
intracellular form of Notch1, along with HPV E6 and E7, can also
support tumor growth in vivo (131).

Cervical cancer cells do not seem to present Notch-activating
mutations, as sequencing of Notch1 alleles failed to detect any
of the mutations previously associated with T-ALL development
(132). However, increased expression of the Notch ligand JAG1 was
observed in cervical cancer cell lines and primary samples. JAG1
activity was indispensable for tumor maintenance as dominant
negative JAG1 and RNA interference reduced cell line tumori-
genicity in vitro (89). Overexpression of JAG1 in cervical cancer
samples was coupled with the downregulation of Mfng, a neg-
ative regulator of the Jagged-Notch1 interaction (89). JAG1 also
co-operates with HPV16-E6 and E7 oncoproteins in cell transfor-
mation and during in vivo tumor growth (67). The involvement
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Table 1 | JAG1 involvement in individual cancer types.

Tumor type Oncogene or

tumor suppressor

Observations Reference

Breast cancer Oncogene Overexpression correlating with poor prognosis (84, 85)

Knockdown inhibiting cell growth, inducing cell cycle arrest (74)

Promoting cancer stem cells (23, 26, 59)

Promoting EMT via SLUG/E-cadherin (65)

Promoting osteolytic bone metastasis (21)

Association with triple negative/basal-like subtype (74, 86–88)

Brain tumors Oncogene Promoting tumor growth (37, 77)

Maintaining cancer stem-like cells (36)

Overexpression in glioblastoma blood vessels (35, 77)

Cervical cancer Oncogene Overexpression in cancer (89)

Downregulating Mfng (89)

Co-operating with HPV16-E6/E7 for cell transformation (67)

Downregulation suppressing cancer invasiveness (90)

Colorectal cancer Oncogene Mediating Wnt-induced Notch activation in tumorigenesis (24, 91, 92)

Deletion reducing tumor growth in mouse model (24)

Mediating tumor invasion in mouse model (93)

Paracrine promotion of cancer stem cell phenotype – soluble JAG1 (14)

Overexpression correlating with increased Notch activity in cancer (73, 94)

Tumor growth inhibition by JAG1 knockdown (73)

Mediating APEX1-induced cancer progression in mouse model (72)

Endometrial cancer Oncogene Overexpression correlating with poor prognosis (95)

Gastric cancer Oncogene Expression correlating with tumor aggressiveness and poor survival (96)

Tumor growth inhibition by JAG1 knockdown (97)

Head and neck cancer Oncogene Notch/JAG1 co-expression indicating poor prognosis (98)

Hepatocellular carcinoma Oncogene Overexpression correlates with tumor nodule number (99)

Maintaining cancer stem cells (100)

Overexpression correlating with poor outcome (94, 101)

Non-small cell lung cancer Oncogene Silencing causing cancer cell apoptosis (18)

Preventing cancer cell apoptosis (98, 102)

Ovarian cancer Oncogene Tumor-associated expression (18, 34)

Promoting cancer cell proliferation and dissemination via Notch3 activation (18, 25)

Knockdown impairing tumor growth and sensitizing to chemotherapy (39)

Pancreatic cancer Oncogene Expression correlating with chemoresistance (54, 69)

Overexpression in tumors (103)

Expression associated with tumor angiogenesis (104)

Prostate cancer Oncogene Upregulation in metastatic cases (70)

Knockdown reducing cell growth and invasion (71, 75)

Renal cancer Oncogene Overexpression correlating with poor prognosis (105)

Inducing cell proliferation and adhesion (106, 107)

Acute myeloid leukemia Tumor suppressive Suppressing cancer cell growth (108)

High expression correlating with favorable prognosis (109)

Oncogene Driver of osteoblast mutated β-catenin-induced leukemogenesis (110)

Anaplastic large cell lymphoma Oncogene Overexpression in tumor cells, promoting tumor cell proliferation and

survival

(111)

(Continued)
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Table 1 | Continued

Tumor type Oncogene or

tumor suppressor

Observations Reference

B-Acute lymphoblastic leukemia Oncogene Supporting cancer cell survival (112)

B-Chronic lymphocytic leukemia Oncogene Expression in tumor cells, inhibiting tumor cell apoptosis (113)

Burkitt’s lymphoma Oncogene Angiocrine loop in vascular niche promoting tumor growth, aggressiveness,

and chemoresistance

(19)

Hodgkin lymphoma Oncogene Overexpression in tumor cells, promoting tumor cell proliferation (111)

Multiple myeloma Oncogene Overexpression in tumor cells, promoting tumor cell proliferation (76, 114)

of other Notch ligands in cervical cancer is unclear, but DLL1
expression was not upregulated in primary samples (89).

Targeting JAG1-induced Notch1 activation, by Notch1 RNA
interference or by a γ-secretase inhibitor, suppressed cervical can-
cer invasiveness. Expression of microRNA-34a, which downregu-
lates both Notch1 and JAG1, inhibits abnormal cell growth and
suppresses cervical cancer invasiveness by repressing Notch-JAG1
signaling (90).

However, not all evidence supports a tumor-promoting role of
Notch signaling in cervical cancer. Talora et al. found that Notch1
activity downregulation was required for sustained HPV-E6/E7
expression and subsequent steps of malignant transformation.
Consequently, Notch1 activity was absent in their cohort of inva-
sive cervical cancer samples (133). Notch1 activation has also
been reported to induce the cervical cancer cell line HeLa to
undergo apoptosis, growth arrest, and tumor growth suppression
in vivo (134–136), although the role of JAG1 has not specifically
been investigated within this tumor-suppressor context. The dis-
crepancies between these results and the others could be due to
the differences in sample cohorts, cell lines, and/or experimental
reagents, and further studies are needed to reconcile the differ-
ences and to validate the role of Notch signaling in cervical cancer
pathogenesis.

COLON CANCER
Colon cancer is one of the leading causes of cancer death world-
wide, and the genetic causes of colon cancer involve mutations
of oncogenes, suppressor genes, and multiple developmental
pathways, including Wnt, Notch, Hedgehog, and BMP path-
ways. Mutations in the Wnt pathway cause colon cancer through
constitutive activation of the β-catenin/TCF transcription factor
complex (137). It has been demonstrated that pharmacological
blockade of Notch activity using a γ-secretase inhibitor impairs
intestinal homeostasis, and suppresses adenoma cell proliferation
and induces differentiation, suggesting that tumorigenesis in this
model requires a concerted activation of both Notch and Wnt
(138). Further investigation proved that Notch works downstream
of Wnt, as this pathway transcriptionally induces the Notch ligand
JAG1 to trigger Notch activity (24, 91). Accordingly, deletion of the
Wnt signaling inhibitor progastrin decreased JAG1 expression and
Notch activation, and subsequently promoted the differentiation
of colon cancer cells (92). Furthermore, deletion of JAG1 reduced
tumor growth in the ApcMin/+mouse model, confirming JAG1 as a

pathological link between Wnt and Notch pathways in colon can-
cer (24). Stromal JAG1-induced Notch activation also mediated
the tumor invasion and intravasation caused by the deletion of
metastasis-suppressor gene Aes (Grg5) in Apc∆716 intestinal poly-
posis mice, suggesting that JAG1-induced Notch signaling can be
a promising target for prevention and treatment of colon cancer
metastasis (93). Similarly, JAG1 expressed by endothelial cells has
been implicated in fostering colorectal CSCs (14).

In human beings, Notch signaling was shown to be strongly
activated in primary human colorectal cancers, and has an impor-
tant role in cancer initiation and progression through the regula-
tion of the main cellular functions associated with tumorigenesis,
such as apoptosis, proliferation, angiogenesis, and cell migra-
tion. Microarray analysis discovered that the expression levels of
Notch1, and its target Hes1, increased with increasing tumor grade
(139). In situ hybridization on 130 colorectal cancer samples found
that Notch signaling is constantly activated as measured by Hes1
expression (86). Immunohistochemistry on a colon cancer tissue
microarray confirmed that Hes1 is overexpressed in primary colon
cancer tissues (140).

The cause of Notch overactivation in colon cancer appears to be
ligand-dependent and to correlate with elevated JAG1 expression
levels (73, 94). Accordingly, JAG1 knockdown leads to reduced
Notch signaling activity that is accompanied by cell growth inhi-
bition, cell cycle arrest, migration, and invasion inhibition, as
well as tumor growth suppression (73). Apurinic-apyrimidinic
endonuclease-1 (APEX1), a multiple-functional DNA repair
enzyme, promotes colon cancer progression through activating the
JAG1/Notch signaling pathway. APEX1-induced JAG1 expression
in colon cancer cells, which subsequently activated Notch signal-
ing to promote tumorigenicity, migration, invasion, angiogenesis,
tumor formation, and metastasis in mouse xenograft models (72).

OVARIAN CANCER
JAG1 is the main Notch ligand expressed by ovarian cancer cells; it
is also strongly expressed by peritoneal mesothelial cells (18) and
tumor-associated endothelial cells (34). JAG1 activates primarily
Notch3 in ovarian cancer and promotes proliferation and dissem-
ination within the intraperitoneal cavity (18). Its expression was
induced by Notch3 activity itself, and was repressed by the WNT/β-
catenin pathway (25). JAG1 gene silencing in tumor cells reduced
viability and sensitized them to taxane treatment both in vitro
and in vivo, where it drastically reduced tumor growth. Silencing
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of stromal-expressed Jag1 also impaired tumor growth, without
affecting tumor cell proliferation, by reducing the microvascular
density. Combined tumor and stromal silencing proved to be syn-
ergistic, indicating the importance of targeting both the tumor
and its microenvironment (39).

HEMATOLOGICAL CANCERS
The first oncogenic role for Notch signaling was described in T-
ALL as a consequence of the identification of a high frequency of
activating Notch1 mutations (141–143). Notch1 is also one of the
most frequently mutated genes in chronic lymphocytic leukemia
(CLL) (144, 145). In contrast to solid tumors, aberrations in
hematological malignancies generally involve Notch receptors or
pathway regulator mutations. While some mutations may enable
ligand-independent pathway activation, others that stabilize the
Notch intracellular domain (e.g., by targeting PEST motifs) still
initially require their ligand-induced activation (143, 146).

Despite the predominance of genetic alterations as mechanisms
of pathway alteration, Notch ligands such as JAG1 do play a part in
some hematological cancers as they do in normal hematopoiesis
(147, 148). Non-mutated Notch1 is highly expressed in Hodgkin
lymphoma (HL) and anaplastic large cell lymphoma (ALCL) cells,
and tumor-associated JAG1, overexpressed by bystander cells as
well as by neighboring tumor cells, induces Notch1 activation and
promotes tumor cell proliferation and survival (111). Similarly,
in multiple myelomas, Notch1, Notch2, and JAG1 were highly
expressed in primary tumor samples, and JAG1-induced Notch
activation drove myeloma cell proliferation (76, 114).

Ligand-induced Notch overactivation was also observed in a
subpopulation of primary B-CLL cells that are protected from
spontaneous apoptosis as a result of JAG1 stimulation in ex vivo
cultures (113). These cells overexpressed Notch ligands such as
JAG1 and JAG2, and soluble JAG1 could stimulate Notch acti-
vation and increase B-CLL survival through the NF-κB pathway
(113). Although this study was purely based on ex vivo systems, the
results provide a good indication that JAG1 may play an important
role in sustaining B-CLL cell survival.

Apart from inducing Notch activation from cancer cells them-
selves, JAG1 expressed by stromal cell also plays an important role
in supporting cancer cell survival and tumor growth in hema-
tological malignancies. B-ALL stroma express JAG1, JAG2, and
DLL1, and these ligands are responsible for the synergistic acti-
vation of cancer cells that expressed Notch3 and Notch4, which
ultimately support B-ALL cell survival (112). Interestingly, B-cell
lymphomas have been reported to produce FGF4, which upregu-
lates Jag1 on adjacent endothelial cells, that in turn induces Notch2
regulation of Hey1 in the lymphoma cells (19). This angiocrine
FGF4-FGFR1/Jag1-Notch2 loop contributed to extranodal inva-
sion and chemoresistance, thus extending the clinical relevance of
Jag1 targeting into lymphomas that lack Notch receptor mutations
or JAG1 expression.

Interestingly, Notch pathway activation does not always pro-
mote the pathogenesis of hematological malignancies. For exam-
ple, Notch activation in acute myeloid leukemia (AML) sup-
pressed, rather than promoted, cancer growth, whilst whole-
genome expression analysis discovered that Notch signaling was
silenced in AML (149, 150). In vivo and ex vivo activation of

tumoral Notch, using genetic modification, induced cell cycle
arrest, differentiation, and apoptosis in AML-initiating cells, and
suppressed AML growth. JAG1 stimulation was also found to sup-
press AML cell line growth (108), and high JAG1 surface levels in
leukemia cells was proposed as an independent favorable prog-
nostic factor in AML patients (109). These results suggest that
promoting JAG1-stimulated Notch activity could be a potential
route for novel therapy in AML. However, further studies are
required; first, as the expression level of the Notch1 ICD did not
correlate with AML outcome (109), and second, a separate study
reported activating mutations of β-catenin in mouse osteoblasts
that induced AML development through Jag1-induced Notch acti-
vation (110). This group reported that a large proportion (38%) of
patients with myelodysplastic syndromes or AML had osteoblast
associated β-catenin activation-induced Notch signaling (110).

THERAPEUTIC POTENTIAL AND IMPLICATIONS
It is well established that the Notch pathway (17), and in particular
JAG1-induced Notch activation, plays important roles in tumor
biology, affecting both cancer cells and multiple components of
the neoplastic microenvironment (e.g., vasculature and immune
cells). This, in addition to the facts that JAG1 is often upregulated
in tumor cells (although generally not mutated in cancer), and
that ligand-induced activation is required even in the presence of
some Notch receptor mutations, makes it a particularly attractive
target for therapy (143).

Generally, the main concern in targeting the Notch pathway
by pan-Notch inhibitors was the resulting gastrointestinal toxicity
(41). Antibodies targeting individual Notch receptors (151, 152)
seem to avoid toxicity but, in some situations, tumors may have
high levels of more than one receptor (e.g., Notch1 and Notch2
in CLL, Notch1 and Notch4 in breast CSCs), or potentially, the
roles of individual Notch receptors may contribute differently in
the tumor versus its microenvironment, which adds further com-
plications. For example, while Notch1 is often oncogenic when
expressed by cancer cells, Notch3 expressed by perivascular cells
plays a major role in JAG1-mediated vascular function (33), and
it is also important in Treg induction and expansion in the tumor
microenvironment (80).

JAG1 has a number of advantages as a target for anti-cancer
therapy over other Notch ligands. DLL4 dysfunction exhibited
haploinsufficiency (153), while that of JAG1 did not (15). Thus,
targeting JAG1 may provide a greater therapeutic window in which
to reduce Notch activity without causing severe adverse effects. In
addition, while in the context of cancer, DLL4 mainly functions
in the vasculature, JAG1 has roles in vasculature, immunosup-
pressive Treg cells, and the tumor/stem cells. Thus, targeting JAG1
on both stroma and tumor cells could induce synergistic effects
as demonstrated in an ovarian cancer model (39). The fact that
chronic blockade of DLL4 causes severe pathological changes in
animal models (154) makes alternative targets such as JAG1 even
more appealing.

Crosstalk between Notch signaling and other pathways, such as
Wnt, Hedgehog, and vascular endothelial growth factor (VEGF)
pathways, as well as with the immune system, make Notch and
its ligands attractive approaches for combination therapy. Beva-
cizumab treatment targeting VEGF-induced angiogenesis has
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made a profound impact on various cancer types, but resistance
to treatment is frequently observed in both preclinical and clinical
settings (155). Increased pericyte coverage of the tumor vascula-
ture that maintains its integrity is thought to be one of the main
mechanisms that cause resistance to anti-angiogenic treatments
(156). Therefore, the role of endothelium-expressed JAG1 in vas-
cular smooth muscle biology (32) suggests that targeting JAG1 may
have beneficial synergistic effects with anti-angiogenic approaches.

Furthermore, due to its anti-apoptotic and pro-“stemness”
functions, JAG1 blockade represents an attractive option also for
combination therapy approaches with standard chemotherapy as
demonstrated in preclinical models of ovarian and pancreatic
cancer and lymphoma (19, 39, 69).

In conclusion, targeting JAG1 will provide a new approach to act
on multiple aspects of tumor biology, and represents a promising
new strategy in developing novel anti-tumor therapies.
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