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Abstract. The integral operator with kernel (iri/ir)1'2 exp [—it)(x — yf] on the
interval \x\, y < 1 serves to model the behavior of a class of lasers. Although the kernel
is simple, it is not Hermitian; this presents a major obstacle to a theoretical understand-
ing of the equation—indeed, even the existence of eigenvalues is difficult to prove. We
here introduce a definition of approximate eigenvalues and eigenfunctions, and argue
that these will model the physical problem equally well. We then show that, for i) suffi-
ciently large, each point X with |X| = 1 is an approximate eigenvalue, and that the number
of mutually orthogonal approximate eigenfunctions corresponding to X grows faster
than any constant multiple of \/v- This confirms a conjecture of J. A. Cochran and
E. W. Hinds, supported by numerical evidence. In physical terms, it shows that for
large Fresnel number the laser cannot be expected to settle to a single mode.

Introduction and conclusions. For a laser with rectangular plane-parallel reflectors
which are mirror images of each other, the integral operator

AJ = 0Vt)'/2 j exp [~iv(x - yf]j{y) dy, \x\ < 1,

with rj a real parameter, describes the way in which the field distribution j(y) is trans-
formed by the laser [1], Interest focuses on those field distributions which reproduce
themselves, to within some complex constant X, on a single passage through the laser.
These are called "modes", and 1 — |X|2 is termed the energy loss of the mode.

If a field distribution has the form j(y) = ^2>" afPi-(y), with each <pk a mode, then
L passages through the laser transform j(y) into

h-iy) = 2 ak\kL<pk{y) = + £ a'(x^) '

Thus if |X,| is the largest of the j Xt j (arranged in decreasing order), the effect of many
iterations is to attenuate the second component in the above decomposition relative
to the first, with the result that the field in the laser converges to <pi{y), the mode of
lowest energy loss. This desirable phenomenon is sometimes referred to as "the natural
selection of modes". Its efficacy clearly depends on the size of the ratio |X2|/|Xi|, which
determines the rapidity with which the remaining modes attenuate; indeed, if |Xx| =
[X21 > |X3|, the field distribution behaves like a |X/>,(,)/) + '<P'z(y) and so does not

Received March 22, 1976.



IOC) H. J. LANDAU

settle to a single shape at all. The natural question hereby raised concerning the distribu-
tion of large |Xt| has not previously been answered, however, for despite its rather tantaliz-
ing simplicity, little is known about A, . A comprehensive account of the information
available appears in [1], where it is conjectured, with the support of numerical evidence,
that the |Xt| lie on a spiral S, which approaches the unit circumference as the Fresnel
number ■q —> ».

If we take literally our definition of mode, and our mathematical representation of
the laser, then a mode corresponds to an eigenfunction: \k<pk = A„(pk . Since the kernel
of Av is square-integrable over the region |.t|, |t/| < 1, A, is a compact operator. It follows
that each nonzero eigenvalue occurs with finite multiplicity, and that the only possible
limit point of the eigenvalues is zero [2, p. 167]. However, since A, is not Hermitian,
general theory largely stops here. The eigenfunctions can be very sparse when they
exist at all, and, should there be too few to span the totality of field distributions, informa-
tion about them need not shed much light on the action of the operator.1 These considera-
tions apply to the laser equation, for although a hard-won result shows that eigenfunctions
do exist, nothing is known about their completeness, so that their value for an understand-
ing of A, is open to doubt.

We can remove some of these conceptual difficulties by recognizing that, whether in
the laboratory or in a computation, we necessarily work within a certain error, which
can be very small but is always non-zero. Thus if our mathematical models are to reflect
the actual conditions we face, they cannot be forced to make distinctions which we are
incapable of making, such as between quantities which are strictly zero and those which
are exceedingly small. In this light, we see that what should really concern us in modeling
is not exclusively the true eigenvalues and eigenfunctions, but rather the whole class
of approximate ones, which we define as follows, using energy as norm:

r = J i^oor dr.
Definition: Given e > 0, X is an (-approximate eigenvalue of an operator A if for

some function <px of unit norm 11A — X^x|| < e; we call <pk an e-approximate eigenfunction
corresponding to X.

In this definition, we think of t' as representing the limit of accuracy (in measuring
percentages of energy), so that the e-approximate eigenvalues and eigenfunctions are
what would be indistinguishable from true ones under the prevailing conditions, and
we seek results which do not depend on the actual value of«in force; thus our definitions
have physical meaning. If X is an e-approximate eigenvalue so, according to the definition,
is every ju sufficiently close to X, so that we cannot count the approximate eigenvalues
directly as points; we can, however, count them by the number of corresponding approxi-
mate eigenfunctions which are mutually orthogonal.

If A possesses a complete orthonormal set of true eigenfunctions, then by expanding
an e-approximate eigenfunction in this basis we can see that the e-approximate eigen-
value X lies within e of a true eigenvalue, and for e sufficiently small itself lies close
to a true eigenfunction. Hence in all such situations, and in particular for integral opera-
tors with Hermitian kernels, our present notions of e-approximate eigenvalues and eigen-

1 A simple example which illustrates this problem is given by the operator which shifts a sequence
(aj , a% , ... , at) into (o2 , a3 , ... , at , 0); here there is only one eigenvector, (1,0, ... , 0), with
eigenvalue 0.
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functions neighbor those of true ones, as intuitively they should. The distinction between
them arises, and plays a crucial role, in passing to non-Hermitian equations where,
as we have seen, true eigenvalues do not in general describe the operator adequately;
on the other hand, at least for operators of convolution type, systems of mutually orthog-
onal e-approximate eigenfunctions are easily constructed, and the behavior of (-approxi-
mate eigenvalues, as well as their role in explaining the action of the operator, carry over
smoothly from the Hermitian case [3]. When we remember that, for e sufficiently small,
we cannot distinguish operationally between true and e-approximate, the possibility
arises that in certain non-Hermitian contexts it is the second notion that should replace
the first at the center of the stage, even for purposes of theory.

Returning to our original concern with mode selection, suppose that the initial field
distribution has the form /(y) = y.," a,<p,{y) + e0(y), \y\ < 1, in which {^,} are ortho-
normal e-approximate eigenfunctions of A, and e0(y) is a small error, ||e0|| < e; then

M m \r
A J = a>A<i<Pi + -4 A = ai^>Vi + 23 ai+ Ave „

1 1 1

M= 22 ■
1

To estimate e, we invoke the triangle and Schwarz inequalities, together with the
fact, evident from (4) below, that A„ does not increase the norm; we obtain

I kill < I Ma 11 + 22 Kl I Mi f>i — ̂;*»>ll
l

(3/ M

IM^» — 112 X) iai
l l

< IK 11 + (11/ - eo\ |2 Mt2)W2 < Ce,
where the constant C depends only on the energy of / and the number of terms in the
expansion. Consequently, after L passages through the laser, the distribution f(y)
becomes

M

H />,(?/) + e,.(y),
1

with ||et|| < CLe. Thus if we can take t sufficiently small—that is, if the approximate
eigenfunctions look sufficiently like true ones—they will yield the same conclusions
regarding mode selection, at least up to the number L of iterations being envisaged.
Thus, as earlier, we are led to consider the e-approximate eigenvalues of large modulus,
a problem we will examine for ®. We note from the outset that, since 4, decreases
the norm, the modulus of e-approximate eigenvalues is necessarily bounded above by 1,
for if |X| > 1, |\A,<p — X<p|| > |M| — |M,?|| > |X| — 1, so that X cannot serve as an
e-approximate eigenvalue for any e < |X| — 1.

When k{x) is a Hermitian symmetric (k(—x) = k(x)) integrable function whose
Fourier transform K(u) is integrable, the eigenvalues of the finite convolution equation

\f(r) = p/(2tt)1/2 J fc[p(x - y)]f(y) dy, |x| < 1,

are well described by a theorem of Szego [4], which asserts that, as p —+ , they behave
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like samples of K(u) taken at integer multiples of w/p. Since this conclusion depends in
an essential way on the Hermitian nature of lc, it cannot be employed here. We will
instead base ourselves on a recent result [3] which provides, for approximate eigenvalues,
a certain extension of Szego's theorem to the non-Hermitian case. However, since that
discussion likewise requires integrability of the kernel, we will modify it, giving a simple
self-contained construction. Our conclusions are that, given e > 0, each point y on the
unit circumference is an e-approximate eigenvalue of Av as soon as r\ is sufficiently large,
that the number of mutually orthogonal e-approximate eigenfunctions corresponding
to 7 grows faster than any constant multiple of \/17, and that if 7, ^ y2 these associated
eigenspaces can be chosen to be orthogonal. This accords well with the calculations of
[1] already mentioned, where even for relatively low values of rj, the (approximate)
eigenvalues of large modulus spiral close to the unit circumference. In view of the earlier
discussion, we see that we cannot expect the mode selection process to be effective for
large values of the Fresnel number rj.

Proof. We proceed to a proof of the following theorem.

Theorem: Let A,J = (/77/ir)1' /_/ exp — y)2)j(y) dy, |:r| < 1. Let there
be given real positive C and c, and a complex number 7 with I7I = 1. Then for all suffi-
ciently large values of the real parameter 77, there are at least C\/t] functions | ipk J ortho-
normal on |a-1 < 1 satisfying |4,^(.r) — y<p{x)\2 dx < e2. If I731 = |72| = 1 but 7, y2 ,
these collections of e-approximate eigenfunctions corresponding to 7, and y2 can be
chosen to be mutually orthogonal.

Prooj: Let T represent the Fourier transform

T(J = exP ("») djr =

with inverse transform

_ 1 If"d(x) - T G(u) = / 0(u) exp (iur) (hi.(2ir)

We know that these operations preserve energy:

II Th\\* = \\h\\2 (2)
for each h. Now with <p(x) given on |.r| < 1 and normalized so that |<p(x)|2 dx = 1,
let us extend <^(a') as 0 for [,t| > 1, denoting the resulting function by <p*(x):

<p*(x) = <p(s), kl < 1
= 0, |j-| > 1.

This extension allows us to simplify the form of some of the quantities of interest, since
now we can write A„<p as a convolution

A„<p = (?Vt)' " [ «'xp ( - y)'2)<p*(y) dy,

and produce the bound

I - y<p(jr)\2 djr < J \Ar]<p{x) ~ y<P*(r)f dx. (3)
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We next appeal to the fact that the formula for the Fourier transform of a convolution
can be applied to A,<p, even though the kernel is not integrable [5, p. 58, p. 178]; denoting
Tip* by <i>(w) we thus obtain

TA„<p = exp (iu*/4>j)<J>(m). (4)

Finally, combining (2) with the right-hand side of (3), we find

J \A#>0) - y<pO)|2 dx < I |T{Ajp - w*)!'2 du

= j" |exp (iu'/4r)) — 7 j2 du. (5)

Our object is to construct functions <p*(x) which make the right-hand side of (5)
small. To this end, let Sv be a set of the it-axis on which

I exp (iu~ / 4rj) - 7I2 < t /2, (6)

and suppose that we can find a function <f>(u), the Fourier transform of some (fix) of
unit energy vanishing in |.r| > 1, which is well-concentrated on S, , in the sense that

Then by (2),

f |<!>(«)j" du > 1 — e2/'8. (7)

I !$(?<)f du < e"'/8,
j,.a: v

so that

j |exp {hi /477) - 712 |<I>(m)|2

= I + f < 5- f I<!>(«)12 du + 4 [ |<J>(m)|2
Jaes, Ju<ts„ £ •'»es, •'ufE.s,,

du

du
u<tl

< c2/2 + 4(e2/8)

as desired. We conclude that any orthonormal collection | <pk j of functions supported
on |x| < 1 whose Fourier transforms | <I>t(u) j are each well-concentrated on »S, (in the
sense of (7)) yields t-approximate eigenfunctions of Av corresponding to the e-approximate
eigenvalue 7. We next give a simple estimate of the number of such functions.

The set defined by (6) is composed of those points u for which |w2/4r? — arg7 + 2kir\
< 2 sin"1 («/2v/2), with some k = 0, ±1, ±2, • • • hence can be expressed as the set of
points of the form y/ri V where V, independent of 17, is the union of the intervals |t//4 —
arg7 + 2/cjt| < 2 sin~' (t/2y/2), k = 0, ±1, • • • . Since the measure of V is infinite, we
can choose a set S, consisting of a finite number of the constituent intervals of V, of
total measure exceeding 4C, whereupon the set Sv = Vi S satisfies (6). Let us now
pose the problem of maximizing the concentration on S, of a function XI' (u) which is
the Fourier transform of a function xp(x) of unit norm supported on M < 1, i.e., let
us seek to determine

f l^(«)|2
= 1 J Sv

max I NKw)| du.
11^*11 =



170 H. J. LANDAU

The usual variation applied to this quadratic form shows that the maximum is given
by the largest eigenvalue X, of the Hermitian integral equation

753T/2 J f>,(x - y)4>(ij) (hj = \i(x), |j| < 1, (8)

in which the Fourier transform //,(«) of x) is the characteristic function of the set
S, , i.e.,

Hv(u) =1, u £ Sv

= 0, u (£ S, .

Moreover, the remaining eigenvalues of (8) measure the successively largest concentra-
tions on S„ attainable by the Fourier transforms of function of unit norm on |.r| < 1
which are orthogonal to the eigenfunctions of (8) already determined. Thus if N of the
eigenvalues of (8) exceed 1 — t /8, the corresponding eigenfunctions form a collection
of N mutually orthogonal e-approximate eigenfunctions of Av corresponding to the
approximate eigenvalue y. Since (8) is a Hermitian Hilbert-Schmidt operator with a
continuous and positive definite kernel, we will be able to estimate N in an easy way.

Let us denote the eigenvalues of (8) by {(77)} to stress their dependence on 77.
Since X1.(17) = J's„ |^,;(M)|2 du ar,d

0 < I |^/,(m)|2 du < J |^t-(w)|2 du = |i^,||2 = 1,

we know that each \k(ri) necessarily lies between 0 and 1. By Mercer's theorem [2, p. 245],
the sum of the eigenvalues is the trace of the kernel,

X Mv) = 7^\t/2 [ /',(<)) dy = wj(S,)/jt = m(S) v7j?/V (9)
k- I l-Tj J-I

where m(S) denotes the measure of S. We also have [2, p. 243]

K2(v) = I dy I dx |h,(x - y)|2.
k-1 * — 1 -'-l

To estimate this integral, we apply the change of variables y = p, x = p + rfuH,
obtaining

v~'~ X X/(»?) = [ dp f dt | tj~ 1 2/i(//a/j?)|2
k = 1 -71" Jl_J Vv(-l-v) -'»?(- 1-rO

-1/2,We now observe that 17 "2h(J/\/ri) is the Fourier transform of the characteristic function
of S, so that by (2)

f \v-'/2Kt/Vv)\'2 dt = m(S).

Thus the bracketed integrand is dominated by the constant m(S), which of course is
integrable on \p\ < 1; moreover, for each p, \p\ < 1, this integrand approaches m(S)
as 77 —» 00. Consequently by Lebesgue's dominated convergence theorem the right-hand
side approaches m(S)/ir. We conclude that

^2(v) = m(S)Vv/ir — o(Vv), (10)
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remarking parenthetically, for we make no use of that fact, that when S is the union
of a finite number of intervals, a slightly more accurate estimation of the integral shows
the second-order term to behave like K log rj.

To describe the distribution of the eigenvalues, let N^(d), for 0 < 8 < 1, denote the
number of eigenvalues \k(n) which are greater than 9. The estimates (9) and (10) provide
considerable information. To begin with, they show that the number of eigenvalues
not close to 0 or 1 is o(\/'?)- For by (9) and (10)

•/, = X — X*0?)] = 22 ̂ k(v) — 22 W(>?) = o( \/r)).
k

Now if a and /3 are fixed, 0 < a < /3 < 1, each eigenvalue in the range

a < < 0

contributes to ./, an amount no smaller than r = min [a(l — a), /3(1 — /3)]. The number
of such eigenvalues being A7, (a) — iV„(/3), we find

r[N,(a) - N,m < •/, = o(Vv),
whence it follows that both N+ = lim sup„_„ ??~1/2A,(0) and Ar- = lim inf, ,„ ij_1/2./V,(0)
are independent of 9 in the range 0 < 8 < 1. To determine the latter quantities, we
observe that

22 ̂ h(v) >
and

\v(6)

22 \2(v) = 22 + 22 K"(ri)
I: =1 Ar, (9) + 1

< A,(0) + 9 ^2
,V,(«)+1

< -v,(«) + 9 x; uv).i-i
Appealing again to (9) and (10) we find

(1 — 9)m(S)/ir < N_ < N+ < 8~lm(S)/T,

and choosing 8 near 1 on the right and near 0 on the left, we conclude that

lim Tf 1/2A\(0) = m(S)/ir, (11)
7J-»QO

for each 0 < 8 < 1.
This is sufficient to establish the first assertion of the theorem. For given t > 0,

let 0=1 — t /8. Since m(S) > 4C, (11) shows that for all tj sufficiently large there are
at least Cy/t] eigenfunctions j 4>k) of (8), orthonormal over |a:| < 1, for which the Fourier
transforms satisfy the concentration requirement (7) and which, in consequence, repre-
sent e-approximate eigenfunctions of A, corresponding to the approximate eigenvalue y.

Finally, we observe that if / = 221" , where are the eigenfunctions of (8)
for which \k > 1 — t /8, then we find from (8) that, for the Fourier transform F of /,

f \F(u)\2 du = 22 ki2 V- > (1 - e2/8)
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Thus not only the functions {\f/t) themselves, but also any linear combination of them,
will have Fourier transforms well-concentrated on S„ and thus will serve as an e-approxi-
mate eigenfunction of An . Now if |-y, | = |-y2| = 1, but 7, ^ , let us take disjoint sets
S1 and $2 satisfying (6) for 7, and 72 respectively, and construct, as above, two sub-
spaces Si and S2 of functions in |x| < 1 which have Fourier transform well-concentrated
on Sx and S2 , respectively. If /, £ Si and f2 £ S2 , then /, and /2 are not yet necessarily
orthogonal, but they are nearly so, since their Fourier transforms are nearly concentrated
on disjoint sets. Indeed, by Parseval's theorem,

J fl(.r)fjx) dx = J F,(u)FJu) <!u

= f + I -\_f \F<(U)\2 ()u J
+ f \f\{u)\2 du f \I'\(u)\2 du\

< 2e/ \/8.

Thus /2 can be projected into the orthogonal complement of £, by a perturbation which
is arbitrarily small, and which consequently will change neither the dimension of £2
nor the feature that f2 was an approximate eigenfunction of A, corresponding to the
approximate eigenvalue y2 . It is in this way that S2 can be chosen to be orthogonal
to 8, . This completes the proof of the theorem.
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