
Management H. Morgan

Applications Editor

The Notions of
Consistency and
Predicate Locks in a
Database System
K.P. Eswaran, J.N. Gray,
R.A. Lorie, and I.L. Traiger
IBM Research Laboratory
San Jose, California

In database systems, users access shared data under

the assumption that the data satisfies certain consistency

constraints. This paper defines the concepts of trans-

action, consistency and schedule and shows that con-

sistency requires that a transaction cannot request new

locks after releasing a lock. Then it is argued that a

transaction needs to lock a logical rather than a physical

subset of the database. These subsets may be specified

by predicates. An implementation of predicate locks

which satisfies the consistency condition is suggested.

Key Words and Phrases: consistency, lock, database,

concurrency, transaction

CR Categories: 4.32, 4.33

1. Introduction

In database systems, users access shared data under

the assumption that the data satisfies certain consistency

assertions. For simplicity consider a system with a

fixed set of named resources called entities. Each entity

has a name and a value. Examples of such assertions

are

" A " is equal to "B" ,

" C " is the count of the free cells in "D" ,

" E " is an index for " F " .

Most such assertions are never explicitly stated in de-

Copyright @ 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Authors' address: IBM Corp., Monterey and Cottle Roads,
San Jose, CA 95193.

signing or using a system, and yet all programs and

users depend on the correctness of these assertions

whenever they deal with the system state.

The assertions above are quite simple; however, in

practice, assertions become extremely complex. A

complete set of assertions about a system would no

doubt be as large as the system itself. In practice, there

is little reason for explicitly enumerating all such as-

sertions, but for the purposes of this discussion we

presume that a set of assertions, hereafter called con-

sistency constraints, is explicitly defined and we say

that the state is consistent if the contents of the entities

of the state satisfy all the consistency constraints.

The system state is not static. It is continually under-

going changes due to actions performed by processes

on the entities. Read and write are examples of such

actions. We assume that actions are atomic; that is,

if two processes concurrently perform actions, the

effect will be as though one of the actions were per-

formed before the other.

One might think that consistency constraints could

be enforced at each action but this is not true. One

may need to temporari ly violate the consistency of the

system state while modifying it. For example, in moving

money from one bank account to another there will

be an instant during which one account has been debited

and the other not yet credited. This violates a constraint

that the number of dollars in the system is constant.

For this reason, the actions of a process are grouped

into sequences called transactions which are units of

consistency. In general, consistency assertions cannot

be enforced before the end of a transaction. In this paper

it is assumed that each transaction, when executed

alone, t ransforms a consistent state into a new con-

sistent state; that is, transactions preserve consistency.

Having grouped actions into transactions, we are

interested in the problem of running transactions with

maximal concurrency by interleaving actions f rom

several transactions while continuing to give each trans-

action a consistent view of the system state. In such an

environment, each transaction must employ a locking

protocol to insure that it and others do not access data

which is temporari ly inconsistent. This lock protocol

results in an additional set of actions called lock and

unlock. A particular sequencing of the actions of a

set of transactions is called a schedule. A schedule

which gives each transaction a consistent view of the

state is called a consistent schedule.

Not all consistent schedules for a set of transactions

give exactly the same state (i.e. consistency is a weaker

property than determinacy). For example, in an airlines

reservation system if a set of transactions each requests

a seat on a particular flight, then each consistent

schedule will have the property that no seat is sold

twice and no request is denied if there is a free seat,

but two distinct consistent schedules may differ in the

details of the seat assignment.

In the next section, we consider the problems of

624 Communications November 1976
of Volume 19
the ACM Number 11

locking and consistency in more detail. The discussion

is applicable to database systems and to more con-

ventional environments such as operating systems.

The principal result is that consistency requires that a

transaction must be constructed to have a growing and

a shrinking phase. During the growing phase it can

request new locks. However, once a lock has been re-

leased, the transaction cannot request a new one.

After this general discussion, a second section con-

siders the peculiarities of locking in a database system.

A phenomenon called phantoms seems to imply that

one must lock logical subsets of the database rather

than locking individual records present in the data-

base. An implementation of logical locks satisfying the

requirements of consistency is then proposed. For

definiteness, this section is couched in terms of a rela-

tional model of data.

2. General Properties of Locking

To see the problems associated with running trans-

actions concurrently consider the two transactions

T1 and T2 of Figure 1 (below):

T j: T2:

A + I O 0 ~ A A * 2 ~ A

B + 1 0 0 ~ B B * 2 ~ B

Suppose that the only assertion about the system state

is that A = B. Although when considered alone both

T~ and T2 conserve consistency, they have the following

properties:

temporary inconsistency--after the first step of (la)

T1 or T2, A ~ B and so the state is inconsist-

ent.

conflict--if transaction Tz is scheduled to run be- (lb)

tween the first and second steps of T~, then the

end result is A ~ B, which is an inconsistent

state.

The problem of temporary inconsistency is inherent.

Conflict on the other hand is not inherent and is un-

desirable.
If transactions are run one after another with no

concurrency then conflict never arises. Each trans-

action starts in a consistent state and, since transac-

tions preserve consistency, each transaction ends in a

consistent state. Any inconsistencies seen by an in-

progress transaction are due to changes it has made to

the state. If transactions were instantaneous, there

would be no penalty for a serial schedule for trans-

actions. However, transactions are not instantaneous

and substantial performance gains may be obtained by

running several transactions in parallel.

In most cases, a particular transaction depends only

on a small part of the system state. Therefore one

technique for avoiding conflict is to partition entities

into disjoint classes. One can then schedule transactions

concurrently only if they use distinct classes of entities.

625

Transactions using common parts of the state must

still be scheduled serially. If such a policy is adopted,

then each transaction will see a consistent version of

the state. Unfortunately, it is usually impossible to

examine a transaction and decide exactly which sub-

set of the state it will use. For this reason the "parti-

t ion" scheme described above is abandoned in favor

of a more flexible scheme where individual entities are

locked dynamically. In this system, transactions lock

entities for several reasons. In terms of the above

discussion, they want to prevent conflict with other trans-

actions (i.e. lock out changes made by other trans-

actions) and they may want to temporarily suspend con-

sistency assertions on the locked entities. Still another

motive for locking is reproducibility of reads. Unless a

transaction locks an entity, successive reads of the en-

tity may yield distinct values reflecting updates by con-

current transactions. This has little to do with con-

sistency constraints; rather it rests on the notion that

entities hold their values until updated.

Recovery and transaction backup provide an ad-

ditional motive for locking. Database systems usually

maintain a log of all changes made by each transaction.

This log forms an audit trail. It may also be used for

backup. Backup arises not only from deadlock-pre-

emption but also from protection violations, hardware

errors, and human errors. One backup procedure for a

transaction T is to undo all of its updates as recorded

in the log. Then all entities locked by T may be unlocked

and T may be reset to its initial state. As Davies and

Bjork [1, 2] point out, this procedure may not work

correctly after T has unlocked (committed) any en-

tities which it has modified. This implies that (update)

locks should be held to the end of a transaction.

For simplicity, this section ignores the distinction

between shared and exclusive access to an entity. It

assumes that each action (other than lock and unlock)

modifies the entity. The generalization of this section

to the case of shared access is straightforward and is

mentioned parenthetically as the section develops.

If transaction T1 attempts to lock entity el which is

already locked by transaction T2 then either T1 must

wait for 1"2 to unlock e~ or T~ must preempt el from T2.

If T~ waits and then T2 attempts to lock an entity

e2 locked by T1 then T~ must wait or preempt. If both

Tx and T2 wait, then deadlock arises. The question of

when to wait and when to preempt is not the subject of

this paper. The paper by Chamberlin, Boyce, and

Traiger [3] presents a scheme for deciding which trans-

action to preempt. When a resource is preempted, the

preempted transaction must be backed up.

To insure that each transaction sees a consistent

state, a transaction must not request a new lock after

releasing some lock. To state and prove this result we

must proceed more formally. However, for the sake of

simplicity, we assume in the sequel that all transactions

have the property that they do not relock an entity at

step i which is already locked at step i, that they do

Communications November 1976
of Volume 19
the ACM Number 11

not unlock an entity at step i which is not locked through

step i, and that they end with no locks set.
, e n A transaction is a sequencea: T = ((T, ai ~))~=1

of n steps where T is the transaction name, a~- is the

action at step i and eg is the entity acted upon at step i.

A transaction has locked entity e through step i if

for s o m e j _< i, ai = lock and ej = e, and (2a)

there is no k, j < k < i, such that

ak = unlockand ek = e. (2b)

A transaction T is well-formed if

for each step i = 1, . . . , n, (3a)

if a~ = lock then el is not locked by T through

step i -- 1,

if a~ ~ lock then e~ is locked by T through step i,

and

at step n, only e, is still locked by T and am = (3b)

unlock.

Figure 2 shows two well-formed versions of transac-

tion T1 from Figure 1.

Any sequence obtained by collating the actions of

transactions T ~ , . . . , T , is called a schedule for

T ~ , . . . , T , . I f the schedule takes actions from one

transaction at a time it is called a serial schedule. More

formally, a schedule for a set of transactions T ~ , . . . ,

T , is any sequence S = ((T~, a l , ei))~=l such that

for each j = 1, . . . , n, (4a)

Tj = ((T i , a~, e~) C S[Ti = T~)i~=x

and

The length of S , m, is the sum of the lengths (4b)

of the transactions T1 , . . . , T,, (i.e. S contains

only elements of T ~ , . . . , Tn).

Note that m is the number of steps in all transactions.

A schedule S is serial if for some permutat ion

~r, S = T~a)T~(2).. . T~(n) (i.e. S is the concatenation

ot the transactions). Figure 3 gives three examples of

schedules for a set of three transactions.

Nonserial schedules run the risk of giving a trans-

action an inconsistent view of the state. So we are

particularly interested in those schedules which are

"equivalent" to serial schedules. The equivalence be-

tween schedules hinges on the dependency relation of a

schedule.

The dependency relation induced by schedule S,

DEP(S), is a ternary relation on T X E X T (where T

is the set of all transaction names in S and E is the set

of all entities) defined by (7"1, e, T2) C DEP(S) iff for

some i < j

S = (. . . , (T x , a ~ , e) , . . . , (T 2 , a t , e) , . . .) , a n d (5a)

there is no k such that i < k < j and ek = e. (5b)

~The sequence S = s~ , . . . , s~ is denoted (s~)~=~. The sub-
sequence of elements satisfying condition C is denoted
(sl ES] C(sl))'~=~ by analogy with the notation for sets. The ith
element of S is denoted by S(i).

Informally, if (T1, e, T2) is in DEP(S) then entity

e is an output of T1 and an input of T2 and T1 gives e

to T2. Again, we are assuming that each action on an

entity modifies the entity. If one distinguishes "read-

share" actions, then the dependency relation must be

modified so that entities which are only read by a

transaction are not recorded as outputs of the transac-

tion (i.e. adjoin the clause "and al or aj is an update

act ion" to (5a) and adjoin the clause "and a~ is an

update act ion" to (5b)).

Two schedules, Sl and S~ are equivalent if DEP(SI)

= DEP(S2) and a schedule Sl is consistent if it has an

equivalent serial schedule. Figure 4 illustrates these

definitions. It shows three schedules, where S~ is con-

sistent, S2 is not consistent and S3 is serial (therefore

consistent). Since a serial schedule starts with a con-

sistent state and since each transaction (when run alone)

t ransforms a consistent state into a new consistent state,

a serial schedule gives each transaction a consistent

set of inputs. I f a set of transactions is consistently

scheduled, then each transaction sees the same state

it would see in the corresponding serial schedule (i.e.

a consistent state). These observations justify the dual

use of the term consistency to describe states and

schedules.

It is very easy to explain the effect of a serial sched-

ule. The user thinks of a complete transaction as

being an "a tomic" t ransformation of the state just as

the scheduler thinks each action is an atomic transfor-

mation of the state. He sees all the changes made by

transactions "before" his transaction starts and none

of the changes of transactions "af te r" his transaction

completes (i.e. he sees a consistent state). This obser-

vation yields the following important properties of

serial schedules:

I f T~ and Tz are any two transactions and e~ and e~ (6a)

are any entities, then (T~ , e~ , T2) C DEP(S) im-

plies (T2, ez, T~) (~ DEP(S).

More generally,

The binary relation < on the set of transactions (6b)

is defined by: T~ < T2 if and only if (T~, e, 7"2) C

DEP(S) for some entity e. Then < is an acyc!ic

relation which may be extended to a total order

of the transactions.

Any consistent schedule also has these properties be-

cause it has the same dependency set as some serial

schedule. Conversely, it will later be shown that any

schedule with property (6b) is consistent.

We would like to further characterize those non-

serial schedules which are consistent. To do this it is

necessary to consider the lock and unlock actions of

each step. Entity e is said to be locked by transaction T

through step k of schedule S if

there is a j < k suchthat S(j) = (T, lock, e) and (7a)

there is n o j ' , j < j ' < k such that S(j ') = (Tb)

(T, unlock, e).

626 Communications November 1976
of Volume 19
the ACM Number 11

Fig. 2. Two well-formed versions of transaction T~ of Fig. I.

TII:
TH LOCK A
TH A -I- 100 ~ A

TH UNLOCK A
TH LOCK B
Ttt B + 100 ~ B
Ttt UNLOCK B

Ttz:
T~= LOCK A
T~2 A + 100 ~ A
T~= LOCK B

T~= UNLOCK A
T~2 B + 1OO ~ B

T~= UNLOCK B

Fig. 3. Schedules for three transactions T~, T2, T3 • S2 is a serial
schedule. Each small rectangle represents a transaction step.

T2T1 := $2 ~ } T1}}T 3T2

T3=

Fig. 4. Three schedules for Tx, T~ of Fig. 1. S~ is equivalent to
serial schedule $3 and hence is consistent. S~ is inconsistent.

Sl:
Tt A + 100

T= A * 2

T~ B + 100

T= B * 2

S2:
T~ A + 100

T2 A * 2

T2 B * 2

T~ B + 100

Sa:
T~ A + 100
T, B + 100

T2 A*2
T2 B *2

A

B

A

B

DEP(S1) =

{(T1, A, T2), (T), B, T=) 1

DEP(S2) =

{(T,. A. T=). (T~. B. T=)}

DEP(Sa) = DEP(S~)

Schedule S is legal if for all k, if S(k) = (T, a, e) and

e is locked by T, through step k, then e is not locked

by any other transaction through step k. Legal schedules

observe the lock protocol that a transaction attempting

to lock an already locked entity must wait. A schedule

gives a history of how transactions were processed.

As the processing is being done, we imagine a scheduler

at each instant choosing a particular transaction step

from the set of all next steps of all incomplete trans-

actions. This scheduler allows lock actions on free

entities but never chooses a lock action on an already

locked entity. Such a scheduler only produces legal

schedules, since it never chooses to run a lock step on

an already locked entity.

The example schedule of Figure 5 shows that not

every legal schedule is consistent. It is very important

to know bow transactions must be constructed so that

any legal schedule is consistent.

Clearly, if legality is to insure consistency in all

contexts, then it is necessary that each transaction lock

each entity before otherwise acting on it and that the

transaction ultimately unlock each such locked entity.

More formally, using the definition of well-formed
transactions (3a), (3b):

Consistency requires that transactions be well- (8a)

formed. Unless all transactions are well-formed, it

is possible to construct a legal but inconsistent

schedule.

To prove this, consider any transaction T1 = (7"1, a , ,
e n t)~=l which is not well-formed. Then for some step k,

T1 does not have ek locked through step k. Consider

the (two-phase well-formed) transaction T2 = ((T2,

lock, ek), (T.2, read, ek), (T2, write, ek), (T2, unlock,

ek)). The schedule S = (TI(i))~-~T2(1), T2(2), Tl(k),

T2(3), T2(4), (Tl(k))~=k+x is legal. Since (Tx, ek, T2)

and (T2, ek, T1) are both in DEP(S), S is not equiva-

lent to any serial schedule (by property (6a)). So S is

not a consistent schedule and (8a) is established. In-

tuitively, T~ could change ek after T2 read it but before

T2 wrote it. This would not be possible in a serial
(i.e. consistent schedule).

A less obvious fact is that consistency requires that

a transaction be divided into a growing and a shrinking

phase. During the growing phase the transaction is

allowed to request locks. The beginning of the shrink-

ing phase is signaled by the first unlock action. After

the first unlock, a transaction cannot issue a lock action

on any entity. More formally, transaction T = ((T,
, e n at i))i=x is two-phase if for some j < n,

i < j implies at # unlock,

i = j implies a~ = unlock,

i > j implies at # l o c k .

Steps 1 , . . . , j -- 1 are called the growing phase and

steps j , . . . , n are the shrinking phase of T.

Transaction T~I of Figure 2 is not two-phase since

it locks B after releasing A. Transaction T12 of Figure 2

is well-formed and two-phase. To see that T~ may see

an inconsistent state, consider the legal schedule S

shown in Figure 5. In the schedule S, Tx2 sees A from

T~ and Tax sees B from T~2. So S is not equivalent to

any serial schedule and hence S is inconsistent. This

construction can be generalized to prove:

Consistency requires that transactions be two- (8b)

phase. That is, unless all transactions are two-

phase, it is possible to construct a legal but incon-
sistent schedule.

627 Communications November 1976
of Volume 19
the ACM Number 11

Conversely,

I f each transaction in the set of transactions (8c)

T = { T 1 , . . . , T,} is well-formed and two-phase

then any legal schedule for T is consistent.

A sketch of the proof for this is fairly simple. Let S

be any schedule for T. Define the binary relation ' < '

on T by T, < Tj iff (T~, e, Tj) C DEP(S) for some

entity e. One can prove a lemma that < may be ex-

tended to a total order << on T as follows.

First define the integer SHRINK(Ti) for each trans-

action T, to be the least integer j such that Ti unlocks

some entity at step j of S :

SHRINK(Ti)
= min {Jl S(j) = (T~, unlock, e) for some entity e}.

I f each transaction T~ is non-null then SHRINK(T~)
is well-defined because each T~ is well-formed.

We now argue that for any transactions T1 and T2

and entity e, if (7"1, e, T2) C DEP(S) then SHRINK(Tx)
is less than SHRINK(T2). For if (T1, e, T2) C DEP(S)
then by definition of DEP(S) there are integers i and

j s u c h that S = (. . . , (T x , a i , e) , . . . , (T2, a t ,e) , . . .)
and so that for any integer k between i and j , ek ~ e

by Definition (5). Since S is legal, e must be locked

only by Ta through step i of S and since T2 is well

formed e must be locked only by T~ through step j of

S. So a~ = unlock and at = lock. This immediately

implies that SHRINK(T~) is less than or equal to i.

Since T2 is two-phase, no unlock by T2 precedes step

j of S so SHRINK(T2) is greater thanj .

Thus we have shown that if T~ < T.~ then

SHRINK(T~) is less than SHRINK(T2). This implies

property (6b) and hence < can be extended to a total

order << on T.

Assume without loss of generality that T~ << T2

< < . . . << T , . Induce on n to show that S is equivalent

to the serial s c h e d u l e T 1 , . . . , T , . I f n = 1 the result

is trivial. The induction step follows in two steps.

First show that S is equivalent to the schedule

T m S ' = T I ((T , , a i , e~) C SIT, ~ ~),=1.

Then note that by hypothesis

, T " ((T~,a~ e~) C S[T ~ z) i = z i s equ i va l en t t o T2 , . . . , T , .

So S ' is equivalent to T~, T 2 , . . . , T , . But T ~ , . . . , T ,

is a serial schedule so S is equivalent to a serial schedule

and is consistent. Figure 6 gives a graphic illustration of

the construction of a serial schedule f rom S. To sum-

marize then,

I f the transactions T ~ , . . . , T , are each well- (8d)

formed and two-phase then any legal schedule is

consistent.

Unless transaction T is well-formed and two- (8e)

phase there is a transaction T' , which is well-

formed and two-phase, such that T and T ' have a

legal but inconsistent schedule.

628

Fig. 5. A schedule for transactions Tn and TI~ which is legal but
not consistent because Tn is not two-phase.

TH LOCK A

T,x UPDATE A

Tl l UNLOCK A

Tz2 LOCK A

T,= LOCK B

Tt2 UPDATE A

Ta2 UPDATE B

TI= UNLOCK

T,2 UNLOCK

TH LOCK

Tl l UPDATE

T,I UNLOCK

DEP (S) = (TH. A. Tt2). (T~2. B. TH)

)

B

A) ,e"

B

B

B

TH gives A to T12

T~2 gives B to T11

Clearly a transaction run alone is consistent. Further,

any set of transactions which do not interact (i.e.

DEP(S) = .~f) can be consistently scheduled in any

order without locking. Even if the transactions inter-

act, the two-phase restriction may be too strong. If,

for example, transaction T12 of Figure 2 had updated

entity C rather than entity B, then any legal schedule

for Tn and T12 would be consistent even though neither

transaction is two-phase. However, if one added a

transaction Tx~ which accesses entities A, B, and C,

then the new transaction set would have legal but in-

consistent schedules. It therefore seems difficult to give

nontrivial necessary conditions for all legal schedules

for a set of transactions to be consistent ((8d) is suffi-

cient). We can make the following assertion: if one

intends to run a transaction concurrently with an

unknown set of other transactions then, to guarantee

that all legal schedules be consistent, all transactions

must be well-formed and two-phase.

3. P r e d i c a t e L o c k s

Section 2 introduced the notions of consistency

and locking; it explored the locking protocols required

by consistency. The discussion was quite general and

applies to any system which supports the concepts

of transaction and shared entity. Next we consider

locking in a database environment. Aside f rom the

problem of scale (millions of entities rather than hun-

dreds or thousands), there are substantial differences in

the unit of locking. These differences stem f rom as-

Communications November 1976
of Volume 19
the ACM Number 11

sociative addressing of entities by transactions in a data-

base environment. It is not uncommon for a transac-

tion to want to lock the set of all entities with a certain

value (i.e. "key" addressing). Updating a seemingly

unrelated entity may add it to such a set, creating the

problem of "phan tom" records. This section explains

this problem and proposes a solution.

For definiteness we adopt the relational model of

data (Codd [4]). The database consists of a collection

of relations, R1, R 2 , . . . , R , . Each relation can be

thought of as a table or flat file. Each column of the

relation is called a domain and each element of the re-

lation (row) is called a tuple (record). Each tuple con-

sists of a fixed number ot fields. Each domain has a

name. Figure 7 shows an example of such a database.

One approach would be to lock whole relations or

domains whenever any member of the relation or do-

main is referenced. However, since there are many more

tuples than relations or domains, this will not produce

much concurrency. For example, two transactions

making deposits in different accounts could not run

concurrently if required to lock whole relations.

This suggests that locks should apply to as small a

unit as possible so that transactions do not lock in-

formation they do not need. Therefore the natural

unit of locking is the field or tuple of a relation. How-

ever, a tuple is not an entity in the sense of Section 2,

since it has no name which is separate from its value.

This may seem odd at first, but it stems from the fact

that tuples are referenced by value rather than by the

address of the storage they occupy.

To illustrate this point, consider the example of a

transaction T~, on the database of Figure 7. The trans-

action checks the assertion that the sum of Napa ac-

count balances is equal to the sum of Napa assets by:

Fig. 6. A graphic illustration of the construction of a serial sched-
ule from a consistent schedule. The arrows show the dependencies
of S. T1 << T2 << T3 and so S' has the same dependencies as S.
The induction hypothesis applies to S' to give T1, T2, T3.

,-, ~, T1, T2, T3 I] [T ~

T 1 T 1 {

((T i, a i, ei)eSI "1"2{

Ti=hTllim--1 T 3 /

(b) (c) (a)

629

Associately addressing the ,4 CCO UNTS relation, (9a)

locking any accounts located in Napa.

Summing the balances in the locked accounts. (9b)

Locking the Napa tuple in ASSETS and compar- (9c)

ing its value with the computed sum.

Releasing all locks. (9d)

If a second transaction T2 inserts a new tuple in

ACCOUNTS with Location = Napa and adds the de-

posit to the Napa assets and if T2 is scheduled between

steps (9b) and (9c) of T1, then T1 will see an incon-

sistent state:/ '1 will see the balance of the new account

reflected in the ASSETS but will not have seen the

account in the ACCOUNTS relation. A similar prob-

lem arises if T2 merely transferred an account from

St. Helena to Napa.

A still more elementary example is the test for the

existence of a tuple in a relation. If the tuple exists, it

is to be locked to insure that no other transaction will

delete it before the first transaction terminates. If the

tuple does not exist, " i t " should be locked to insure

that no other transaction will create such a tuple be-

fore the first transaction terminates. In this case the

"nonexistence" of the tuple is being locked. Such non-

existent tuples are called phantoms. Inspection of the

earlier example shows that 7"1 should lock not only all

existing Napa accounts but also all phantom ones.

As argued in the previous section, consistency re-

quires that a transaction lock all tuples examined, both

real and phantom (i.e. it be well formed). The set of all

possible Napa accounts is the Cartesian product:

{Napa})< INTEGERS X INTEGERS. This set is

infinite so there is little hope of locking each individual

tuple of the set. Rather it seems natural to lock the set of

tuples and phantoms satisfying the predicate: Loca-

tion = Napa. More generally, if P is a predicate on

tuples t of relation R then P defines the set S where

t E S iff P(t). Transactions will be allowed to lock any

subset of a relation by specifying such a predicate.

We only require that the truth or falsity of P depend
only on t.

If such predicates are used as the unit of locking,

then a list of locks becomes a (much smaller) list of

sets identified by their predicates. Locking the entire

relation is achieved by using the predicate 'TRUE'

while locking the tuple (NAPA, 32123, 1050) is achieved

by the predicate P(t) _zx t = (NAPA, 32123, 1050).

However, one cannot directly apply the formulation of

locking and consistency in the previous section, be-

cause entities were assumed to be uniquely named

objects. In this section we extend the results on schedu-

ling and consistency to apply to locks on possibly over-

lapping sets of tuples.

First ol all, if predicates are arbitrarily complex

there is little hope of deciding whether two distinct

predicates define overlapping sets of tuples (and hence

whether they conflict as locks). In fact the prob[em is

Communications November 1976
of Volume 19
the ACM Number 11

Fig. 7. The sample database.

ACCOUNTS ASSETS

Location Number Balance Location Total

Assertions: 1) Account numbers are unique.

2) The sum of balances of accounts at a location

is equal to the total assets at that location.

recursively unsolvable (Kleene [5]), so it is not clear

how to make predicate locks "work." A method for

scheduling predicate locks is introduced first by ex-

ample and then more abstractly.

In the sample database of Figure 7 suppose that

transaction T1 is interested in all tuples in ACCOUNTS

for which Location = Napa. A transaction T2 starts

during the processing of T1. T2 is interested in all

tuples in ACCOUNTS with Location = Sonoma.

When T1 declares its intent to access Napa accounts

by executing the action

7"1 LOCK ACCOUNTS: Location = Napa,

this predicate lock is associated with 7"1 and with the

ACCOUNTS relation. Later when T2 declares its intent

to access Sonoma accounts by executing the action

T2 LOCK ACCOUNTS: Location = Sonoma,

this predicate lock is also associated with the

ACCOUNTS relation. Before T2 can be granted access

to the Sonoma accounts, the lock controller must

check that T2's lock does not conflict with locks held

by other transactions. In the ease above, the controller

must decide that the predicates Location = Napa and

Location = Sonoma are mutually exclusive. In gen-

eral, the controller must compare the requested predi-

cate lock against the outstanding predicate locks of

other transactions on this relation. If two such predi-

cates are mutually satisfiable (i.e. have an existing or

phantom tuple in common), then there is conflict and

the request must wait or preempt; otherwise, the re-

quest can be granted immediately.

That is more or less how predicate locks work. It

does not explain how sharing works and finesses the

fact that predicate satisfiability is recursively unsolv-

able. In order to give a more complete explanation of

how predicate locks "work ," it is necessary to define

how an action is allowed or prohibited by a lock and

how two locks may conflict. First we need to decide

on the lockable entities. In [8] a field was chosen as

the basic unit of locking. This choice gives maximal

concurrency but presents many notational complex-

ities. For the sake of simplicity, the formal development

of predicate locks here is done for tuple-level locking

rather than field-level locking. After a formal develop-

ment of tuple-level predicate locks the generalization

to field-level predicate locks is informally discussed.

A particular action on a single tuple may be denoted

by (R, t, a), meaning that tuple t of relation R is ac-

cessed in mode a. Two modes are distinguished here:

a = read allows sharing with other readers,

while

a = write requires an exclusive lock on tuple t (up-

date, insert, delete are all examples of write access).

The action reads tuple t if a = read and it writes tuple

t if a = write.
Reading the balance of account number 32123

would be an action

(ACCOUNTS, (Napa, 32123, 1050), read)

An update of the balance by $50 would involve two

actions and two tuples, first

(ACCOUNTS, (Napa, 32123, 1050), write)

and also

(ACCOUNTS, (Napa, 32123, 1100), write)

because both tuples are written by the atomic update

operation (one is "deleted" and the other "inserted").

Further, consistency requires that the Napa ASSETS

tuple be updated by $50.

In the model of actions described above, the action

specifies a tuple by providing the values of all fields of

the tuple. Although this is formally correct, the ex-

amples above show that it is inappropriate for the con-

text at hand. The first example wants to read the

balance of account number 3123 and cares nothing

about the location of the account. Yet the model re-

quires that the action specify both the balance and

location of the account as well as the account number.

Similarly the second transaction wants to read the

balance and location of account number 32123 and

then add $50 to the balance of the account and to the

assets of the account's location.

If one considers the problem of reading the Napa

tuple of ASSETS without a priori knowing its current

balance, the problem and its solution become quite

clear. The concept of action must be generalized to the

concept of access, which acts on all tuples satisfying a

given predicate. This notion is consistent with the idea

of associative addressing which returns the set of all

tuples with designated values in given fields. To access

account number 32123, one specifies the access:

(ACCOUNTS, Number = 32123, read)

which refers to either a single tuple or no tuples, since

account numbers are unique. An access which updates

the balance of account number 32123 would be de-

noted by

(ACCOUNTS, Number = 32123, write).

630 Communications November 1976
of Volume 19
the ACM Number 11

Consistency assertions require that such an access be

followed by an access

(ASSETS, Location = 'Napa' , write),

since we require that the assets be the sum of the

balances at each location.

An access to find the numbers of all Napa accounts

would return a set of tuples and would be denoted by

(ACCOUNTS, Location = 'Napa' , read).

To proceed more formally we need the following

definitions. If the relation R is drawn from the Car-

tesian product of sets S~, $ 2 , . . . S, (R ___ Xi"--i S0,

then any predicate P defined on all tuples (s ~ , . . . ,

s,) C Xi"=l Si is an admissible predicate for R. We ask

that P be an effective test: given a tuple t, P(t) = TRUE

or P(t) = FALSE.

A particular access on relation R is denoted by

(R, P, a) where P is an admissible predicate. Such an

access is equivalent to the (possibly infinite) set of ac-

tions (R, t, a) where P(t) = TRUE, and where t ranges

over the Cartesian product underlying R. In particular,

it reads all such tuples if a = read and writes all such

tuples if a = write. A predicate lock on relation R is

denoted by (R, P, a) where P is an admissible predi-

cate for R and a is an access mode.

An action (R, t, a) is said to satisfy predicate lock

(R', P' , a') if

R = R' and (10a)

P'(t) = TRUE and (10b)

a = a' or a' = write. (10c)

In the second clause of (10c) we are assuming that write

access implies read and write access.

The action conflicts with the predicate lock if

R = R' and (l la)

P'(t) = TRUE and (l ib)

a = write or a' = write. (l lc)

To give an example, the predicate lock

L = (ACCOUNTS, Location = Napa, read)

is satisfied by the action

(ACCOUNTS, (Napa, 3213, 1050), read)

and conflicts with the action

(ACCOUNTS, (Napa, 3213, 1050), write).

Satisfiability and conflict are defined analogously

for accesses. Access A = (R, P, a) satisfies predicate

lock L if and only if for each tuple t in the Cartesian

product underlying R, if P(t) is true then action (R,

t, a) satisfies L. Access A conflicts with L if for some

tuple t in the Cartesian product underlying R, P(t)

is true and action (R, t, a) conflicts with L.

As an example, the access which moves account

23175 from Napa to Sonoma would be denoted

(ACCOUNTS, (Location = 'Napa' V Location = 'Sonoma')

/X Number = 23175, write).

This access would require that the transaction have a

lock on the ACCOUNTS relation of the form (AC-

COUNTS, P, write), where the predicate P must be

satisfied by the tuples (Napa, 23175, .) and (Sonoma,

23175, .) . That is, the lock predicate P must cover

both the old and new values.

Note that we require an access to be covered by a

single predicate lock. If one holds two locks, one for

Napa and another for Sonoma, then the access would

not satisfy either one and so would not be allowed.

It is possible to relax this restriction so that an access

is allowed if it satisfies the union of the locks held by

a transaction.

Two predicate locks are said to conflict if there is

some action which satisfies one of them and conflicts

with the other; that is, if one lock allows an access

which is prohibited by the other lock.

Given these definitions, the notions of the previous

section generalize as follows. A transaction is a sequence

of (transaction name, access) pairs. A transaction is

well-formed if each access it makes satisfies some predi-

cate lock it holds through that step. A transaction is

two-phase if it does not request predicate locks after

releasing a predicate lock.

A schedule for a set of transactions is any collating

(merging) of the transaction sequences. The dependency

relation is defined by choosing (tuple, relation) pairs

as the entities (for all tuples in the Cartesian products

underlying the relations). Let E be the set of all such

entities. The notion of an access reading or writing

such entities has already been introduced. If S is a

the set of transactions T, then the de-

ol S is defined to be the set of triples

schedule for

pendency set

(Ta, e, T2) C T X E X T

such that for some integers i < j :

S(i) = (T1, A1) and A1 reads or writes entity e,

S(j) = (T2, A2) and .42 reads or writes entity e

and not both A1 and As simply reads e,

for any k between i and j, if S(k) = (T3, A3)

then A3 does not write entity e.

(12a)

(12b)

(12c)

The generalization of tuple-level predicate locks to

field-level predicate locks can be done as follows (see

[8] for a formal development of this notion): A par-

ticular field-level access to a relation reads, writes, or

ignores each of the fields of the relation specified by the

access predicate. A field-level predicate lock locks

particular fields of the tuples covered by the predicate.

Fields are either ignored by the lock or are locked in

read or write mode. Two predicate locks conflict

if their predicates are mutually satisfiable and one de-

mands write access to a field locked in read or write

mode by the other. A field-level access satisfies a predi-

cate lock if it only accesses tuples covered by the predi-

cate lock and it only reads fields locked in read mode

631 Communications November 1976
of Volume 19
the ACM Number 11

Fig. 8. An example of the LOCK table.

Transaction

LOCK

Predicate Lock

T 1 (ACCOUNTS, Location=Napa, write)

T 2 (ACCOUNTS, Balance <500, read)

by the lock and only writes fields locked in write mode

by the predicate lock. Similarly, an access conflicts

with a predicate lock if the two predicates are mutually

satisfiable and the access reads a field of a tuple locked

by the lock in write mode or it writes a field locked by

the predicate lock in read or write mode. Given these

definitions of access, satisfiability, and conflict, the

development of this section generalizes to field-level

predicate locks.

To give concrete examples, the reading of an ac-

count balance is denoted by the access

(ACCOUNT, Number = 32123, {(Number, read),

(Balance, write) })

which ignores the Location field, reads the Number

field, and updates the Balance field. This access satis-

fies the predicate lock

(ACCOUNT, Number = 32123, {(Number, write),

(Balance, write) })

and this predicate lock conflicts with the predicate lock

(ACCOUNT, Number = 32123, {(Number, read)}).

The access does not satisfy the latter predicate above.

We now return to the simpler model where locks

apply to whole tuples. To implement arbitrary predicate

locks, associate with the database a table called LOCK

which is a binary relation between transactions and

predicate locks (see Figure 8).

The legal lock scheduler functions as follows.

Transactions are presumed to be two-phase and well-

formed; the scheduler enforces this rule. Any growing

transaction may request any predicate lock. When this

happens, the scheduler tries to enter the transaction

name and predicate lock into the LOCK table. If the

predicate lock does not conflict with any other predicate

lock in the table, it may be entered and granted im-

mediately. If the predicate lock does conflict with one

or more locks held by other transactions, then the

requestor must wait for the other locks to be released

or he must preempt the locks (or be preempted). As

commented earlier, this is a scheduling decision and

not the proper topic of this paper. Any transaction may

release any predicate lock belonging to it. This deletes

the lock from LOCK and marks the transaction as

shrinking. If other transactions are waiting for tuples

released by this lock then they may be started. Each

time a transaction T* makes an action or access A the

LOCK table is examined to find the set

YES = { (T ,L) C LOCK[A satisfies L a n d T = T*}

YES is a list of all the reasons T* should be allowed to

make the access. If YES is empty then T* is not well-

formed and it should be given an error.

It is clear that the scheduler described above checks

the following properties:

All transactions are well-formed and two-phase. (13a)

If transaction T locks predicate P on relation R, (13b)

then for any tuple t in the Cartesian product un-

derlying R such that P(t) = TRUE, no other

transaction may insert, delete or modify t until

T releases the predicate lock. That is, predicate

locks solve the problem of phantoms.

So the scheduler described produces legal schedules

and by the results of the previous section, gives each

transaction a consistent view of the state of the system.

Thus far we have ignored the details of how the

scheduler decides whether or not two predicate locks

conflict. In general this is a recursively unsolvable

problem (even if predicates are restricted to using the

arithmetic operators q - , . , - , - as shown by G6del

(see Kleene [5])). The problem then is to find an in-

teresting class of predicates for which it is easily de-

cidable whether two predicates "overlap." We propose

the following simple class of predicates.

A simple predicate is any Boolean combination of

atomic predicates. Atomic predicates have the form

('<'/

(field name) , (constant)

L'>'J

where constant is a string or number and field name is

the name of some field of the relation. For example,

((Location = 'Napa' ~/ Location = 'Santa Rosa')

A ((Balance < 200) A (Balance > 10))

is a simple predicate with four atomic predicates.

Again, Presburger (see Kleene [5]) showed a pro-

cedure to decide if two predicates overlap for a class of

predicates slightly more general than simple predicates

(he allowed q-, -- , < , = , ~ , > , mod and allowed

any Boolean combination of these operators and

operands on integers). However, his decision procedure

is much more complicated than the procedure for this

simple set of predicates.

To decide whether two simple predicate locks L

and L' conflict is a fairly straightforward matter. Sup-

pose L = (R, P, a) and L' = (R', P', a') are two predi-

cate locks. Then

If R ¢ R' there is no conflict as the locks apply (14a)

to different relations.

If neither a = write nor a' = write then there is (14b)

no conflict.

Otherwise, there will be no conflict only if there (14c)

is no tuple t such that P A P'(t) is TRUE.

632 Communications November 1976
of Volume 19
the ACM Number 11

Similarly, deciding whether access A = (R', P ' , a ')

conflicts with lock L above consists of testing (14a),

(14b) and (14c) above for access A. A will satisfy L

if it passes the tests

R = R' , and (15a)

a ' = a or a = write (15b)

For any tuple t, if P'(t) is T R U E then P(t) is (15c)

TRUE (i.e. P ' ~ P or equivalently P ' A ~ P

is not satisfiable).

Thus the conflict-satisfiability questions for both ac-

cesses and locks have been reduced to the question of

deciding whether a particular simple predicate is satis-

fiable. But simple predicates are defined to have an

easy decision procedure.

The procedure is to organize P A P ' of case (c)

into disjunctive normal form (Kleene [5]) and then for

each disjunct see whether it is satisfiable or not. Each

such disjunct will be a conjunct of atomic predicates

and so this is trivial. Consider the example

P = (Location = ' Napa ' V Location = 'Santa Rosa ')

A (Balance < 500 A Balance > 10)

P ' = Location = ' Napa ' A Balance = 700.

Then the disjunctive normal form of P A P ' is

Location = ('Napa ' A Balance < 500 A Balance > 10

A Balance = 700)

V (Location = 'Santa Rosa ' A Location = 'Napa '

A Balance < 500 A Balance > 10 A Balance = 700).

The first disjunct is not satisfied because Balance =

700 contradicts Balance < 500, while the second has

the added contradiction that Location = ' N a p a ' and

Location = 'Santa Rosa ' . So P A P ' is not satisfiable

and there is no conflict. To give an example of conflict,

suppose

P = (Location = 'Napa ') and P ' = (Balance > 500).

Then P A P ' is satisfiable by the tuple (Napa, 0, 501)

and so the predicates "over lap" and allow conflict.

In summary then, if only simple predicates are al-

lowed in accesses and predicate locks, then predicate

locks can be scheduled in the same way ordinary locks

are scheduled.

As mentioned before, predicate locks solve the

problem of phantom records. When coupled with the

results on consistency, predicate locks can be used to

construct consistent legal schedulers. The degenerate

form of predicates, locking entire relations with the

predicate which is always TRUE or locking a particular

tuple by the predicate which is only TRUE for that

tuple gives the more conventional forms of locking. I f

the desired set is not describable by a simple predicate

then any " larger" simple predicate (i.e. a simple predi-

cate which is implied by the desired predicate) will be a

suitable predicate for the lock. If only simple predi-

cates are used then predicate locks can be legally

scheduled.

There are simple analogs to predicate locks in exist-

ing data-base systems. For example in hierarchial

systems such as IMS (ram [6]) it is common to lock a

subtree of the hierarchy. This subtree is a logical set

of records (i.e. those with a given parent). Similarly,

in a network model it is desirable to lock all members

of a "se t" in the D B T G [7] sense although D B T G

lacks such a facility.

Last, we observe that locking is a very dynamic form

of authorization. All the techniques we have described

(predicate locks, simple predicates, the Y ES s e t , . . .)

apply to the problem of doing value dependent authori-

zation of access to database records at the granularity

of a field.

4. Summary

Section 2 introduced a very simple data model and

discussed the notions of transaction, consistency and

locking. It was argued that consistency requires that

transactions be two-phase and well-formed, and con-

versely that if all transactions are well-formed and

two-phase then any legal schedule is consistent.

Section 3 was couched in terms of the relational

model of data. The problems that associative addressing

introduces were described: namely phantom records

entering and leaving the set of records locked by a

transaction. Predicate locks are proposed as a solution

to this problem. To schedule and enforce these locks,

predicates are restricted to the class of simple predicates.

It is possible to schedule simple predicate locks in the

same way "ord inary" locks are scheduled.

Acknowledgments. The concept of consistency pre-

sented here grew out of discussions with Ray Boyce,

Don Chamberlin, and Frank King. An earlier draft of

the paper was polished by helpful comments from

Rudolph Bayer, Paul McJones, Gianfranco Putzolu,

and by the referees.

Received December 1974; revised August 1975

References
1. Bjork, L.A. Recovery scenario for a DB/DC system. Proc.
ACM 73 Nat. Conf., Atlanta, Ga., pp. 142-146.
2. Davies, C.T. Recovery semantics for a DB/DC system. Proc.
ACM 73 Nat. Conf., Atlanta, Ga., pp. 136-141.
3. Chamberlin, D.D., Boyce, R.F., Traiger, I.L. A deadlock-
free scheme for resource locking in a data-base environment,
Information Processing 74, North-Holland Pub. Co., Amsterdam,
1974, pp.340-343.
4. Codd, E.F. A relational model for large shared data banks.
Comm..4CM 14, 6 (June 1970), pp. 377-387.
5. Kleene, S.C. Introduction to Metamathematics. Van Nostrand,
Princeton, N.J., 1952, p. 204.
6. IBM Information Management System for Virtual Storage
(IMS/VS), Conversion and Planning Guide. Form No. SH20-
9034, IBM, Armonk, N.Y., 1973, pp. 38-44.
7. CODASYL, Data Base Task Group Report. ACM, N.Y., 1971.
8. Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L.
On the notions of consistency and predicate locks in a data base
system. Res. Rep., RJ 1487, IBM Res. Lab., San Jose, Calif., 1974.

633 Communications November 1976
of Volume 19
the ACM Number 11

