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In database systems, users access shared data under 

the assumption that the data satisfies certain consistency 

constraints. This paper defines the concepts of trans- 

action, consistency and schedule and shows that con- 

sistency requires that a transaction cannot request new 

locks after releasing a lock. Then it is argued that a 

transaction needs to lock a logical rather than a physical 

subset of the database. These subsets may be specified 

by predicates. An implementation of predicate locks 

which satisfies the consistency condition is suggested. 
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1. Introduction 

In database systems, users access shared data under 

the assumption that the data satisfies certain consistency 

assertions. For  simplicity consider a system with a 

fixed set of named resources called entities. Each entity 

has a name and a value. Examples of such assertions 

are 

" A "  is equal to "B" ,  

" C "  is the count of the free cells in "D" ,  

" E "  is an index for " F " .  

Most  such assertions are never explicitly stated in de- 
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signing or using a system, and yet all programs and 

users depend on the correctness of these assertions 

whenever they deal with the system state. 

The assertions above are quite simple; however, in 

practice, assertions become extremely complex. A 

complete set of assertions about  a system would no 

doubt  be as large as the system itself. In practice, there 

is little reason for explicitly enumerating all such as- 

sertions, but for the purposes of this discussion we 

presume that a set of assertions, hereafter called con- 

sistency constraints, is explicitly defined and we say 

that the state is consistent if the contents of  the entities 

of  the state satisfy all the consistency constraints. 

The system state is not static. It  is continually under- 

going changes due to actions performed by processes 

on the entities. Read and write are examples of such 

actions. We assume that actions are atomic; that  is, 

if two processes concurrently perform actions, the 

effect will be as though one of the actions were per- 

formed before the other. 

One might think that  consistency constraints could 

be enforced at each action but this is not true. One 

may need to temporari ly violate the consistency of the 

system state while modifying it. For  example, in moving 

money from one bank account to another there will 

be an instant during which one account has been debited 

and the other not yet credited. This violates a constraint 

that the number  of dollars in the system is constant.  

For  this reason, the actions of a process are grouped 

into sequences called transactions which are units of 

consistency. In general, consistency assertions cannot  

be enforced before the end of a transaction. In this paper  

it is assumed that  each transaction, when executed 

alone, t ransforms a consistent state into a new con- 

sistent state; that  is, transactions preserve consistency. 

Having grouped actions into transactions, we are 

interested in the problem of running transactions with 

maximal concurrency by interleaving actions f rom 

several transactions while continuing to give each trans- 

action a consistent view of the system state. In such an 

environment,  each transaction must employ a locking 

protocol  to insure that it and others do not access data 

which is temporari ly inconsistent. This lock protocol  

results in an additional set of actions called lock and 

unlock. A particular sequencing of the actions of a 

set of transactions is called a schedule. A schedule 

which gives each transaction a consistent view of the 

state is called a consistent schedule. 

Not  all consistent schedules for a set of transactions 

give exactly the same state (i.e. consistency is a weaker 

property than determinacy). For  example, in an airlines 

reservation system if a set of transactions each requests 

a seat on a particular flight, then each consistent 

schedule will have the property that no seat is sold 

twice and no request is denied if there is a free seat, 

but two distinct consistent schedules may differ in the 

details of the seat assignment. 

In the next section, we consider the problems of 
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locking and consistency in more detail. The discussion 

is applicable to database systems and to more con- 

ventional environments such as operating systems. 

The principal result is that consistency requires that a 

transaction must be constructed to have a growing and 

a shrinking phase. During the growing phase it can 

request new locks. However, once a lock has been re- 

leased, the transaction cannot request a new one. 

After this general discussion, a second section con- 

siders the peculiarities of locking in a database system. 

A phenomenon called phantoms seems to imply that 

one must lock logical subsets of the database rather 

than locking individual records present in the data- 

base. An implementation of logical locks satisfying the 

requirements of consistency is then proposed. For  

definiteness, this section is couched in terms of a rela- 

tional model of data. 

2. General Properties of Locking 

To see the problems associated with running trans- 

actions concurrently consider the two transactions 

T1 and T2 of Figure 1 (below): 

T j: T2: 

A +  I O 0 ~ A  A * 2 ~ A  

B +  1 0 0 ~ B  B * 2 ~ B  

Suppose that the only assertion about the system state 

is that A = B. Although when considered alone both 

T~ and T2 conserve consistency, they have the following 

properties: 

temporary inconsistency--after the first step of (la) 

T1 or T2, A ~ B and so the state is inconsist- 

ent. 

conflict--if transaction Tz is scheduled to run be- (lb) 

tween the first and second steps of T~, then the 

end result is A ~ B, which is an inconsistent 

state. 

The problem of temporary inconsistency is inherent. 

Conflict on the other hand is not inherent and is un- 

desirable. 
If  transactions are run one after another with no 

concurrency then conflict never arises. Each trans- 

action starts in a consistent state and, since transac- 

tions preserve consistency, each transaction ends in a 

consistent state. Any inconsistencies seen by an in- 

progress transaction are due to changes it has made to 

the state. If transactions were instantaneous, there 

would be no penalty for a serial schedule for trans- 

actions. However, transactions are not instantaneous 

and substantial performance gains may be obtained by 

running several transactions in parallel. 

In most cases, a particular transaction depends only 

on a small part of the system state. Therefore one 

technique for avoiding conflict is to partition entities 

into disjoint classes. One can then schedule transactions 

concurrently only if they use distinct classes of entities. 
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Transactions using common parts of the state must 

still be scheduled serially. If such a policy is adopted, 

then each transaction will see a consistent version of 

the state. Unfortunately, it is usually impossible to 

examine a transaction and decide exactly which sub- 

set of the state it will use. For  this reason the "parti- 

t ion" scheme described above is abandoned in favor 

of a more flexible scheme where individual entities are 

locked dynamically. In this system, transactions lock 

entities for several reasons. In terms of the above 

discussion, they want to prevent conflict with other trans- 

actions (i.e. lock out changes made by other trans- 

actions) and they may want to temporarily suspend con- 

sistency assertions on the locked entities. Still another 

motive for locking is reproducibility of reads. Unless a 

transaction locks an entity, successive reads of the en- 

tity may yield distinct values reflecting updates by con- 

current transactions. This has little to do with con- 

sistency constraints; rather it rests on the notion that 

entities hold their values until updated. 

Recovery and transaction backup provide an ad- 

ditional motive for locking. Database systems usually 

maintain a log of all changes made by each transaction. 

This log forms an audit trail. It may also be used for 

backup. Backup arises not only from deadlock-pre- 

emption but also from protection violations, hardware 

errors, and human errors. One backup procedure for a 

transaction T is to undo all of its updates as recorded 

in the log. Then all entities locked by T may be unlocked 

and T may be reset to its initial state. As Davies and 

Bjork [1, 2] point out, this procedure may not work 

correctly after T has unlocked (committed) any en- 

tities which it has modified. This implies that (update) 

locks should be held to the end of a transaction. 

For  simplicity, this section ignores the distinction 

between shared and exclusive access to an entity. It 

assumes that each action (other than lock and unlock) 

modifies the entity. The generalization of this section 

to the case of shared access is straightforward and is 

mentioned parenthetically as the section develops. 

If  transaction T1 attempts to lock entity el which is 

already locked by transaction T2 then either T1 must 

wait for 1"2 to unlock e~ or T~ must preempt el from T2. 

If T~ waits and then T2 attempts to lock an entity 

e2 locked by T1 then T~ must wait or preempt. If both 

Tx and T2 wait, then deadlock arises. The question of 

when to wait and when to preempt is not the subject of 

this paper. The paper by Chamberlin, Boyce, and 

Traiger [3] presents a scheme for deciding which trans- 

action to preempt. When a resource is preempted, the 

preempted transaction must be backed up. 

To insure that each transaction sees a consistent 

state, a transaction must not request a new lock after 

releasing some lock. To state and prove this result we 

must proceed more formally. However, for the sake of 

simplicity, we assume in the sequel that all transactions 

have the property that they do not relock an entity at 

step i which is already locked at step i, that they do 
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not unlock an entity at step i which is not locked through 

step i, and that they end with no locks set. 
, e n A transaction is a sequencea: T = ((T, ai ~))~=1 

of n steps where T is the transaction name, a~- is the 

action at step i and eg is the entity acted upon at step i. 

A transaction has locked entity e through step i if 

for s o m e j  _< i, ai  = lock and ej = e, and (2a) 

there is no k, j < k < i, such that 

ak = unlockand ek = e. (2b) 

A transaction T is well-formed if 

for each step i = 1, . . . ,  n, (3a) 

if a~ = lock then el is not  locked by T through 

step i -- 1, 

if a~ ~ lock then e~ is locked by T through step i, 

and 

at step n, only e, is still locked by T and am = (3b) 

unlock. 

Figure 2 shows two well-formed versions of  transac- 

tion T1 from Figure 1. 

Any sequence obtained by collating the actions of 

transactions T ~ , . . . ,  T ,  is called a schedule for 

T ~ , . . . ,  T , .  I f  the schedule takes actions from one 

transaction at a time it is called a serial schedule. More 

formally, a schedule for a set of transactions T ~ , . . . ,  

T ,  is any sequence S = ((T~, a l ,  ei))~=l such that  

for each j = 1, . . . ,  n, (4a) 

Tj  = ( (T i ,  a~, e~) C S[  Ti = T~)i~=x 

and 

The length of S ,  m, is the sum of the lengths (4b) 

of the transactions T1 , . . .  , T,, (i.e. S contains 

only elements of T ~ , . . . ,  Tn). 

Note  that  m is the number  of  steps in all transactions. 

A schedule S is serial if for some permutat ion 

~r, S = T~a)T~(2).. .  T~(n) (i.e. S is the concatenation 

ot the transactions). Figure 3 gives three examples of 

schedules for a set of  three transactions. 

Nonserial  schedules run the risk of giving a trans- 

action an inconsistent view of the state. So we are 

particularly interested in those schedules which are 

"equivalent" to serial schedules. The equivalence be- 

tween schedules hinges on the dependency relation of a 

schedule. 

The dependency relation induced by schedule S, 

DEP(S),  is a ternary relation on T X E X T  (where T 

is the set of all transaction names in S and E is the set 

of all entities) defined by (7"1, e, T2) C DEP(S) iff for 

some i < j 

S = ( . . . , ( T x , a ~ , e ) , . . . ,  ( T 2 , a t , e ) , . . . ) , a n d  (5a) 

there is no k such that  i < k < j and ek = e. (5b) 

~The sequence S = s~ , . . . ,  s~ is denoted (s~)~=~. The sub- 
sequence of elements satisfying condition C is denoted 
(sl ES ] C(sl))'~=~ by analogy with the notation for sets. The ith 
element of S is denoted by S(i). 

Informally, if (T1, e, T2) is in DEP(S)  then entity 

e is an output of T1 and an input of T2 and T1 gives e 

to T2. Again, we are assuming that each action on an 

entity modifies the entity. If  one distinguishes "read- 

share" actions, then the dependency relation must be 

modified so that  entities which are only read by a 

transaction are not recorded as outputs of the transac- 

tion (i.e. adjoin the clause "and  al or aj is an update 

act ion" to (5a) and adjoin the clause "and  a~ is an 

update act ion" to (5b)). 

Two schedules, Sl and S~ are equivalent if DEP(SI) 

= DEP(S2) and a schedule Sl is consistent if it has an 

equivalent serial schedule. Figure 4 illustrates these 

definitions. It  shows three schedules, where S~ is con- 

sistent, S2 is not consistent and S3 is serial (therefore 

consistent). Since a serial schedule starts with a con- 

sistent state and since each transaction (when run alone) 

t ransforms a consistent state into a new consistent state, 

a serial schedule gives each transaction a consistent 

set of inputs. I f  a set of transactions is consistently 

scheduled, then each transaction sees the same state 

it would see in the corresponding serial schedule (i.e. 

a consistent state). These observations justify the dual 

use of the term consistency to describe states and 

schedules. 

It  is very easy to explain the effect of a serial sched- 

ule. The user thinks of  a complete transaction as 

being an "a tomic"  t ransformation of the state just as 

the scheduler thinks each action is an atomic transfor- 

mation of the state. He sees all the changes made by 

transactions "before"  his transaction starts and none 

of the changes of transactions "af te r"  his transaction 

completes (i.e. he sees a consistent state). This obser- 

vation yields the following important  properties of 

serial schedules: 

I f  T~ and Tz are any two transactions and e~ and e~ (6a) 

are any entities, then (T~ , e~ , T2) C DEP(S) im- 

plies (T2, ez, T~) (~ DEP(S).  

More generally, 

The binary relation < on the set of  transactions (6b) 

is defined by: T~ < T2 if and only if (T~, e, 7"2) C 

DEP(S) for some entity e. Then < is an acyc!ic 

relation which may be extended to a total order 

of the transactions. 

Any consistent schedule also has these properties be- 

cause it has the same dependency set as some serial 

schedule. Conversely, it will later be shown that any 

schedule with property (6b) is consistent. 

We would like to further characterize those non- 

serial schedules which are consistent. To do this it is 

necessary to consider the lock and unlock actions of 

each step. Entity e is said to be locked by transaction T 

through step k of  schedule S if 

there is a j  < k suchthat  S(j)  = (T, lock, e) and (7a) 

there is n o j ' ,  j < j '  < k such that  S( j ' )  = (Tb) 

(T, unlock, e). 
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Fig. 2. Two well-formed versions of transaction T~ of Fig. I. 

TII: 
TH LOCK A 
TH A -I- 100 ~ A 

TH UNLOCK A 
TH LOCK B 
Ttt B + 100 ~ B 
Ttt UNLOCK B 

Ttz: 
T~= LOCK A 
T~2 A + 100 ~ A 
T~= LOCK B 

T~= UNLOCK A 
T~2 B + 1OO ~ B 

T~= UNLOCK B 

Fig. 3. Schedules for three transactions T~, T2, T3 • S2 is a serial 
schedule. Each small rectangle represents a transaction step. 

T2T1 := $2 ~ } T1}}T 3T2 

T3= 

Fig. 4. Three schedules for Tx, T~ of Fig. 1. S~ is equivalent to 
serial schedule $3 and hence is consistent. S~ is inconsistent. 

Sl: 
Tt A +  100 

T= A * 2  

T~ B + 100 

T= B * 2  

S2: 
T~ A +  100 

T2 A * 2  

T2 B * 2  

T~ B + 100 

Sa: 
T~ A + 100 
T, B + 100 

T2 A*2 
T2 B *2 

A 

B 

A 

B 

DEP(S1) = 

{(T1, A, T2), (T), B, T=) 1 

DEP(S2) = 

{(T,. A. T=). (T~. B. T=)} 

DEP(Sa) = DEP(S~) 

Schedule S is legal if for all k, if S(k) = (T, a, e) and 

e is locked by T, through step k, then e is not locked 

by any other transaction through step k. Legal schedules 

observe the lock protocol that a transaction attempting 

to lock an already locked entity must wait. A schedule 

gives a history of how transactions were processed. 

As the processing is being done, we imagine a scheduler 

at each instant choosing a particular transaction step 

from the set of all next steps of all incomplete trans- 

actions. This scheduler allows lock actions on free 

entities but never chooses a lock action on an already 

locked entity. Such a scheduler only produces legal 

schedules, since it never chooses to run a lock step on 

an already locked entity. 

The example schedule of Figure 5 shows that not 

every legal schedule is consistent. It is very important 

to know bow transactions must be constructed so that 

any legal schedule is consistent. 

Clearly, if legality is to insure consistency in all 

contexts, then it is necessary that each transaction lock 

each entity before otherwise acting on it and that the 

transaction ultimately unlock each such locked entity. 

More formally, using the definition of well-formed 
transactions (3a), (3b): 

Consistency requires that transactions be well- (8a) 

formed. Unless all transactions are well-formed, it 

is possible to construct a legal but inconsistent 

schedule. 

To prove this, consider any transaction T1 = (7"1, a , ,  
e n t)~=l which is not well-formed. Then for some step k, 

T1 does not have ek locked through step k. Consider 

the (two-phase well-formed) transaction T2 = ((T2, 

lock, ek), (T.2, read, ek), (T2, write, ek), (T2, unlock, 

ek)). The schedule S = (TI(i))~-~T2(1), T2(2), Tl(k), 

T2(3), T2(4), (Tl(k))~=k+x is legal. Since (Tx, ek, T2) 

and (T2, ek, T1) are both in DEP(S), S is not equiva- 

lent to any serial schedule (by property (6a)). So S is 

not a consistent schedule and (8a) is established. In- 

tuitively, T~ could change ek after T2 read it but before 

T2 wrote it. This would not be possible in a serial 
(i.e. consistent schedule). 

A less obvious fact is that consistency requires that 

a transaction be divided into a growing and a shrinking 

phase. During the growing phase the transaction is 

allowed to request locks. The beginning of the shrink- 

ing phase is signaled by the first unlock action. After 

the first unlock, a transaction cannot issue a lock action 

on any entity. More formally, transaction T = ((T, 
, e n at i))i=x is two-phase if for some j  < n, 

i < j implies at # unlock, 

i = j implies a~ = unlock, 

i > j  implies at # l o c k .  

Steps 1 , . . . ,  j -- 1 are called the growing phase and 

steps j , . . . ,  n are the shrinking phase of T. 

Transaction T~I of Figure 2 is not two-phase since 

it locks B after releasing A. Transaction T12 of Figure 2 

is well-formed and two-phase. To see that T~ may see 

an inconsistent state, consider the legal schedule S 

shown in Figure 5. In the schedule S, Tx2 sees A from 

T~ and Tax sees B from T~2. So S is not equivalent to 

any serial schedule and hence S is inconsistent. This 

construction can be generalized to prove: 

Consistency requires that transactions be two- (8b) 

phase. That  is, unless all transactions are two- 

phase, it is possible to construct a legal but incon- 
sistent schedule. 
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Conversely, 

I f  each transaction in the set of transactions (8c) 

T = { T 1 , . . . ,  T,} is well-formed and two-phase 

then any legal schedule for T is consistent. 

A sketch of the proof  for this is fairly simple. Let S 

be any schedule for T. Define the binary relation ' < '  

on T by T,  < Tj iff (T~, e, Tj) C DEP(S) for some 

entity e. One can prove a lemma that < may be ex- 

tended to a total order << on T as follows. 

First define the integer SHRINK(Ti) for each trans- 

action T, to be the least integer j such that Ti  unlocks 

some entity at step j of S : 

SHRINK(Ti) 
= min {Jl S(j)  = (T~, unlock, e) for some entity e}. 

I f  each transaction T~ is non-null then SHRINK(T~) 
is well-defined because each T~ is well-formed. 

We now argue that for any transactions T1 and T2 

and entity e, if (7"1, e, T2) C DEP(S) then SHRINK(Tx) 
is less than SHRINK(T2). For  if (T1, e, T2) C DEP(S) 
then by definition of DEP(S) there are integers i and 

j s u c h  that S = ( . . . ,  ( T x , a i , e ) ,  . . . ,  (T2, a t ,e ) , . . . )  
and so that for any integer k between i and j ,  ek ~ e 

by Definition (5). Since S is legal, e must be locked 

only by Ta through step i of S and since T2 is well 

formed e must be locked only by T~ through step j of  

S. So a~ = unlock and at = lock. This immediately 

implies that SHRINK(T~) is less than or equal to i. 

Since T2 is two-phase, no unlock by T2 precedes step 

j of S so SHRINK(T2) is greater thanj .  

Thus we have shown that  if T~ < T.~ then 

SHRINK(T~) is less than SHRINK(T2). This implies 

property (6b) and hence < can be extended to a total 

order << on T. 

Assume without loss of generality that  T~ << T2 

< < . . .  << T , .  Induce on n to show that S is equivalent 

to the serial s c h e d u l e T 1 , . . . , T , .  I f n  = 1 the result 

is trivial. The induction step follows in two steps. 

First show that S is equivalent to the schedule 

T m S '  = T I ( (T , ,  a i ,  e~) C SIT, ~ ~),=1. 

Then note that by hypothesis 

, T " ((T~,a~ e~) C S[ T ~  z ) i = z i s equ i va l en t t o T2 , . . . , T , .  

So S '  is equivalent to T~, T 2 , . . . ,  T , .  But T ~ , . . . ,  T ,  

is a serial schedule so S is equivalent to a serial schedule 

and is consistent. Figure 6 gives a graphic illustration of 

the construction of a serial schedule f rom S. To  sum- 

marize then, 

I f  the transactions T ~ , . . . ,  T ,  are each well- (8d) 

formed and two-phase then any legal schedule is 

consistent. 

Unless transaction T is well-formed and two- (8e) 

phase there is a transaction T' ,  which is well- 

formed and two-phase, such that T and T '  have a 

legal but  inconsistent schedule. 
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Fig. 5. A schedule for transactions Tn and TI~ which is legal but 
not consistent because Tn is not two-phase. 

TH LOCK A 

T,x UPDATE A 

Tl l  UNLOCK A 

Tz2 LOCK A 

T,= LOCK B 

Tt2 UPDATE A 

Ta2 UPDATE B 

TI= UNLOCK 

T,2 UNLOCK 

TH LOCK 

Tl l  UPDATE 

T,I UNLOCK 

DEP (S) = (TH. A. Tt2). (T~2. B. TH) 

) 

B 

A ) ,e" 

B 

B 

B 

TH gives A to T12 

T~2 gives B to T11 

Clearly a transaction run alone is consistent. Further,  

any set of transactions which do not interact (i.e. 

DEP(S) = .~f) can be consistently scheduled in any 

order without locking. Even if the transactions inter- 

act, the two-phase restriction may be too strong. If, 

for example, transaction T12 of Figure 2 had updated 

entity C rather than entity B, then any legal schedule 

for Tn and T12 would be consistent even though neither 

transaction is two-phase. However,  if one added a 

transaction Tx~ which accesses entities A, B, and C, 

then the new transaction set would have legal but in- 

consistent schedules. It  therefore seems difficult to give 

nontrivial necessary conditions for all legal schedules 

for a set of transactions to be consistent ((8d) is suffi- 

cient). We can make the following assertion: if one 

intends to run a transaction concurrently with an 

unknown set of other transactions then, to guarantee 

that all legal schedules be consistent, all transactions 

must be well-formed and two-phase. 

3. P r e d i c a t e  L o c k s  

Section 2 introduced the notions of consistency 

and locking; it explored the locking protocols required 

by consistency. The discussion was quite general and 

applies to any system which supports the concepts 

of  transaction and shared entity. Next  we consider 

locking in a database environment.  Aside f rom the 

problem of scale (millions of entities rather than hun- 

dreds or thousands),  there are substantial differences in 

the unit of locking. These differences stem f rom as- 
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sociative addressing of entities by transactions in a data- 

base environment. It is not uncommon for a transac- 

tion to want to lock the set of all entities with a certain 

value (i.e. "key"  addressing). Updating a seemingly 

unrelated entity may add it to such a set, creating the 

problem of "phan tom"  records. This section explains 

this problem and proposes a solution. 

For  definiteness we adopt the relational model of 

data (Codd [4]). The database consists of a collection 

of relations, R1, R 2 , . . . ,  R , .  Each relation can be 

thought of as a table or flat file. Each column of the 

relation is called a domain and each element of the re- 

lation (row) is called a tuple (record). Each tuple con- 

sists of a fixed number ot fields. Each domain has a 

name. Figure 7 shows an example of such a database. 

One approach would be to lock whole relations or 

domains whenever any member of the relation or do- 

main is referenced. However, since there are many more 

tuples than relations or domains, this will not produce 

much concurrency. For  example, two transactions 

making deposits in different accounts could not run 

concurrently if required to lock whole relations. 

This suggests that locks should apply to as small a 

unit as possible so that transactions do not lock in- 

formation they do not need. Therefore the natural 

unit of locking is the field or tuple of a relation. How- 

ever, a tuple is not an entity in the sense of Section 2, 

since it has no name which is separate from its value. 

This may seem odd at first, but it stems from the fact 

that tuples are referenced by value rather than by the 

address of the storage they occupy. 

To illustrate this point, consider the example of a 

transaction T~, on the database of Figure 7. The trans- 

action checks the assertion that the sum of Napa ac- 

count balances is equal to the sum of Napa assets by: 

Fig. 6. A graphic illustration of the construction of a serial sched- 
ule from a consistent schedule. The arrows show the dependencies 
of S. T1 << T2 << T3 and so S' has the same dependencies as S. 
The induction hypothesis applies to S' to give T1, T2, T3. 

,-, ~, T1, T2, T3 I ] [ T ~  

T 1 T 1 { 

((T i, a i, ei)eSI "1"2{ 

Ti=hTllim--1 T 3 / 

(b) (c) (a) 
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Associately addressing the ,4 CCO UNTS relation, (9a) 

locking any accounts located in Napa. 

Summing the balances in the locked accounts. (9b) 

Locking the Napa tuple in ASSETS  and compar- (9c) 

ing its value with the computed sum. 

Releasing all locks. (9d) 

If  a second transaction T2 inserts a new tuple in 

ACCOUNTS with Location = Napa and adds the de- 

posit to the Napa assets and if T2 is scheduled between 

steps (9b) and (9c) of T1, then T1 will see an incon- 

sistent state:/ '1 will see the balance of the new account 

reflected in the ASSETS  but will not have seen the 

account in the ACCOUNTS relation. A similar prob- 

lem arises if T2 merely transferred an account from 

St. Helena to Napa. 

A still more elementary example is the test for the 

existence of a tuple in a relation. If the tuple exists, it 

is to be locked to insure that no other transaction will 

delete it before the first transaction terminates. If the 

tuple does not exist, " i t "  should be locked to insure 

that no other transaction will create such a tuple be- 

fore the first transaction terminates. In this case the 

"nonexistence" of the tuple is being locked. Such non- 

existent tuples are called phantoms. Inspection of the 

earlier example shows that 7"1 should lock not only all 

existing Napa accounts but also all phantom ones. 

As argued in the previous section, consistency re- 

quires that a transaction lock all tuples examined, both 

real and phantom (i.e. it be well formed). The set of all 

possible Napa accounts is the Cartesian product:  

{Napa} )< INTEGERS X INTEGERS. This set is 

infinite so there is little hope of locking each individual 

tuple of the set. Rather it seems natural to lock the set of 

tuples and phantoms satisfying the predicate: Loca- 

tion = Napa. More generally, if P is a predicate on 

tuples t of  relation R then P defines the set S where 

t E S iff P(t). Transactions will be allowed to lock any 

subset of a relation by specifying such a predicate. 

We only require that the truth or falsity of P depend 
only on t. 

If  such predicates are used as the unit of locking, 

then a list of locks becomes a (much smaller) list of 

sets identified by their predicates. Locking the entire 

relation is achieved by using the predicate 'TRUE' 

while locking the tuple (NAPA, 32123, 1050) is achieved 

by the predicate P(t) _zx t = (NAPA, 32123, 1050). 

However, one cannot directly apply the formulation of 

locking and consistency in the previous section, be- 

cause entities were assumed to be uniquely named 

objects. In this section we extend the results on schedu- 

ling and consistency to apply to locks on possibly over- 

lapping sets of tuples. 

First ol all, if predicates are arbitrarily complex 

there is little hope of deciding whether two distinct 

predicates define overlapping sets of tuples (and hence 

whether they conflict as locks). In fact the prob[em is 
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Fig. 7. The sample database. 

ACCOUNTS ASSETS 

Location Number Balance Location Total 

Assertions: 1 ) Account numbers are unique. 

2) The sum of balances of accounts at a location 

is equal to the total assets at that location. 

recursively unsolvable (Kleene [5]), so it is not clear 

how to make predicate locks "work."  A method for 

scheduling predicate locks is introduced first by ex- 

ample and then more abstractly. 

In the sample database of Figure 7 suppose that 

transaction T1 is interested in all tuples in ACCOUNTS 

for which Location = Napa. A transaction T2 starts 

during the processing of T1. T2 is interested in all 

tuples in ACCOUNTS with Location = Sonoma. 

When T1 declares its intent to access Napa accounts 

by executing the action 

7"1 LOCK ACCOUNTS: Location = Napa, 

this predicate lock is associated with 7"1 and with the 

ACCOUNTS relation. Later when T2 declares its intent 

to access Sonoma accounts by executing the action 

T2 LOCK ACCOUNTS: Location = Sonoma, 

this predicate lock is also associated with the 

ACCOUNTS relation. Before T2 can be granted access 

to the Sonoma accounts, the lock controller must 

check that T2's lock does not conflict with locks held 

by other transactions. In the ease above, the controller 

must decide that the predicates Location = Napa and 

Location = Sonoma are mutually exclusive. In gen- 

eral, the controller must compare the requested predi- 

cate lock against the outstanding predicate locks of 

other transactions on this relation. If two such predi- 

cates are mutually satisfiable (i.e. have an existing or 

phantom tuple in common),  then there is conflict and 

the request must wait or preempt; otherwise, the re- 

quest can be granted immediately. 

That  is more or less how predicate locks work. It 

does not explain how sharing works and finesses the 

fact that predicate satisfiability is recursively unsolv- 

able. In order to give a more complete explanation of 

how predicate locks "work ,"  it is necessary to define 

how an action is allowed or prohibited by a lock and 

how two locks may conflict. First we need to decide 

on the lockable entities. In [8] a field was chosen as 

the basic unit of locking. This choice gives maximal 

concurrency but presents many notational complex- 

ities. For  the sake of simplicity, the formal development 

of predicate locks here is done for tuple-level locking 

rather than field-level locking. After a formal develop- 

ment of tuple-level predicate locks the generalization 

to field-level predicate locks is informally discussed. 

A particular action on a single tuple may be denoted 

by (R, t, a), meaning that tuple t of  relation R is ac- 

cessed in mode a. Two modes are distinguished here: 

a = read allows sharing with other readers, 

while 

a = write requires an exclusive lock on tuple t (up- 

date, insert, delete are all examples of write access). 

The action reads tuple t if a = read and it writes tuple 

t if a = write. 
Reading the balance of account number 32123 

would be an action 

(ACCOUNTS, (Napa, 32123, 1050), read) 

An update of the balance by $50 would involve two 

actions and two tuples, first 

(ACCOUNTS, (Napa, 32123, 1050), write) 

and also 

(ACCOUNTS, (Napa, 32123, 1100), write) 

because both tuples are written by the atomic update 

operation (one is "deleted" and the other "inserted").  

Further,  consistency requires that the Napa ASSETS 

tuple be updated by $50. 

In the model of actions described above, the action 

specifies a tuple by providing the values of all fields of 

the tuple. Although this is formally correct, the ex- 

amples above show that it is inappropriate for the con- 

text at hand. The first example wants to read the 

balance of account number 3123 and cares nothing 

about the location of the account. Yet the model re- 

quires that the action specify both the balance and 

location of the account as well as the account number. 

Similarly the second transaction wants to read the 

balance and location of account number 32123 and 

then add $50 to the balance of the account and to the 

assets of the account's location. 

If one considers the problem of reading the Napa 

tuple of ASSETS without a priori knowing its current 

balance, the problem and its solution become quite 

clear. The concept of action must be generalized to the 

concept of access, which acts on all tuples satisfying a 

given predicate. This notion is consistent with the idea 

of associative addressing which returns the set of all 

tuples with designated values in given fields. To  access 

account number 32123, one specifies the access: 

(ACCOUNTS, Number = 32123, read) 

which refers to either a single tuple or no tuples, since 

account numbers are unique. An access which updates 

the balance of account number 32123 would be de- 

noted by 

(ACCOUNTS, Number = 32123, write). 
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Consistency assertions require that such an access be 

followed by an access 

(ASSETS,  Location = 'Napa' ,  write), 

since we require that the assets be the sum of the 

balances at each location. 

An access to find the numbers of all Napa accounts 

would return a set of tuples and would be denoted by 

(ACCOUNTS, Location = 'Napa' ,  read). 

To proceed more formally we need the following 

definitions. If the relation R is drawn from the Car- 

tesian product of sets S~, $ 2 , . . .  S, (R ___ Xi"--i S0,  

then any predicate P defined on all tuples ( s ~ , . . . ,  

s,) C Xi"=l Si is an admissible predicate for R. We ask 

that P be an effective test: given a tuple t, P(t) = TRUE 

or P(t) = FALSE. 

A particular access on relation R is denoted by 

(R, P, a) where P is an admissible predicate. Such an 

access is equivalent to the (possibly infinite) set of ac- 

tions (R, t, a) where P(t) = TRUE, and where t ranges 

over the Cartesian product underlying R. In particular, 

it reads all such tuples if a = read and writes all such 

tuples if a = write. A predicate lock on relation R is 

denoted by (R, P, a) where P is an admissible predi- 

cate for R and a is an access mode. 

An action (R, t, a) is said to satisfy predicate lock 

(R', P' ,  a') if 

R = R' and (10a) 

P'(t) = TRUE and (10b) 

a = a' or a' = write. (10c) 

In the second clause of (10c) we are assuming that write 

access implies read and write access. 

The action conflicts with the predicate lock if 

R = R' and ( l la )  

P'(t) = TRUE and ( l ib )  

a = write or a' = write. ( l lc )  

To give an example, the predicate lock 

L = (ACCOUNTS,  Location = Napa, read) 

is satisfied by the action 

(ACCOUNTS, (Napa, 3213, 1050), read) 

and conflicts with the action 

(ACCOUNTS, (Napa, 3213, 1050), write). 

Satisfiability and conflict are defined analogously 

for accesses. Access A = (R, P, a) satisfies predicate 

lock L if and only if for each tuple t in the Cartesian 

product  underlying R, if P(t) is true then action (R, 

t, a) satisfies L. Access A conflicts with L if for some 

tuple t in the Cartesian product underlying R, P(t) 

is true and action (R, t, a) conflicts with L. 

As an example, the access which moves account 

23175 from Napa to Sonoma would be denoted 

(ACCOUNTS, (Location = 'Napa' V Location = 'Sonoma') 

/X Number = 23175, write). 

This access would require that the transaction have a 

lock on the ACCOUNTS  relation of the form (AC- 

COUNTS, P, write), where the predicate P must be 

satisfied by the tuples (Napa, 23175, .)  and (Sonoma, 

23175, .) .  That  is, the lock predicate P must cover 

both the old and new values. 

Note that we require an access to be covered by a 

single predicate lock. If  one holds two locks, one for 

Napa and another for Sonoma, then the access would 

not satisfy either one and so would not be allowed. 

It is possible to relax this restriction so that an access 

is allowed if it satisfies the union of the locks held by 

a transaction. 

Two predicate locks are said to conflict if there is 

some action which satisfies one of them and conflicts 

with the other; that is, if one lock allows an access 

which is prohibited by the other lock. 

Given these definitions, the notions of the previous 

section generalize as follows. A transaction is a sequence 

of (transaction name, access) pairs. A transaction is 

well-formed if each access it makes satisfies some predi- 

cate lock it holds through that step. A transaction is 

two-phase if it does not request predicate locks after 

releasing a predicate lock. 

A schedule for a set of transactions is any collating 

(merging) of the transaction sequences. The dependency 

relation is defined by choosing (tuple, relation) pairs 

as the entities (for all tuples in the Cartesian products 

underlying the relations). Let E be the set of all such 

entities. The notion of an access reading or writing 

such entities has already been introduced. If S is a 

the set of transactions T, then the de- 

ol S is defined to be the set of triples 

schedule for 

pendency set 

(Ta, e, T2) C T X E X T  

such that for some integers i < j :  

S(i) = (T1, A1) and A1 reads or writes entity e, 

S(j) = (T2, A2) and .42 reads or writes entity e 

and not both A1 and As simply reads e, 

for any k between i and j,  if S(k) = (T3, A3) 

then A3 does not write entity e. 

(12a) 

(12b) 

(12c) 

The generalization of tuple-level predicate locks to 

field-level predicate locks can be done as follows (see 

[8] for a formal development of this notion):  A par- 

ticular field-level access to a relation reads, writes, or 

ignores each of the fields of the relation specified by the 

access predicate. A field-level predicate lock locks 

particular fields of the tuples covered by the predicate. 

Fields are either ignored by the lock or are locked in 

read or write mode. Two predicate locks conflict 

if their predicates are mutually satisfiable and one de- 

mands write access to a field locked in read or write 

mode by the other. A field-level access satisfies a predi- 

cate lock if it only accesses tuples covered by the predi- 

cate lock and it only reads fields locked in read mode 
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Fig. 8. An example of the LOCK table. 

Transaction 

LOCK 

Predicate Lock 

T 1 (ACCOUNTS, Location=Napa, write) 

T 2 (ACCOUNTS, Balance <500, read) 

by the lock and only writes fields locked in write mode 

by the predicate lock. Similarly, an access conflicts 

with a predicate lock if the two predicates are mutually 

satisfiable and the access reads a field of a tuple locked 

by the lock in write mode or it writes a field locked by 

the predicate lock in read or write mode. Given these 

definitions of access, satisfiability, and conflict, the 

development of this section generalizes to field-level 

predicate locks. 

To give concrete examples, the reading of an ac- 

count balance is denoted by the access 

(ACCOUNT, Number = 32123, {(Number, read), 

(Balance, write) }) 

which ignores the Location field, reads the Number  

field, and updates the Balance field. This access satis- 

fies the predicate lock 

(ACCOUNT, Number = 32123, {(Number, write), 

(Balance, write) }) 

and this predicate lock conflicts with the predicate lock 

(ACCOUNT, Number = 32123, {(Number, read)}). 

The access does not satisfy the latter predicate above. 

We now return to the simpler model where locks 

apply to whole tuples. To implement arbitrary predicate 

locks, associate with the database a table called LOCK 

which is a binary relation between transactions and 

predicate locks (see Figure 8). 

The legal lock scheduler functions as follows. 

Transactions are presumed to be two-phase and well- 

formed; the scheduler enforces this rule. Any growing 

transaction may request any predicate lock. When this 

happens, the scheduler tries to enter the transaction 

name and predicate lock into the LOCK table. If  the 

predicate lock does not conflict with any other predicate 

lock in the table, it may be entered and granted im- 

mediately. If the predicate lock does conflict with one 

or more locks held by other transactions, then the 

requestor must wait for the other locks to be released 

or he must preempt the locks (or be preempted). As 

commented earlier, this is a scheduling decision and 

not the proper topic of this paper. Any transaction may 

release any predicate lock belonging to it. This deletes 

the lock from LOCK and marks the transaction as 

shrinking. If  other transactions are waiting for tuples 

released by this lock then they may be started. Each 

time a transaction T* makes an action or access A the 

LOCK table is examined to find the set 

YES = { (T ,L)  C LOCK[A satisfies L a n d  T = T*} 

YES is a list of all the reasons T* should be allowed to 

make the access. If  YES is empty then T* is not  well- 

formed and it should be given an error. 

It is clear that the scheduler described above checks 

the following properties: 

All transactions are well-formed and two-phase. (13a) 

If transaction T locks predicate P on relation R, (13b) 

then for any tuple t in the Cartesian product  un- 

derlying R such that P(t) = TRUE, no other 

transaction may insert, delete or modify t until 

T releases the predicate lock. That is, predicate 

locks solve the problem of  phantoms. 

So the scheduler described produces legal schedules 

and by the results of the previous section, gives each 

transaction a consistent view of the state of the system. 

Thus far we have ignored the details of how the 

scheduler decides whether or not two predicate locks 

conflict. In general this is a recursively unsolvable 

problem (even if predicates are restricted to using the 

arithmetic operators q - , . ,  - ,  - as shown by G6del 

(see Kleene [5])). The problem then is to find an in- 

teresting class of predicates for which it is easily de- 

cidable whether two predicates "overlap."  We propose 

the following simple class of predicates. 

A simple predicate is any Boolean combination of 

atomic predicates. Atomic predicates have the form 

('<'/ 

(field name) , (constant) 

L'>'J 

where constant is a string or number and field name is 

the name of some field of the relation. For  example, 

((Location = 'Napa'  ~/ Location = 'Santa Rosa') 

A ((Balance < 200) A (Balance > 10)) 

is a simple predicate with four atomic predicates. 

Again, Presburger (see Kleene [5]) showed a pro- 

cedure to decide if two predicates overlap for a class of 

predicates slightly more general than simple predicates 

(he allowed q-, -- ,  < ,  = ,  ~ ,  > ,  mod and allowed 

any Boolean combination of these operators and 

operands on integers). However, his decision procedure 

is much more complicated than the procedure for this 

simple set of predicates. 

To decide whether two simple predicate locks L 

and L' conflict is a fairly straightforward matter. Sup- 

pose L = (R, P, a) and L' = (R', P', a') are two predi- 

cate locks. Then 

If  R ¢ R' there is no conflict as the locks apply (14a) 

to different relations. 

If  neither a = write nor a' = write then there is (14b) 

no conflict. 

Otherwise, there will be no conflict only if there (14c) 

is no tuple t such that P A P'(t) is TRUE. 

632 Communications November 1976 
of Volume 19 
the ACM Number 11 



Similarly, deciding whether access A = (R',  P ' ,  a ')  

conflicts with lock L above consists of  testing (14a), 

(14b) and (14c) above for access A. A will satisfy L 

if it passes the tests 

R = R' ,  and (15a) 

a '  = a or a = write (15b) 

For  any tuple t, if P'(t) is T R U E  then P(t) is (15c) 

TRUE (i.e. P '  ~ P or equivalently P '  A ~ P  

is not satisfiable). 

Thus the conflict-satisfiability questions for both ac- 

cesses and locks have been reduced to the question of 

deciding whether a particular simple predicate is satis- 

fiable. But simple predicates are defined to have an 

easy decision procedure. 

The procedure is to organize P A P '  of  case (c) 

into disjunctive normal  form (Kleene [5]) and then for 

each disjunct see whether it is satisfiable or not. Each 

such disjunct will be a conjunct of atomic predicates 

and so this is trivial. Consider the example 

P = (Location = ' Napa '  V Location = 'Santa Rosa ' )  

A (Balance < 500 A Balance > 10) 

P '  = Location = ' Napa '  A Balance = 700. 

Then the disjunctive normal  form of P A P '  is 

Location = ( 'Napa '  A Balance < 500 A Balance > 10 

A Balance = 700) 

V (Location = 'Santa Rosa '  A Location = 'Napa '  

A Balance < 500 A Balance > 10 A Balance = 700). 

The first disjunct is not satisfied because Balance = 

700 contradicts Balance < 500, while the second has 

the added contradiction that Location = ' N a p a '  and 

Location = 'Santa Rosa ' .  So P A P '  is not satisfiable 

and there is no conflict. To give an example of  conflict, 

suppose 

P = (Location = 'Napa ' )  and P '  = (Balance > 500). 

Then P A P '  is satisfiable by the tuple (Napa,  0, 501) 

and so the predicates "over lap"  and allow conflict. 

In summary then, if only simple predicates are al- 

lowed in accesses and predicate locks, then predicate 

locks can be scheduled in the same way ordinary locks 

are scheduled. 

As mentioned before, predicate locks solve the 

problem of phantom records. When coupled with the 

results on consistency, predicate locks can be used to 

construct consistent legal schedulers. The degenerate 

form of predicates, locking entire relations with the 

predicate which is always TRUE or locking a particular 

tuple by the predicate which is only TRUE for that 

tuple gives the more conventional forms of locking. I f  

the desired set is not describable by a simple predicate 

then any " larger"  simple predicate (i.e. a simple predi- 

cate which is implied by the desired predicate) will be a 

suitable predicate for the lock. If  only simple predi- 

cates are used then predicate locks can be legally 

scheduled. 

There are simple analogs to predicate locks in exist- 

ing data-base systems. For  example in hierarchial 

systems such as IMS (ram [6]) it is common to lock a 

subtree of  the hierarchy. This subtree is a logical set 

of records (i.e. those with a given parent).  Similarly, 

in a network model it is desirable to lock all members  

of  a "se t"  in the D B T G  [7] sense although D B T G  

lacks such a facility. 

Last, we observe that locking is a very dynamic form 

of authorization. All the techniques we have described 

(predicate locks, simple predicates, the Y ES  s e t , . . . )  

apply to the problem of doing value dependent authori-  

zation of access to database records at the granularity 

of a field. 

4. Summary 

Section 2 introduced a very simple data model and 

discussed the notions of transaction, consistency and 

locking. It  was argued that consistency requires that 

transactions be two-phase and well-formed, and con- 

versely that if all transactions are well-formed and 

two-phase then any legal schedule is consistent. 

Section 3 was couched in terms of the relational 

model of data. The problems that associative addressing 

introduces were described: namely phantom records 

entering and leaving the set of records locked by a 

transaction. Predicate locks are proposed as a solution 

to this problem. To schedule and enforce these locks, 

predicates are restricted to the class of simple predicates. 

It  is possible to schedule simple predicate locks in the 

same way "ord inary"  locks are scheduled. 
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