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2Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridgeshire, UK; 3Department of
Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA; 4Division of Infectious Diseases,

Brigham andWomen’s Hospital, Harvard Medical School, Boston, MA, USA; 5Department of Bacteriology I, National Institute of Infectious
Diseases, Tokyo, Japan; 6WHO Collaborating Centre for Sexually Transmitted Diseases, Department of Microbiology, South Eastern Area
Laboratory Services, The Prince of Wales Hospital, Randwick, Sydney, Australia; 7Department of Pharmaceutical Sciences, College of
Pharmacy, Oregon State University, Corvallis, OR, USA; 8Department of Reproductive Health and Research, World Health Organization,

Geneva, Switzerland

*Corresponding author. Department of Laboratory Medicine, Clinical Microbiology, Örebro University Hospital, SE-701 85 Örebro, Sweden.
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Objectives: Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, qual-
ity-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global
Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic,
genetic and reference genome characteristics of the 2016WHO gonococcal reference strains intended for quality
assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide.

Methods: The 2016WHO reference strains (n¼14) constitute the eight 2008WHO reference strains and six novel
strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin
resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n¼23), serovar,
prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence
typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing.

Results: The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials
previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance
genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished
references genomes (n¼14) were presented.

Conclusions: The 2016 WHO gonococcal reference strains are intended for internal and external quality assur-
ance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but
also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection,
molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis,
transcriptomics, proteomics and other molecular technologies and data analysis.

Introduction

Gonorrhoea is a public health concern globally.1,2 The impact of
antimicrobial resistance (AMR) in Neisseria gonorrhoeae (gono-
cocci) on the treatment and control of gonorrhoea is a longstand-
ing concern. In the last decade, while retaining AMR to previously
used therapeutic drugs, gonococci have developed resistance,

including high-level resistance, to the last option for empirical anti-
microbial monotherapy, the extended-spectrum cephalosporin
(ESC) ceftriaxone.3–10Rare failures to treat pharyngeal gonorrhoea
with ceftriaxone were verified in several countries.3,5,11–14

In response, the WHO,2 CDC15 and ECDC16 have published glo-
bal and regional action plans to control the transmission and
impact of MDR and XDR gonorrhoea. A key component of these
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plans is to enhance the surveillance of gonococcal AMR locally,
nationally and internationally. The WHO global Gonococcal
Antimicrobial Surveillance Programme (GASP) was relaunched
in 2009.2,17 The WHO GASP works in liaison with other GASPs.
For example, Euro-GASP is acting in the European Union and
European Economic Area18,19 and national GASPs are active in
the USA20 (http://www.cdc.gov/std/gisp), UK21 (http://www.hpa.
org.uk/Publications/InfectiousDiseases/HIVAndSTIs/GRASPReports/)
and many additional countries. This enhanced gonococcal AMR
surveillance should monitor trends in resistance, identify newly
emerging AMR and inform treatment guidelines in a timely fashion.
However, reliable, quality assured and nationally and internation-
ally comparable AMR data are essential. In the absence of uniform
AMR testing methodology globally (method parameters, agar
media and resistance breakpoints), inter-laboratory comparisons
of AMR data are enabled through the use of international reference
strains.22,23 The WHO Collaborating Centre in Örebro, Sweden and
theWHOCollaborating Centre in Sydney, Australia have undertaken
continuing assessments over many years to select, evaluate and
nominate suitable gonococcal strains for use in the internal quality
control and external quality assurance of national, WHO regional
and international GASPs and for other purposes. In 2009, the
2008 WHO gonococcal reference strains were published.23 The
characterizations of these reference strains (n¼8) were substan-
tially expanded in the present study. Furthermore, due to the emer-
gence of ESC resistance and high-level azithromycin resistance, five
additional strains (with low-level to high-level resistance to ESCs,
including resistance associated with ESC treatment failures, and
azithromycin) have now been added to the WHO reference strain
panel. In recent years, gonococcal porA mutants containing
N. meningitidis porA gene sequences that result in false-negative
results in porA-based gonococcal nucleic acid amplification tests
(NAATs) have been described in several countries.24,25 One such
gonococcal porA mutant has also been included among the
2016 WHO gonococcal reference strains (n¼14).

This study characterized the 2016 WHO N. gonorrhoeae refer-
ence strains phenotypically [antibiograms, serovars and prolylimi-
nopeptidase (PIP) production] and genetically [AMR plasmid
types, molecular resistance determinants, N. gonorrhoeae multi-
antigen sequence typing (NG-MAST) STs and MLST STs] and pre-
sents finished, fully characterized and annotated reference
genomes, whichwill be exceedingly valuable for quality assurance
of WGS, transcriptomics, proteomics and other molecular tech-
nologies and data analysis. The 2016 WHO gonococcal reference
strains are intended for internal and external quality assurance
and quality control in all types of laboratory examinations, par-
ticularly in the AMR testing (phenotypic and genetic) in GASPs,
as recommended for the WHO global GASP, but also for pheno-
typic (e.g. culture) and genetic (e.g. NAATs) diagnostics, species
determination, genetic AMR detection, molecular epidemiology
and genomics.

Materials and methods

Bacterial strains

The 2016 WHO gonococcal reference strains include the previously pub-
lished 2008 WHO gonococcal reference strains (WHO F, G, K, L, M, N, O
and P)23 and six additional, strictly selected gonococcal strains. The new
strains were designated as WHO U (Sweden, 2011),25 WHO V (Sweden,
2012),26 WHO W (Hong Kong, 2007),27 WHO X (H041; Japan, 2009),5

WHO Y (F89; France, 2010)7 and WHO Z (A8806; Australia, 2013).8 All
strains were cultivated and preserved as described.28 All the 2016 WHO
gonococcal reference strains (n¼14) are available at the National
Collection of Type Cultures (NCTC; www.phe-culturecollections.org.uk)
under the NCTC numbers 13477–13484, 13817–13822 (Table 1).

Serogroup and serovar determination

Serogroup and serovar determination using PhadeBact GC Monoclonal
Serovar Test (Bactus AB, Stockholm, Sweden)were performedas described.29

Detection of PIP

PIP production was detected using API NH (bioMérieux, Marcy-l′Étoile,
France), according to the manufacturer’s instructions.

Antimicrobial susceptibility testing

MICs of 20 antimicrobials were determined using the Etest method
(bioMérieux, Solna, Sweden), according to themanufacturer’s instructions,
on GCRAP agar plates [3.6% Difco GC Medium Base agar (BD Diagnostics,
Sparks, MD, USA) supplemented with 1% haemoglobin (BD) and 1%
IsoVitalex (BD)]. MICs of solithromycin,4,14 zoliflodacin (also known as
ETX0914 and AZD0914)4,14 and thiamphenicol were determined using
the agar dilution method as previously described. Where breakpoints
were available, the susceptible (S), intermediate susceptibility (I) and
resistance (R) categorization was based on the interpretative criteria
from EUCAST (www.eucast.org). For the antimicrobials where EUCAST
does not state any breakpoints, only the consensus MIC values are pre-
sented (Table 1). For all strains and antimicrobials, each determination
was performed at least three times using new bacterial suspensions on
separate batches of agar plates and the consensus MIC was reported.
b-Lactamase production was detected using nitrocefin solution (Oxoid,
Basingstoke, UK).

Isolation of bacterial DNA

Genomic DNAwas isolated using the Wizard Genomic DNA Purification Kit
(Promega Corporation, Madison, WI, USA), according to the manufac-
turer’s instructions. Purified DNA was stored at 48C prior to genetic
analysis.

Conventional sequencing

The PCRs, purification of PCR amplicons and conventional sequencing of
genes associated with diagnostics, AMR and molecular epidemiology
were performed as described.23

Sequence alignments were performed using the BioEdit Sequence
Alignment Editor (v. 7.0.9.0) software (Ibis Biosciences, Carlsbad, CA,
USA). Determinations of NG-MAST STs and MLST STs were performed as
described previously.23,29,30 All genes and determinants (Table 2) were
also identified in silico from the WGS data.

Genome sequencing

Single-molecule, real-time (SMRT) DNA genome sequencing was per-
formed using the PacBio RS II (Pacific Biosciences, Menlo Park, CA, USA)
with P5-C3 chemistry, resulting in average sub-read lengths of 28476 bp.
One or two SMRT cells were used for each strain to provide high coverage
levels for each (average of 165×) (Table S1, available as Supplementary
data at JAC Online).

De novo assembly of the genomes was conducted using the hierarch-
ical genome assembly process (HGAP3, SMRTAnalysis 2.3.0) workflow. Full
chromosome sequences were circularized using Circlator31 and then
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further corrected using Quiver.32 WHO F and WHO K were manually circu-
larized and corrected with Quiver.32

Because large fragments are selected during PacBio library preparation
and the longest reads are selected for assembly by the HGAP pipeline, not all
plasmids were retrieved in the HGAP assemblies. The cryptic plasmid was
not retrieved in six strains (WHO N, O, P, U, V and Z) and the Asian
pBlaTEM plasmid inWHO N. Accordingly, Illumina sequencing was also per-
formed on the 14 strains using the HiSeq 2000 2×100 bp platform. Reads
were assembled using a pipeline (https://github.com/sanger-pathogens/
vr-codebase) developed at theWellcomeTrust Sanger Institute.33 Themiss-
ing plasmids were detected as single contigs directly from the Illumina
assemblies using ACT.34 They were circularized manually using the other
strains as references.

As a second check, the three types of plasmid detected (pCryptic,
pBlaTEM and pConjugative) were comparedwith their corresponding refer-
ences in public databases (pJD1, pJD4 and pEP5289, respectively) bymap-
ping all PacBio filtered sub-reads against the reference using BWA MEM.35

Mapped reads were extracted from the bam files and assembled inde-
pendently using minimap and miniasm,36 and the resulting unitigs cor-
rected using Quiver.32 The initial, Illumina, assemblies of the WHO N and
WHO VAsian pBlaTEM plasmids were found to be missing a 1.8 kb region
compared with the resulting assemblies from miniasm and the Asian ref-
erence plasmid. Thus, miniasm corrected assemblies were used for subse-
quent steps in these two cases.

Full chromosomes and plasmids were annotated using PROKKA v.
1.1137 followed by manual curation using Artemis.38 Additional proteins
annotated in N. gonorrhoeae FA1090 but not identified in the automatic
annotation were checked manually and added when appropriate.
InterProScan 539was used to improve annotation of hypothetical proteins.
Sequence data for each strain has been deposited in the ENA under
BioProject accession no. PRJEB14020.

Genomes were compared through BLAST40 analyses and visualized
using BRIG v. 0.95.41 The core genome of the 14 references was obtained
using Roary.42 Pairwise core SNPs were calculated and a minimum evolu-
tion tree computed using MEGA v6.43

Results

Phenotypic characterization

Three (21%) and 11 (79%) of the strainswere assigned as serogroup
PorB1a (WI) andPorB1b (WII/III), respectively, and in total eight ser-
ovarswere represented (Table 1). Three (21%) of the strains (WHOG,
N and V) were PIP-negative. Four (29%) of the strains (WHO M, N, O
and V) produced b-lactamase. The consensus MIC and, where feas-
ible, SIR categorization for each antimicrobial and strain, and the
range of MICs for all strains, as determined by the single method
used, are also presented. The strains represented all important sus-
ceptible, intermediate susceptible and resistant phenotypes and the
ranges of resistances seen formost antimicrobials previously or cur-
rently recommended in different guidelines, used in gonorrhoea
treatment globally or considered for future use. These included
strains with high-level resistance to penicillin G, ampicillin, temocil-
lin, ceftriaxone, cefixime, cefuroxime, azithromycin, erythromycin,
ciprofloxacin, moxifloxacin, gemifloxacin, tetracycline, spectinomy-
cin, sulfamethoxazole and rifampicin (Table 1).

Genetic characterization

One of the strains (WHO F) contained aWTpenA allele, five strains
(WHO K, W, X, Y and Z) a mosaic penA allele (main ESC resistance
determinant),3,4,14 and eight strains displayed the Asp345a alter-
ation in the b-lactam main target penicillin-binding protein 2

(PBP2), which is observed in chromosomally mediated penicillin
resistance (Table 2).3,4 WHO L and WHO Y contained a PBP2
A501V and A501P alteration, respectively, which also increase
the MICs of b-lactam antimicrobials including ESCs.3,4,6,7 Other
penA mutations that increase the ESC MICs are also presented.
Four strains (WHO F, L, N and U) contained a WT mtrR promoter
region sequence. The remaining strains displayed a deletion of a
single nucleotide (A; n¼8) or an A�C substitution (n¼2) in the
13 bp inverted repeat of the mtrR promoter sequence, resulting
in an increased MtrCDE efflux of substrate antimicrobials, e.g.
macrolides and b-lactam antimicrobials.3,4,23 Also WHO L and
WHO N had an over-expressed MtrCDE efflux pump due to the
mtr120 mutation and a deletion of a single nucleotide in mtrR,
respectively. These mutations result in an additional promoter
for mtrCDE and a frame-shift, premature stop codon and trun-
cated MtrR, respectively.23,44 Concerning the penB AMR determin-
ant, among the PorB1b strains (n¼11) 10 displayed mutations in
A102 [A102D (n¼9) and A102N (n¼1)] and nine additionally a
G101K alteration, whichmediate decreased permeability of target
antimicrobials through the porin PorB1b.3,4 Twelve strains carried
the ponAmutation (ponA1 allele) resulting in the L421P alteration
in the second b-lactam target PBP1, which is observed in high-
level chromosomally mediated penicillin resistance.4 Of the
b-lactamase-producing strains (n¼4), two (WHOMandO) carried
African-type plasmid and two (WHO N and V) Asian-type plasmid,
which all contained blaTEM-1 resulting in high-level penicillin resist-
ance.45,46 In regards of fluoroquinolone resistance, one strain
(WHO G) displayed only an S91F mutation in GyrA, subunit A of
DNA gyrase (ciprofloxacin MIC¼0.125 mg/L), one (WHO M) a
GyrA S91F mutation and a GyrA D95G mutation (ciprofloxacin
MIC¼2 mg/L) and the remaining eight ciprofloxacin-resistant
strains contained a GyrA S91Fmutation, a GyrA D95G/N mutation
and one or two amino acid alterations in codons 86–88 of
ParC, subunit C of DNA topoisomerase IV (ciprofloxacin
MIC¼4–.32 mg/L).4,47 One strain (WHO O) had a C1192T spec-
tinomycin target mutation in all four alleles of the 16S rRNA
gene (spectinomycin MIC .1024 mg/L48). WHO U and WHO V
possessed the C2611T mutation and A2059G mutation, respect-
ively, in all four alleles of the 23S rRNA gene, which are target
mutations causing low-level and high-level resistance to azithro-
mycin.4,26,49No azithromycin resistance mutations were found in
the rplD or rplV gene (encoding ribosomal protein L4 and L22,
respectively) and none of the macrolide resistance-associated
genes mefA/E (encoding Mef efflux pump),50 ereA and ereB
(encoding erythromycin esterase) or ermA-C and ermF (encoding
RNA methylases that block macrolides from binding to the 23S
subunit target)51 were identified in any of the strains. Three of
the strains (WHOM, N and P) contained an H552N targetmutation
in RpoB (encoding RNA polymerase subunit B), resulting in high-
level rifampicin resistance.52 The tet(M)-carrying conjugative plas-
mids, resulting in high-level tetracycline resistance, identified in
WHO G and N were of the Dutch plasmid type.53 All strains except
WHO F had the V57M mutation in rpsJ, encoding ribosomal pro-
tein S10 and involved in chromosomally mediated tetracycline
resistance.54 All strains except WHO F and WHO L contained the
R228S mutation in the sulphonamide target dihydropteroate syn-
thase (DHPS), encoded by folP, associated with sulphonamide
resistance.55 Finally, the promoter sequence for the macAB
operon (encoding the MacA-MacB efflux pump) contained the
210 hexamer sequence TAGAAT in all strains. This sequence is

Unemo et al.

3098

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ja
c
/a

rtic
le

/7
1
/1

1
/3

0
9
6
/2

4
6
2
0
5
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2

https://github.com/sanger-pathogens/vr-codebase
https://github.com/sanger-pathogens/vr-codebase
https://github.com/sanger-pathogens/vr-codebase
https://github.com/sanger-pathogens/vr-codebase
https://github.com/sanger-pathogens/vr-codebase
https://github.com/sanger-pathogens/vr-codebase


Table 1. Phenotypic characteristics of epidemiological and diagnostic relevance and antimicrobial susceptibility/resistance phenotypes displayed by the 2016 WHO N. gonorrhoeae

reference strains (n¼14)

Characteristic WHO Fa WHO Ga WHO Ka WHO La WHO Ma WHO Na WHO Oa WHO Pa WHO U WHO V WHO W WHO X WHO Y WHO Z

NCTC number 13477 13478 13479 13480 13481 13482 13483 13484 13817 13818 13819 13820 13821 13822

Serogroup PorB1a PorB1a PorB1b PorB1b PorB1b PorB1a PorB1b PorB1b PorB1b PorB1b PorB1b PorB1b PorB1b PorB1b

Serovar Arst Arst Bpyust Brpyust Bpyust Arst Boys Bopt Bryust Bropys Bpyust Bpyust Bpyut Bpyust

PIP productionb Pos — Pos Pos Pos — Pos Pos Pos — Pos Pos Pos Pos

b-Lactamase (PPNG)c — — — — Pos Pos Pos — — Pos — — — —

Penicillin G (0.032–.32)d S (0.032) I (0.5) CMRNG (2) CMRNG (2) PPNGc (≥32) PPNGc (.32) PPNGc (.32) I (0.25) I (0.125) PPNGc (.32) CMRNG (4) CMRNG (4) I (1) CMRNG (2)

Ampicillin (0.032–.256)d,e 0.032 0.25 2 2 PPNGc (8) PPNGc (4) PPNGc (24) 0.064 0.125 PPNGc (.256) 2 2 0.5 2

Temocillin (0.064–32)d,e 0.064 1 16 4 1 1 4 1 0.5 4 8 32 8 8

Cefuroxime (0.032–16)d,e 0.064 0.5 16 8 0.5 0.25 1 0.125 0.032 1 8 8 8 8

Cefixime (,0.016–4)d S (,0.016) S (,0.016) LLR (0.25) S (0.125) S (,0.016) S (,0.016) S (0.016) S (,0.016) S (,0.016) S (,0.016) LLR (0.25) HLR (4) HLR (2) HLR (2)

Ceftriaxone (,0.002–2)d S (,0.002) S (0.008) S (0.064) LLR (0.25) S (0.016) S (0.004) S (0.032) S (0.004) S (0.002) S (0.064) S (0.064) HLR (2) HLR (1) LLR (0.5)

Ertapenem (0.004–0.125)d,e 0.004 0.008 0.125 0.032 0.016 0.008 0.032 0.008 0.004 0.012 0.064 0.064 0.008 0.032

Erythromycin (0.5–.256)d,e 0.5 1 1 2 1 0.5 1 4 .256 .256 2 2 2 4

Azithromycin (0.125–.256)d S (0.125) S (0.25) S (0.25) I (0.5) S (0.25) S (0.25) S (0.25) R (4) R (4) HLR (.256) I (0.5) I (0.5) R (1) R (1)

Ciprofloxacin (0.004–.32)d S (0.004) LLR (0.125) HLR (.32) HLR (.32) R (2) R (4) S (0.008) S (0.004) S (0.004) HLR (.32) HLR (.32) HLR (.32) HLR (.32) HLR (.32)

Gemifloxacin (0.004–16)d,e 0.004 0.125 16 8 0.5 1 0.008 0.016 0.008 4 16 16 2 8

Moxifloxacin (0.004–16)d,e 0.004 0.064 8 16 1 1 0.016 0.032 0.008 8 8 8 4 8

Spectinomycin (8–.1024)d S (16) S (16) S (16) S (16) S (16) S (16) HLR (.1024) S (8) S (8) S (16) S (16) S (16) S (16) S (16)

Gentamicin (4–8)d,e 4 4 4 4 4 4 4 4 4 8 4 4 8 4

Kanamycin (8–32)d,e 16 16 16 32 16 16 16 8 8 16 16 16 16 8

Tetracycline (0.25–32)d S (0.25) TRNG (32) R (2) R (2) R (2) TRNG (16) R (2) I (1) I (1) R (4) R (4) R (2) R (4) R (4)

Chloramphenicol (0.5–8)d,e 0.5 2 4 8 4 4 4 4 4 8 8 8 4 8

Thiamphenicol (0.25–4)d,e 0.25 0.5 2 4 4 1 2 1 2 4 4 4 4 4

Fosfomycin (8–32)d,e 32 32 16 8 32 16 32 32 32 16 16 16 16 16

Rifampicin (0.125–.32)d,e 0.125 0.5 0.5 0.5 .32 .32 0.25 .32 0.25 0.5 0.25 0.5 0.5 0.5

Sulfamethoxazole (16–.1024)d,e 64 512 128 16 128 256 128 64 32 .1024 64 128 64 128

Solithromycin (0.064–32)d,e 0.064 0.064 0.064 0.125 0.064 0.064 0.125 0.5 0.25 32 0.064 0.064 0.125 0.125

Zoliflodacin (0.032–0.125)d,e 0.032 0.064 0.064 0.064 0.064 0.125 0.064 0.125 0.064 0.064 0.064 0.064 0.064 0.064

NCTC, National Collection of Type Cultures; S, susceptible; I, intermediate susceptible; R, resistant; LLR, low-level resistant; HLR, high-level resistant; CMRNG, chromosomally mediated
resistant N. gonorrhoeae; TRNG, plasmid-mediated high-level tetracycline-resistant N. gonorrhoeae.
aIncludes some previously published results.23 However, additional antimicrobials have been examined and some consensus MICs have slightly changed when additional MIC determina-
tions using different MIC-determining methodologies have been performed.
bPIP-negative N. gonorrhoeae strains do not produce the enzyme PIP, which can result in doubtful and/or false-negative species identification of N. gonorrhoeae using a biochemical or
enzyme-substrate test. Global transmission of PIP-negative N. gonorrhoeae strains has been identified.68
cPPNG, penicillinase-producing N. gonorrhoeae (always considered resistant to all penicillins independent of identified MIC value, which might slightly vary).
dResistance phenotypes based on MIC (mg/L) using Etest or agar dilution and, where feasible, susceptibility/resistance breakpoints stated by EUCAST (www.eucast.org). The reported MIC
values are mean MICs (rounded to whole MIC dilution) and the acceptable range of the MICs for each antimicrobial and the different strains is+one MIC doubling dilution, i.e. when the
strains are used in quality control, for example. Note: the consensus MICs shown should be used and interpreted with caution because these were derived using one method only and,
consequently, may slightly differ using other methods. However, the identified resistance phenotypes (SIR categorization) should ideally be consistent between different methods.23,59
eNo susceptibility/resistance breakpoints stated by EUCAST (www.eucast.org).
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Table 2. Genetic characteristics of relevance for epidemiology, diagnostics and antimicrobial resistance in the 2016 WHO N. gonorrhoeae reference strains (n¼14)

Characteristic WHO Fa WHO Ga WHO Ka WHO La WHO Ma WHO Na WHO Oa WHO Pa WHO U WHO V WHO W WHO X WHO Y WHO Z

MLST ST ST10934 ST1903 ST7363 ST1590 ST7367 ST1583 ST1902 ST8127 ST7367 ST10314 ST7363 ST7363 ST1901 ST7363

NG-MAST ST ST3303 ST621 ST1424 ST1422 ST3304 ST556 ST495 ST3305 ST2382 ST8927 ST835 ST4220 ST1407 ST4015

porA pseudogene mutant24,25 — — — — — — — — yes — — — — —

cppB gene65–67 — yes yes yes yes yes yes yes yes yes yes yes yes yes

pip gene mutant68 — yes — — — yes — — yes — — — — —

penA mosaic allele3,4,69–71 — — yes — — — — — yes yes yes yes

PBP2 A311V5,70,71 — — — — — — — — — — — yes — yes

PBP2 I312M and G545S69,71 — — yes — — — — — — — yes yes yes yes

PBP2 V316T69,71 — — yes — — — — — — — yes — yes yes

PBP2 V316P5,70,71 — — — — — — — — — — — yes — —

PBP2 T483S4,70,71 — — — — — — — — — — — yes — yes

PBP2 A501V3,4,69,71 — — — yes — — — — — — — — — —

PBP2 A501P3,4,7.71 — — — — — — — — — — — — yes —

PBP2 G542S3,4,71,72 — — — yes — — — — — yes — — — —

PBP2 D345 insertion3,4,71 — yes — yes yes yes yes yes yes yes — — — —

PBP2 P551S3,4,71,72 — — — — — — yes — — — — — — —

mtrR promoter; 13 bp inverted

repeat4,71,73–75
WT deletion

of A

deletion

of A

WT deletion

of A

WT deletion

of A

A�C SNP in

A-repeat

WT deletion

of A

deletion

of A

deletion

of A

deletion

of A

A�C SNP in

A-repeat

MtrR codon G454,73–76 WT WT G�D G�D G�D WT WT NAb WT WT G�D WT WT WT

mtr120
44 — — — yes — — — — — — — — — —

mtrR coding region frame shift

mutation4
— — — — — deletion of A at

bp 158b
— insertion of

T at bp 60b
— — — — — —

porB1b codon G1014,71,77,78 NAc NAc G�K G�K G�K NAc G�K WT WT G�K G�K G�K G�K G�K

porB1b codon A1024,71,77,78 NAc NAc A�D A�D A�D NAc A�D A�D WT A�D A�D A�D A�N A�D

ponA1; L421�P in PBP179 — yes yes yes yes yes yes — yes yes yes yes yes yes

gyrA codon S914,47,71 WT S�F S�F S�F S�F S�F WT WT WT S�F S�F S�F S�F S�F

gyrA codon D954,47,71 WT WT D�N D�N D�G D�G WT WT WT D�G D�N D�N D�G D�N

parC codon D864,47,71 WT WT WT D�N WT WT WT WT WT WT WT WT WT WT

parC codon S874,47,71 WT WT S�R WT WT S�I WT WT S�W S�R S�R S�R S�R S�R

parC codon S884,47,71 WT WT S�P S�P WT WT WT WT WT WT S�P S�P WT S�P

parE codon G41080 WT G�V WT WT WT G�V WT WT WT WT WT WT WT WT

16S rRNA (bp 1192)d4,48 WT WT WT WT WT WT C�T WT WT WT WT WT WT WT

23S rRNA (bp 2059)d4,26 WT WT WT WT WT WT WT WT WT A�G WT WT WT WT

23S rRNA (bp 2611)d4,49 WT WT WT WT WT WT WT WT C�T WT WT WT WT WT

rpoB codon H55252,71 WT WT WT WT H�N H�N WT H�N WT WT WT WT WT WT

rpsJ codon V5754,71 WT V�M V�M V�M V�M V�M V�M V�M V�M V�M V�M V�M V�M V�M

folP codon R22855,71 WT R�S R�S WT R�S R�S R�S R�S R�S R�S R�S R�S R�S R�S

b-Lactamase plasmid type4,45,46,71 — — — — African Asian African — — Asian — — — —

blaTEM allele46 — — — — TEM-1 TEM-1 TEM-1 — — TEM-1 — — — —

tet(M) plasmid type4,53,71 — Dutch — — — Dutch — — — — — — — —

aIncludes some previously published results;23 however, many additional genes and mutations, and reference genomes, have been characterized in the present paper.
bNA, not applicable due to frame-shift mutation that causes a premature stop codon and truncated peptide.
cNA, not applicable because these strains were of serogroup WI (PorB1a).
dEscherichia coli numbering used. Mutations found in all four alleles of the gene.
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Table 3. General characteristics of the reference genomes of the 2016 WHO N. gonorrhoeae reference strains (n¼14)

Characteristic WHO F WHO G WHO K WHO L WHO M WHO N WHO O WHO P WHO U WHO V WHO W WHO X WHO Y WHO Z

Genome size (bp) 2292467 2167361 2169846 2168633 2178344 2172826 2169062 2173861 2234269 2221284 2222386 2171112 2228980 2229351

No. of CDSs 2450 2299 2296 2314 2305 2300 2304 2305 2378 2366 2361 2295 2380 2368

Coding

density (%)

84.8 84.5 84.6 84.5 84.5 84.6 84.6 84.6 84.8 84.8 84.7 84.5 84.8 84.6

Average gene

size (bp)

793.7 796.5 799.3 791.6 798.7 798.9 796.0 797.6 796.8 795.8 797.5 799.5 794.4 796.7

GC content (%) 52.1 52.6 52.6 52.6 52.6 52.6 52.6 52.6 52.4 52.4 52.4 52.6 52.4 52.4

5S rRNA 4

16S rRNA 4

23S rRNA 4

tRNAs 56 56 57 56 56 56 56 56 56 56 56 57 56 57

ncRNAs 16 15 15 15 15 15 16 16 16 16 16 16 16 16

tmRNA 1 1 1 1 1 1 1 1 1 1 1 1 1 1

No. of genes in

pangenome

3478

No. core genes 1820

Accessory

genes (%)

630 (25.7) 479 (20.8) 476 (20.7) 494 (21.3) 485 (21.0) 480 (20.9) 484 (21.0) 485 (21.0) 558 (23.5) 546 (23.1) 541 (22.9) 475 (20.7) 560 (23.5) 548 (23.1)

DNA uptake

sequences

(DUSs)a

1981

(1533)

1947

(1510)

1950

(1510)

1956

(1518)

1955

(1516)

1951

(1513)

1950

(1519)

1959

(1517)

1963

(1512)

1968

(1518)

1954

(1509)

1949

(1510)

1973

(1522)

1959

(1512)

Number of

plasmids

0 2 1 2 3 3 3 1 1 2 2 1 1 1

aTotal of the 10-mer DUS sequence GCCGTCTGAA (no. of the 12-mer ATGCCGTCTGAA). Note: the 10-mer sequence is included in the 12-mer.
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(a)

(b)

pCryptic
4207 bp

pConjugative
42 004 bp

tetM

blaTEM

pBlaTEM
7449 bp

500 bp

1000 bp

1500 bp

2000 bp

3000 bp

3500 bp4000 bp

4500 bp

5000 bp

5500 bp

6500 bp

6000 bp

7000 bp

2500 bp

500 bp

5 kbp

10 kbp

15 kbp

20 kbp

25 kbp

30 kbp

35 kbp

40 kbp

1000 bp

1500 bp

2000 bp

3000 bp

4000 bp

3500 bp

2500 bp
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characteristic of the macAB promoter sequence in gonococci and
meningococci and has a dampening effect on the macAB tran-
scription compared with a210 TATAAT sequence.56 Nomutations
modulating transcription were found in any of the strains in the
putative 235 promoter hexamer sequence (CTGACG) of the pro-
moter sequence for the norM gene (encoding the NorM efflux
pump) or in its ribosome binding site (TGAA).57

Of importance for phenotypic and/or molecular detection of
gonococci, cppB (WHO F), pip (WHO G, N and U) and porA (WHO U)
mutant strains were represented. Finally, the strains displayed 14
different porB alleles, 14 divergent NG-MAST STs and 10 different
MLST STs. Notably, the MLST ST7363 and ST1901, and NG-MAST
ST1407, were represented, which are internationally spread MDR
clones that account for most of the ESC resistance globally
(Table 2).3,4,6,7,10,11,14,19

Reference genome characterization

The general characteristics of the reference genomes are sum-
marized in Table 3. The genome size ranged from 2167361 to
2292467 bp. The number of coding sequences (CDSs) after man-
ual curation varied from 2295 to 2450 with an average CDS size of
796.6 bp. The number of core genes was 1820 and accessory
genes ranged from 475 to 630. In Figure 1(a and b) BLASTatlases
of the 14 reference genomes and all identified plasmid sequences,
respectively, are displayed. Briefly, the reference genomes showed
relatively high genomic similarity among all strains with the
exception of two large insertions in WHO F and the presence or
absence of the gonococcal genomic island (GGI).58 The insertions
in WHO F each include 34 almost identical predicted CDSs
(31984 bp) mainly containing an apparently complete type IV
secretion system, a vapD virulence gene and xerC recombinase
inserted into a tRNA-Asn element, with only weak matches to
other sequences in the NCBI non-redundant nt database. Other
regions with low genetic conservation corresponded to mobile
genetic elements and prophages (Figure 1a).

Figure 2 shows the phylogenetic relationship among all the ref-
erence core genomes (n¼14, 1820 loci). The number of SNPs
between the core genomes is shown on the branches. The aver-
age pairwise SNPdistancewas estimated as 2962 SNPs, withWHO
X andWHO Z being themost similar strains (272 SNPs) andWHO F
and WHO U the most distant (4969 SNPs). Figure S1 and Table S2,
show the pairwise SNP distances among all 14 reference core
genomes.

Between none and three plasmids were detected in each strain
(Table 3), either from the PacBio or Illumina assemblies. The cryptic
plasmidwas found in all strains exceptWHO F, and theb-lactamase
plasmid containing a blaTEM-1 gene was found in four of the isolates
(WHO M, N, O and V; Figure 1b), producing plasmid-mediated high-
level penicillin resistance (Tables 1 and 2). The tet(M)-carrying con-
jugative plasmid causing high-level tetracycline resistance through

the tet(M) gene was found in WHO G and WHO N (Tables 1 and 2).
However, WGS also identified the conjugative plasmid in four add-
itional strains (WHO L, M, O andW), although thesewere lacking the
tet(M) resistance gene (Figure 1b).

Discussion

In this study, the 2016WHO N. gonorrhoeae reference strains and
their detailed phenotypic, genetic and reference genome charac-
teristics are reported. The utility of these strains includes quality
control and quality assurance practices in the WHO global and
other GASPs. Comprehensive description regarding applications
and use of WHO reference strains in GASPs has previously been
published.23,59 The strains include all important susceptible, inter-
mediate susceptible and resistant phenotypes and the ranges of
resistances seen for most antimicrobials previously or currently
recommended in different guidelines and/or used in the gonor-
rhoea treatment globally. However, the consensus MIC values
(Table 1) were determined using one AMR method only.
Accordingly, these MIC values may differ slightly using other
AMR methods, though the resistance phenotypes should be con-
sistent. It is strongly recommended that laboratories using the
superseded WHO A–E reference strains or the 2008 WHO gono-
coccal reference strains23 update to the current 2016 panel.
The 2016 WHO gonococcal reference strains will be available
throughWHO sources and the NCTC (www.phe-culturecollections.
org.uk).

In many countries, NAATs are replacing culture for gonococcal
detection and, accordingly, genetic detection of AMR determi-
nants to predict resistance or susceptibility to antimicrobials has
become of increased interest, both for future AMR surveillance
and, ideally, also to guide individually tailored treatment.4,60,61

Thus, the genetic AMR determinants, acting singly or collabora-
tively, that mediate the different AMR phenotypes in the 2016
WHO gonococcal reference strains were characterized in detail
and included most known gonococcal AMR determinants. These
reference strains are designed for internal and external quality
assurance and quality control components of both gonococcal
phenotypic AMR surveillance and future surveillance using
molecular AMR prediction. Molecular AMR methods can never
entirely replace phenotypic AMR testing because they only detect
identified AMR determinants and new ones will continue to
evolve. However, the molecular prediction of AMR or susceptibility
can supplement the conventional culture-based phenotypic AMR
surveillance. For example, ciprofloxacin susceptibility is relatively
straightforward to predict, azithromycin resistance can be indi-
cated and detection of amosaic penA gene can predict decreased
susceptibility or resistance to ESCs.4,60 –62 However, due to the
many different genes, mutations and accumulation of mutations
causing, for example, ESC resistance the molecular methods will
not be able to predict an exact MICof the antimicrobials. However,

Figure 1. BLAST atlas of the 2016 WHO N. gonorrhoeae reference genomes (n¼14). (a) A genome comparison of the 2016 WHO reference strains
presented in this study using WHO F23 as reference and (b) a comparison of the up to three plasmids (named pCryptic, pBlaTEM and
pConjugative65,81,82) identified in the same strains. WHO G pCryptic (cryptic plasmid), WHO M pBlaTEM (b-lactamase-producing plasmid) and WHO G
pConjugative [conjugative plasmid including tet(M) in WHO G and N] were used as references, respectively. For each, GC skew is shown in the inner rings.
The position in the genomes is shown for genetic resistance determinants and loci used for molecular diagnostics and epidemiological characterization,
i.e. NG-MAST STs and MLST STs. The presence of the GGI58 is indicated in red. An approximately 500 bp region with lower nucleotide conservation (≏75%
identity) is shown with lighter colours in WHO M and WHO O pBlaTEM plasmids corresponding to a hypothetical protein.
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Figure 2. Phylogenetic tree of the 2016WHON. gonorrhoeae reference core genomes (n¼14). The tree is rooted using anN.meningitidis genome as outgroup (not shown). The number of
SNPs is shown on each branch. Highlighted nodes show bootstrap supports higher than 80%. Typing, genomic features and antibiotic resistance patterns of the 2016 WHO reference
strains are shown alongside the tree. Only antimicrobials with a SIR categorization assigned are displayed.
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this is not essential if the susceptibility/resistance phenotypes can
be predicted by targeting the main AMR determinants. The sensi-
tivity and/or specificity of the AMR prediction will also vary in dif-
ferent settings due to themyriad of gonococcal strains circulating
and some cross-reactivity with non-gonococcal Neisseria species,
particularly in pharyngeal specimens, might be unavoid-
able.3,4,60–62 Despite these limitations, molecular prediction of
AMR or susceptibility enables testing of substantially more gono-
coccal samples (including NAAT samples), assessing the spread of
genetic potential for AMR development and identifying settings
where targeted culture-based phenotypic AMR testing should be
initiated. WGS and other novel molecular technologies will likely
revolutionize the molecular AMR prediction in gonococci.
Ultimately, point-of-care (POC) genetic AMR methods, combined
with gonococcal detection, might be used to guide individually
tailored treatment of gonorrhoea, which can ensure rational use
of antimicrobials (including sparing last-line antimicrobials) and
affect the control of both gonorrhoea and AMR.

In recent years, WGS, providing a dramatic increase in reso-
lution, has become more cost-effective and user-friendly. WGS
has the potential to revolutionize investigations into gonococcal
evolution and population genetics, to identify and track specific
strains spreading globally in particular populations and/or in
core groups, to identify temporal and geographical changes in
strain types as well as the emergence and transmission of individ-
ual strains (e.g. MDR ones), to investigate strain identity in contact
tracing, test-of-cure and suspected treatment failures, to confirm
presumed epidemiological connections or discount isolates from
suspected clusters and outbreaks, and to predict AMR or suscep-
tibility in future AMR surveillance.63 However, whenWGS becomes
widely used internationally it is crucial that appropriate, validated
and finished gonococcal reference genomes are available.
Consequently, we present the fully characterized, annotated
and finished reference genomes of the 2016WHO gonococcal ref-
erence strains, to enable quality assurance ofN. gonorrhoeaeWGS
analysis.

The 2016 WHO N. gonorrhoeae reference strain panel includes
the previously published 2008 WHO gonococcal reference strains
(n¼8).23 However, in the present study these strains were sub-
jected to further exceedingly detailed analyses. For example, the
susceptibility/resistance to additional antimicrobials (sulfameth-
oxazole, chloramphenicol, gemifloxacin, moxifloxacin, solithro-
mycin, zoliflodacin, fosfomycin, temocillin and thiamphenicol),
additional molecular AMR or diagnostic determinants (mutations
in the rpsJ,54 folP,55 23S rRNA,4,26,49 rplD, rplVand blaTEM genes4,46

and additional penAmutations of interest for ESC resistance,3,4as
well as the presence ofmacAB56 and norM57 promoter mutations,
the mtr120 mutation,44 ermA, ermB, ermC and ermF genes,51,64

ereA and ereB genes, mefA/E genes50 that can cause macrolide
resistance, the cppB gene,65 – 67 the mutated porA pseudo-
gene,24,25 the mutated pip gene68 and the GGI58) and further
molecular epidemiological characteristics (MLST STs) were investi-
gated. Furthermore, finished reference genomes were produced,
fully annotated and characterized. The six novel WHO reference
strains (WHO U, V, W, X, Y and Z) represent phenotypes and geno-
types not available when the earlier reference strain panel23 was
developed. Now included are gonococcal strains with low-level to
high-level ESC resistance due to different ESC resistance penA
mutations and associated with both cefixime and ceftriaxone
treatment failures. These will be of particular value for enhanced

validation of the phenotypic AMR testing, especially monitoring
ESC MIC drifts over time. The 2016 WHO reference strains also
include a gonococcal strain with high-level azithromycin resist-
ance, due to the A2059G mutation in all four alleles of the 23S
rRNA gene,26 and one with a mutated porA pseudogene
(N. meningitidis porA gene sequences resulting in false-negative
results in porA-based gonococcal NAATs).24,25

In conclusion, the 2016 WHO N. gonorrhoeae reference strains
were extensively characterized both phenotypically and genetic-
ally, including characterizing the reference genomes, and are
intended for internal and external quality assurance and quality
control purposes in laboratory investigations. These strains should
prove particularly useful in WHO global and other GASPs (to allow
valid intra- and inter-laboratory comparisons of AMR data derived
by different methods in various countries), but also in phenotypic
(e.g. culture, species determination) and molecular diagnostics,
genetic AMR detection, molecular epidemiology and as fully char-
acterized, annotated and finished reference genomes in WGS
analysis, transcriptomics, proteomics and other molecular tech-
nologies and data analysis. When additional resistant phenotypes
and/or genotypes emerge, novel WHO gonococcal reference
strains will be selected, characterized and added to the panel of
existing strains.
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80 Lindbäck E, Rahman M, Jalal S et al. Mutations in gyrA, gyrB, parC, and
parE in quinolone-resistant strains of Neisseria gonorrhoeae. APMIS
2002; 110: 651–7.

81 Pachulec E, van der Does C. Conjugative plasmids of Neisseria gonor-
rhoeae. PLoS One 2010; 5: e9962.

82 Pagotto F, Aman AT, Ng LK et al. Sequence analysis of the family of
penicillinase-producing plasmids of Neisseria gonorrhoeae. Plasmid
2000; 43: 23–34.

Unemo et al.

3108

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ja
c
/a

rtic
le

/7
1
/1

1
/3

0
9
6
/2

4
6
2
0
5
2
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2


