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Abstract: We present a new numerical approach to solving the fractional differential Riccati equa-
tions numerically. The approach—called the Mittag-Leffler–Galerkin method—comprises the finite
Mittag-Leffler function and the Galerkin method. The error analysis of the method was studied. As a
result, we present two theorems by which the error can be bounded. In addition to error analysis,
the residual correction method, which allows us to estimate the error and obtain new approximate
solutions, is also presented. To show how the method is applied, and the efficiency of the proposed
method, some test examples were considered. When the numerical results obtained were examined,
it was found that while the method achieves better results than some of the known methods in the
literature, it also achieves results that are similar to those of others of the known methods.

Keywords: finite Mittag-Leffler function; fractional differential Riccati equations (FDRE); Caputo
fractional derivatives; error analysis; error estimation

1. Introduction

Fractional differential equations (FDEs) have been used to describe real-life phenom-
ena such as continuum mechanics [1], viscoelasticity [2], finance [3], optimal control [4],
variational problems [5], hydrologic modeling [6] and fluid mechanics [7], amongst oth-
ers [8,9]. Due to the difficulty of obtaining exact solutions, the importance of developing
effective methods for the numerical solutions of FDEs has been recognized in recent decades.
The main methods used to solve FDEs include radial basis functions [10], fractional finite
volume [11], Adomian decomposition [12], operational methods [13] and other numerical
approaches [14–16]. In this study, we propose a new numerical solution method of solving
the FDRE, defined as

Dνx(t) + a(t)x2(t) + b(t)x(t) = g(t), 0 < ν ≤ 1, 0 ≤ t ≤ 1, (1)

and the initial condition
x(0) = x0. (2)

Here, x(t) is the unknown function, a(t), b(t) and g(t) are known functions defined in
[0, 1] and continuous, and x0 is a real constant.

Recently, spectral approaches have been applied to solving different types of FDEs.
Esmaeili and Shamsi [17] considered a family of FDEs, and solved it by a pseudo-spectral
method. Zhang et al. [18] solved the one-dimensional nonlinear space fractional Schrödinger
equation, using the Crank–Nicolson–Galerkin–Legendre spectral method. Mokhtary and
Ghoreishi [19] used the tau spectral method for the solutions of nonlinear fractional in-
tegrodifferential equations. Brawy et al. [20] introduced an operational approximation
method, based on the spectral collocation method for the solution of fractional Schrödinger
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equations. Vanani and Aminataei [21] improved the algebraic formulation of fractional
partial differential equations, by using matrix–vector multiplication representation, and
then applied an operational approach of the tau method. Doha et al. [22] proposed a
spectral method for the solution of the fractional subdiffusion equation. The approach was
based on the shifted Legendre tau spectral method. Fan et al. [23] proposed a Galerkin
finite element method for solving the fractional wave equation: they discretized the prob-
lem of the Crank–Nicholson scheme, and presented the stability and convergence of the
numerical scheme. Saadatmandi and Dehghan [24] used a Jacobi–Gauss–Lobatto and
Gauss–Radau collocation method, based on shifted Jacobi polynomials, to solve fractional
Fokker–Planck equations. Kazem [25] employed an integral operational matrix, based on
Jacobi polynomials, to solve FDEs.

The differential Riccati equation (DRE) is used to describe miscellaneous engineering
and physical phenomena, such as the flow of rivers, the transmission line phenomenon,
stochastic control, dynamic games and financial mathematics [26–28]. The FDRE, which
is a generalization of the DRE, has many applications in science and engineering [29–31],
so various solution strategies have been suggested. Ozturk et al. [32] used the Taylor
collocation method, converting the FDRE into a system of nonlinear algebraic equations,
and then solving the system. Balaji [33] applied the Legendre wavelet operational matrix
method to FDRE, to obtain its approximate solution. Mokhtary and Ghoreishi [34] intro-
duced an operational method constituted of shifted Jacobi polynomials, to solve FDREs.
Kashkari and Syam [35] used the Legendre operational matrix of fractional integration,
to derive a numerical solution for FDREs. According to Jafari et al., [36] adopted a mod-
ified variation iteration method for FDREs, taking into account Adomian polynomials
for nonlinear terms. Bota and Caruntu [37] applied the polynomial least squares method,
to find an analytical solution for FDREs. Merdan [38] applied the fractional variational
iteration method, to obtain an approximate analytical solution for nonlinear FDREs. Odibat
and Momani [39] applied a modification of He’s homotopy perturbation method to the
quadratic FDRE. The homotopy analysis transform method, based on a combination of the
homotopy analysis method and the Laplace decomposition method, was employed by Saad
and Al-Shomrani [40] to solve FDREs. Haq et al. [41] applied the variation of parameters
method, to obtain the analytical solutions of nonlinear quadratic FDREs. Sakar et al. [42]
applied an iterative reproducing kernel Hilbert space method, to obtain the solutions of
FDREs. Yuzbasi [43] studied with the Bernstein collocation method, to obtain the numerical
solutions of FDREs. Li et al. [44] derived the Haar wavelet operational matrix method, to
solve FDREs: they simplified the calculation of the nonlinear term using the block pulse
function. Raja et al. [45] introduced a new computational intelligence technique, based
on artificial neural networks and sequential quadratic programming, to solve nonlinear
quadratic FDREs.

In this paper, we introduce a new method of solving FDREs. We approximate the
solution by an expansion in the finite Mittag-Leffler function. By applying the Galerkin
method, the FDRE is reduced to a nonlinear system of algebraic equations. Solving these
equations gives the approximate solution to the problem. The rest of the paper is organized
as follows: in Section 2, some necessary definitions of fractional calculus and the finite
Mittag-Leffler function are presented, along with some properties of the function; the pro-
posed method is introduced in Section 4; our analysis of the error is presented in Section 5;
some theorems for the error analysis of the method, with the residual correction procedure,
are presented; in Section 6, we give some test examples, to illustrate the application steps
of the method; we compare the results of the proposed method to the results of some other
methods; finally, in Section 7, we summarize the results.

2. Fractional Calculus and Finite Mittag–Leffler Function

In this section, we first give some fundamental definitions of fractional calculus. Then,
the properties of the finite Mittag-Leffler function (MLF) and its fractional derivative
are introduced.
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2.1. Fractional Calculus and Mittag-Leffler Function

Definition 1 ([46]). The fractional integral of order ν > 0 with the lower limit zero for a function
x is defined as

Iνx(t) =
1

Γ(ν)

∫ t

0

x(s)
(t− s)1−ν

ds, ν > 0. (3)

Here, the right-hand side is defined pointwise on [0, ∞), and Γ(.) is the Gamma function.

Definition 2 ([46]). The Caputo derivative of order ν with the lower limit zero for a function x is
defined as

Dνx(t) =
1

Γ(dνe − ν)

∫ t

0

x(dνe)(s)
(t− s)ν+1−dνe ds (4)

= I(dνe−ν)x(dνe)(t), t > 0, ν > 0, (5)

where dνe is the ceiling function of ν.

The following properties [47] apply to the Caputo fractional derivative operator: we
have, for constants ξi, i = 1, 2, ..., N,

Dν
N

∑
i=1

ξixi(t) =
N

∑
i=1

ξiDνxi(t), (6)

as well as, from [48],

DνtN =
Γ(N + 1)

Γ(N + 1− ν)
tN−ν, N > ν− 1. (7)

In the case of ν as an integer, the Caputo differential operator will coincide with the
usual differential operator.

2.2. Mittag-Leffler Function

The Mittag-Leffler function Eξ,η is a function that is dependent on two parameters,
ξ and η. When the real component of ξ is strictly positive, it can be described by the
following series:

Definition 3 ([46]). The MLF of two-parameter ξ, η is defined by

Eξ,η(t) =
∞

∑
i=0

ti

Γ(ξi + η)
, ξ > 0, η > 0, t ∈ R,

where Γ(ξi + η) is the gamma function. As a special case, we have E1,1(t) = et.

3. Finite Mittag-Leffler Function and Its Fractional Derivative

The novel definition of the two-parameter finite Mittag-Leffler function of any integer
i is:

Definition 4. The finite MLF of two-parameter ξ, η can be defined as

Eξ,η
i (t) =

i

∑
k=0

(−1)ktk

Γ(ξk + η)
, ξ > 0, η > 0, t ∈ R, (8)
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that is:

Eξ,η
i (t) =

(−1)iti

Γ(ξi + η)
+

(−1)i−1ti−1

Γ(ξ(i− 1) + η)
+ · · ·+ −t

Γ(ξ + η)
+

1
Γ(η)

.

Based on the above definition, we can write

Eξ,η
i (t) =

(−1)iti

Γ(ξi + η)
+ polynomials of degree < i. (9)

Using (7), the fractional-order derivative of the Mittag-Leffler function (8) can be
calculated as

DνEξ,η
i (t) =

i

∑
k=0

Dν(−1)ktk

Γ(ξk + η)

=
i

∑
k=0

Γ(k + 1)(−1)k

Γ(k + 1− ν)

tk−ν

Γ(ξk + η)
, ξ > 0, η > 0, t ∈ R.

4. The Fundamental Concepts of the Mittag-Leffler–Galerkin Method

In this section, we apply the Galerkin method, Equation (13), which has been used
to solve problems in structural mechanics, dynamics, fluid flow, hydrodynamic stability,
magnetohydrodynamics, heat and mass transfer, acoustics, microwave theory, neutron
transport, etc. Problems governed by ordinary differential equations, partial differential
equations and integral equations have been investigated via Galerkin formulations. Steady,
unsteady and eigenvalue problems have proved to be equally amenable to the Galerkin
treatment. Essentially, any problem for which governing equations can be written down is
a candidate for a Galerkin method [49].

For the first time, we introduce a novel numerical method, namely the Mittag-Leffler–
Galerkin (MLG) method, for solving FDREs.

Let x(t) be the exact solution of Equations (1) and (2). We will use the proposed new
MLG method to approximate the exact solution x(t), as follows:

x(t) ' xN (t) =
N

∑
i=0

ciE
ξ,η
i (t) = C E(t). (10)

Here, C is an unknown constant matrix of size 1× (N + 1) that must be determined,
and E(t) is a matrix of size (N + 1)× 1 that consists of Mittag-Leffler-basis polynomial
elements, defined as

C = [c0, . . . , cN ]1×(N+1), E(t) =
[

Eξ,η
0 (t), Eξ,η

1 (t), . . . , Eξ,η
N (t)

]
(N+1)×1

.

Directly from the Mittag-Leffler-basis polynomial elements, the fractional derivative
Dνx(t) can be stated as

Dνx(t) = C Dν E(t). (11)

To use MLG to solve Equation (1), subject to the initial condition (2), first substitute
Equations (10) and (11) into Equation (1), to obtain the residual function R(t):

<(t) = C Dν E(t) + a(t)(C E(t))2 + b(t) C E(t)− g(t). (12)
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We can obtain N nonlinear algebraic equations sets, by using the Galerkin method [49]:

1∫
0

<N(t)Eξ,η
i (t)dt = 0, i = 0, . . . , N − 1. (13)

In addition, by inserting the initial condition (2) into Equation (10), we get

xN (0) = C E(0) = x0. (14)

The resulting combination of (13) and (14) yields N + 1 of nonlinear equations with
unknown coefficients c0, c1, . . . , cN that can be solved by the Newton method. As a result,
the MLG solution to the xN(t) problem is obtained.

5. Error Analysis

This section investigates the error eN (t) = x(t)− xN (t), where x(t) is the exact so-
lution and xN(t) is the MLG solution. We begin by defining the error by two theorems.
The approach is then configured with the residual procedure, which produces estimates of
the error, and new approximate solutions.

Theorem 1. Let us approximate x(t) ∈ C∞[0, 1] as xN (t), given in (10). Then, for every t ∈ [0, 1]
there exists v ∈ [0, 1], such that

‖x(t)− xN (t)‖∞ ≤
Γ(ξ(N + 1) + η)

(N + 1)!
|Eξ,η

N+1(t)| max
v∈[0,1]

|x(N+1)(v)|. (15)

Proof. Let x(t) ∈ C∞[0, 1] be approximated by xN(t), given in (10). Let us define the function:

L(t) = x(t)− xN (t)− θEξ,η
N+1(t).

Let us select the parameter θ, such that the equation L(t) = 0 has a solution t0, but t0 is
not a root of Eξ,η

N+1(t), i.e., Eξ,η
N+1(t0) 6= 0. Then, if we solve the equation L(t0), with respect

to θ, we get x(t0)− xN (t0)− θEξ,η
N+1(t0) = 0, so that

θ =
x(t0)− xN (t0)

Eξ,η
N+1(t0)

. (16)

Given x(t) ∈ C∞[0, 1], Eξ,η
N (t0) ∈ CN [0, ∞] and Eξ,η

N+1(t0) ∈ CN+1[0, ∞], then L(t) ∈
CN+1[0, 1] and L(N+1)(t) has at least one root in the interval; that is:

L(N+1)(v) = x(N+1)(v)− θ
[

Eξ,η
N+1(v)

](N+1)
−
[

Eξ,η
N (v)

](N)
= 0. (17)

By using (9), the last term of (17), given
[

Eξ,η
N (v)

](N)
= 0 and

Eε,η
N+1(v) =

vN+1

Γ(ξ(N + 1) + η)
+ lower− degree polynomials,

then [
Eξ,η

N+1(v)
](N+1)

=
(N + 1)N(N − 1)× ...× 3× 2× 1

Γ(ξ(N + 1) + η)

=
(N + 1)!

Γ((ξ(N + 1)) + η)
.
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Substituting
[

Eξ,η
N+1(v)

](N+1)
into (17) yields as follows:

θ =
Γ((ξ(N + 1)) + η)

(N + 1)!
x(N+1)(v). (18)

Using Equations (16)–(18), we can write the following equation:

x(t0)− xN (t0) =
Γ((ξ(N + 1)) + η)

(N + 1)!
Eξ,η

N+1(t0)x(N+1)(v), (19)

and so

|x(t0)− xN (t0)| =
Γ((ξ(N + 1)) + η)

((N + 1)!
|Eε,η

N+1(t0)||x(N+1)(v)|.

Finally, taking the maximum of |x(N+1)(v)| completes the proof.

Theorem 2. Let x(t) ∈ C∞[0, 1] be the solution, and xN (t) be the MLG solution of (1)–(2),
respectively, and let pN(t) = ∑N

k=0 cp
k Eξ,η

k (t). Then, for every t ∈ [0, 1], there exists v ∈ [0, 1],
such that the following inequality holds:

eN(t) ≤
Γ(ξ(N + 1) + η)

(N + 1)!
|Eξ,η

N+1(t)| max
v∈[0,1]

|p(N+1)(v)|+
N

∑
k=0
|cp

k − cx
k ||E

ξ,η
k (t)|.

Proof. As xN (t) is the MLG solution of (1)–(2), we can write the error as

|x(t)− xN (t)| = |x(t)− pN(t) + pN(t)− xN (t)|
≤ |x(t)− pN(t)|+ |pN(t)− xN (t)|

≤ Γ(ξ(N + 1) + η)

(N + 1)!
|Eξ,η

N+1(t)| max
v∈[0,1]

|p(N+1)(v)|+ |pN(t)− xN (t)|

≤ Γ(ξ(N + 1) + η)

(N + 1)!
|Eξ,η

N+1(t)| max
v∈[0,1]

|p(N+1)(v)|+ |
N

∑
k=0

(cp
k − cx

k )Eξ,η
k (t)|

≤ Γ(ξ(N + 1) + η)

(N + 1)!
|Eξ,η

N+1(t)| max
v∈[0,1]

|p(N+1)(v)|+
N

∑
k=0
|cp

k − cx
k ||E

ξ,η
k (t)|.

Now, we constitute the residual correction procedure.

Theorem 3. Let x(t) be the exact solution of (1)–(2), and let xN(t) be the MLG solution, respec-
tively. The error eN(t) satisfies the following equation:{

DνeN(t) = −a(t)e2
N(t)− 2a(t)eN(t)xN(t)− b(t)eN(t)−<N(t),

eN(0) = x0 − xN(0).
(20)

Proof. We have

<N(t) = DνxN(t) + a(t)x2
N(t) + b(t)xN(t)− g(t),
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and Dνx(t) + a(t)x2(t) + b(t)x(t) = g(t). Then:

DνeN(t) = Dµx(t)− DνxN(t)

= −a(t)x2(t)− b(t)x(t) + g(t)−<N(t) + a(t)x2
N(t) + b(t)xN(t)− g(t)

= −a(t)x2(t)− b(t)x(t)−<N(t) + a(t)x2
N(t) + b(t)xN(t)

= −a(t)x2(t) + a(t)x2
N(t)− b(t)x(t) + b(t)xN(t)−<N(t)

= −a(t)(x2(t)− x2
N(t))− b(t)(x(t)− xN(t))−<N(t)

= −a(t)eN(t)(x(t) + xN(t))− b(t)eN(t)−<N(t)

= −a(t)eN(t)(eN(t) + 2xN(t))− b(t)eN (t)−<N (t)

= −a(t)e2
N
(t)− 2a(t)eN (t)xN (t)− b(t)eN (t)−<N (t).

By solving the error problem (20) by the MLG method, we get the approximation for
the error, i.e.,

eN,M(t) =
M

∑
i=0

ce
i Eξ,η

i (t),

where the coefficients ce
i , i = 0, 1, 2, . . . , M are unknown constants. Hence, the error can be

estimated by using eN,M(t) in the case of ‖eN (t)− eN,M(t)‖ < ε. On the other hand, xN (t) +
eN,M(t) is also an approximate solution of (1)–(2). We call the solution xN (t) + eN,M(t), as
the corrected MLG solution. The corrected MLG solution is a better approximation than
the MLG solution in any given norm, whenever

‖eN (t)− eN,M(t)‖ < ‖x(t)− xN (t)‖.

6. Numerical Experiments

In this section, we present some numerical experiments to show how the method is ap-
plied, to show the efficiency of the method—by giving the precision of the results obtained
using the method—and to compare the method to other methods. All the experiments
were performed using Maple on a laptop with an Intel Core i3 processor and 4GB of RAM.

Example 1. As a first example, let us apply the method to the following FDRE, whose exact solution
is x(t) = t2 [35,37]:

D
1
2 x(t) + x(t) + x2(t) =

8
3
√

π
t

3
2 + t2 + t4, 0 ≤ t ≤ 1, (21)

with the condition
x(0) = 0. (22)

For N = 2, the MLG solution can be written as

x2(t) =
2

∑
k=0

ckEξ,η
k (t)

= c0Eξ,η
0 (t) + c1Eξ,η

1 (t) + c2Eξ,η
2 (t).

From ξ = 1
2 , η = 1, Equation (12) gives Equation (A1) (see Appendix A). In addition, we

have, from Equation (22),
c0 + c1 + c2 = 0. (23)

Finally, by solving Equations (23) and (A1) (see Appendix A), we obtain

c0 = −5.07096009275× 10−13, c1 = −1.00000000000 and c2 = 1.00000000000.
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Thus,

x2(t) = c0E
1
2 ,1
0 (t) + c1E

1
2 ,1
1 (t) + c2E

1
2 ,1
2 (t)

= c0 + c1(1−
2t√

π
) + c2(1−

2t√
π

+ t2)

= −5.07096009275× 10−13 + 1.00000000000t2

' t2.

From Equation (23), we construct the error equation{
D

1
2 (e2(t) + x2(t)) + e2(t) + x(t) + (e2(t) + x(t))2 = 8

3
√

π
t

3
2 + t2 + t4,

e2(0) = x2(0).
(24)

Let us solve error Equation (24) by using the MLG method for M = 3. The MLG solution of
the error equation is obtained as

e2,3(t) = 4× 10−198 − 9.0414× 10−99
√

π
t + 6.6595× 10−99t2 − 3.9160× 10−100

√
π

t3.

Adding this solution to the MLG solution yields the corrected MLG solution. We present the
error, with its estimations and the corrected error, in Figure 1 for (N, M) = (2, 3). We can say,
from the figures, that the error estimation obtained by the procedure well fits the error.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

|e
2
(t

)|
, 
|e

2
,3

(t
)|

10-99

Absolute error

Estimating error
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t
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1
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1.4

|e
2
(t

)-
e

2
,3

(t
)|

10-100

Corected absolute error

Figure 1. The error, its estimations and the corrected error, for Example 1 and (N, M) = (2, 3).

The development of the basic definition, Equation (8), was realized this way, and affected
the convergence of solutions; we added a comparison between the development and the original
definition. Now, if we use

Eξ,η
i (t) =

i

∑
k=0

tk

Γ(ξk + η)
,

we have
c0 = −5.10444760178, c1 = 16.9410134078, c2 = −11.8365658060,
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and then

x2(t) =
10.2088952036t√

π
− 11.8365658060t2

6= t2.

It appeared to us that the original definition had a solution that was not convergent; however, in
the developed definition, the solution was convergent.

Example 2. Let us consider the following FDRE:

D
1
2 x(t)− tx2(t) =

16
5

t
5
2
√

π
− t7, 0 ≤ t ≤ 1, (25)

x(0) = 0. (26)

The exact solution to the problem is

x(t) = t3.

Let us find the MLG solution to the problem for N = 3, which can be written as follows:

x3(t) =
3

∑
k=0

ckEξ,η
k (t)

= c0Eξ,η
0 (t) + c1Eξ,η

1 (t) + c2Eξ,η
2 (t) + c3Eξ,η

3 (t).

From ξ = 1
2 , η = 1, (12) gives Equation (A2) (see Appendix A). In addition, we have, from

Equation (26):
c0 + c1 + c2 + c3 = 0. (27)

Finally, by solving Equations (27)–(A2), we obtain

c0 = 1.1901312585× 10−9, c1 = 3.0458221798× 10−9, c2 = 1.3293403878,

and c3 = −1.329340392. Thus, we obtain the MLG solution for the problem and N = 3 as

x3(t) = −2.39× 10−9
√

π
t + 4.24× 10−9t2 +

1.77245385607√
π

t3

' t3.

From Equation (20), we construct the error equation{
D

1
2 e3(t) = te2

3(t) + 2te3(t)x3(t)−<3(t),
e3(0) = −x3(0),

(28)

where

<3(t) = D
1
2 x3(t)− tx2

3(t)− (
16
5

t
5
2
√

π
− t7)

= 2.39449496167× 10−13
√

t(7.53982239058× 1012t2 − 26640.7057024t

+6354.24705550)

−t(
2.39000000000× 10−9

√
π

t− 4.2400000000× 10−9t2

+
1.77245385607√

π
t3)2 − 16

5
√

π
t

5
2 + t7.
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By solving the error problem (28) for M = 4, we obtain the estimation of the error as

e3,4(t) = −3× 10−21 − 2.40732926828× 10−9
√

π
t + 4.30060806282× 10−9t2

−5.35088552742× 10−9
√

π
t3 + 5.4884232558× 10−11t4.

For (N, M) = (3, 4), the error and the error estimation of Example 2 and the corrected error
results are drawn in Figure 2.
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Figure 2. The error with its estimation by the procedure and the corrected error for Example 2 and
(N, M) = (3, 4).

In Table 1, we present the effects of the Mittag-Leffler parameters ξ and η on the error, which
shows that our results are more accurate:

Table 1. The effects of the Mittag-Leffler parameters ξ and η on the error for Example 2 and N = 3.

ξ η Absolute Error

0.0 0.1 5.782602642× 10−10

0.2 1.840492393× 10−9

0.3 1.900000000× 10−9

0.4 4.413182132× 10−9

0.5 1.560493121× 10−9

0.5 0.9 1.853612308× 10−11

1 1.934584037× 10−11

2 1.150677936× 10−10
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Example 3. Consider the following FDRE [43,45]:

Dνx(t) + x2(t)− 1 = 0, 0 ≤ t ≤ 1, (29)

x(0) = 0. (30)

The exact solution of the problem is x(t) = tanh(t) for ν = 1.
We apply the MLG method to the problem for ν = 1, ξ = 1

2 , η = 1. The MLG solutions for
N = 4 and N = 8 are obtained as follows:

x4(t) = −1× 10−10 + 0.9998413015t + 0.0081494057t2

−0.3915419735t3 + 0.1451458340t4,

x8(x) = 0.999794070t + 0.5516765e− 2t2 + 0.1917058000t4 + 0.4684949362t6

+0.0897t8 − 0.381095428t3 − 0.2724512057t5 − 0.3400392225t7 + 10−9.

By applying the method to the error equations obtained by x4 and x8, the estimations of e4 and
e8 are found for M = 7 and M = 9, respectively, as follows:

e4,7(t) = ce
0E

1
2 ,1
0 (t) + ce

1E
1
2 ,1
1 (t) + ce

2E
1
2 ,1
2 (t) + ce

3E
1
2 ,1
3 (t) + ce

4E
1
2 ,1
4 (t) + ce

5E
1
2 ,1
5 (t)

+ce
6E

1
2 ,1
6 (t) + ce

7E
1
2 ,1
7 (t)

= 1.8629× 10−4t− 0.1208t6 − 0.0090t2 + 0.0663t3 − 0.1822t4 + 0.2240t5 + 0.0214t7,

e8,9(t) = −7.3650× 10−6t + 2.6532e− 04t2 + 0.0171t4 + 0.0892t6 + 0.0480t8 − 0.0031t3

−0.0514t5 − 0.0894t7 − 0.0107t9 − 4× 10−100,

The results are given in Figure 3. As a result, we can say that the absolute errors e4 and e8
are estimated by e4,7 and e8,9, respectively. On the other hand, for each case, the corrected MLG
solutions are better than the MLG solutions.

Table 2 presents the comparison of the approximate solution of x(t) for ν = 1, N = 12 to
the Bernoulli wavelet operational matrix [50], the computational intelligence approach [45] and
the Bernstein collocation method [43]. For ν = 1, the results were compared to the operational
matrices method [51], the differential squared method [52] method, the method dependent on shifted
Chebyshev polynomials [53] and the hybrid functions approach [54] in Table 3. Figure 4 shows the
results of the MLG method for ν = 1 and different values of N. The approximate values of x(t) for
N = 10 and ν = {0.75, 0.9, 0.95, 1} are given in Figure 5. Although the results of the MLG method
are better than the results of the hybrid functions approach [54], we can say from Tables 2 and 3 that
it yields approximation results similar to the other methods for this problem. We conclude from
Figure 4 that increasing = N yields better approximation results for the problem.

Table 2. Comparison of the approximate solutions of x(t) with the MLG method to the methods
in [43,45,50] schemes, with ν = 1 for Example 3.

t Exact Solution Method [43] Method [45] Method [50] MLG Method

0.0 0.00000000000 0.000000000000 0.0000000011 0.000000000000 0.00000000000
0.2 0.19737532022 0.197375320493 0.1973918880 0.19737532017 0.19737532019
0.4 0.37994896226 0.379948962506 0.3799632287 0.379948962207 0.37994896222
0.6 0.53704956700 0.537049567214 0.5370622335 0.53704956701 0.53704956700
0.8 0.66403677027 0.664036770562 0.6640456511 0.66403677030 0.66403677029
1.0 0.76159415596 0.761594224400 0.7616019763 0.76159415595 0.76159415595
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Table 3. Comparison of the errors obtained by the MLG method to the methods in [51–54] schemes,
with ν = 1 for Example 3.

t
Method [51] Method [54] Method [52] Method [53] MLG Method

N = 12 N = 20 N = 12 N = 12 N = 12

0.1 1.11× 10−10 7.2701× 10−6 8.3141× 10−11 3.0881× 10−11 2.8244× 10−11

0.2 2.04× 10−10 1.0922× 10−5 9.1576× 10−11 4.8024× 10−11 3.4678× 10−11

0.3 2.10× 10−12 1.3476× 10−5 7.5812× 10−11 4.6345× 10−11 3.5020× 10−11

0.4 2.23× 10−10 1.4755× 10−5 1.1151× 10−10 4.8119× 10−11 2.7373× 10−11

0.5 4.03× 10−10 1.4778× 10−5 5.5890× 10−11 9.7303× 10−12 9.2649× 10−12

0.6 1.79× 10−10 1.3730× 10−5 7.8642× 10−11 1.7617× 10−11 1.0959× 10−11

0.7 8.59× 10−11 1.1891× 10−5 6.2746× 10−11 4.1180× 10−11 2.2709× 10−11

0.8 2.70× 10−10 9.5751× 10−6 5.3920× 10−11 3.2346× 10−11 2.3907× 10−11

0.9 1.89× 10−10 7.0732× 10−6 4.8389× 10−11 2.6919× 10−11 1.5571× 10−11
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Figure 3. The absolute error e4 with its estimation e4,7; e8 with its estimation e8,9; and the corrected
errors for Example 3.
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Figure 4. Log10 of the absolute error versus N at ν = 1 for Example 3.
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Figure 5. MLG solutions of x(t) for N = 10 with ν = {0.75, 0.9, 0.95, 1} and Example 3.

Figure 6 for N = 12, the absolute error for Example 3.
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Figure 6. The absolute error for Example 3 and N = 12.

Example 4. Let us consider the following FDRE [55]:

Dνx(t)− x2(t)− 1 = 0, 0 ≤ t ≤ 1, (31)

x(0) = 0. (32)

which has the exact solution for ν = 1 is x(t) = tan(t).
The results obtained when the method is applied for ν = 1 and N = {4, 8, 12} are given below:

x4(t) = 0.93859t + 0.53891t2 − 0.98546t3 + 1.06529t4;

x8(t) = 0.99943t + 0.0192t2 + 1.04658t4 + 4.07934t6 + 1.03275t8 + 0.12481t3

−2.65049t5 − 3.09424t7 − 10−13;

x12(t) = 0.99998t + 8.9376× 10−04t2 + 0.0986t4 + 0.79925t6 + 0.28047t8 − 0.0774t10

+0.12974t12 + 0.31956t3 − 0.24372t5 − 0.81591t7 + 0.27357t9 − 0.20760t11.

The solution for N = 12 and ν = 1 is given in Tables 4 and 5, by comparing the results
obtained to some other numerical methods, such as the wavelet operational matrix method [44],
the method dependent on shifted Chebyshev polynomials [53] and the decomposition algorithm [55].
We can conclude, from the tables, that the MLG method produces results similar to the other methods
cited, except for the decomposition algorithm [55]. Figure 7 depicts the function Log10 of the
absolute error for ν = 1 and various values of N, whereas Figure 8 shows the approximate values of
x(t) for N = 10 and some values of ν. In conclusion, we can say that increasing N gives better
approximations for this problem. The errors are given in Figures 9 and 10 for N = 12 and N = 10,
respectively. In Figure 10, the estimation of absolute error and the corrected absolute error for
Example 4 are given. We can say from Figures 9 and 10 that the MLG method gives more accurate
results, and that the residual correction procedure estimates the error well.
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Table 4. Comparison of the approximate solution of Example 4, using the MLG method, to the
solutions obtained by the methods presented in [44,53,55] for ν = 1:

t Exact Solution Method [44] Method [55]
Method [53] Our Method

N = 14 N = 12

0.0 0.00000000000 0.0000000000 0.0000000000 0.00000000000
0.1 0.10033467208 0.100342 0.1003346713 0.1003346714 0.10033465034
0.2 0.20271003550 0.202726 0.2027099297 0.2027100349 0.20271006703
0.3 0.30933624961 0.309372 0.3093343442 0.3093362509 0.30933621959
0.4 0.42279321873 0.422832 0.4227777155 0.4227932186 0.42279323380
0.5 0.54630248984 0.546363 0.5462212762 0.5463024891 0.68413677385
0.6 0.68413680834 0.684251 0.6838056920 0.6841368110 0.68413677385
0.7 0.84228838046 0.842411 0.8411449022 0.8422883779 0.84228842425
0.8 1.02963855705 1.029849 1.0261001110 1.0296385599 1.02963851386
0.9 1.26015821755 1.260573 1.2499664940 1.2601582184 1.26015825498
1.0 1.55740772465 1.557938 1.5293009690 1.5574077258 1.55740772465
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Figure 7. Log10 of the absolute error versus N at ν = 1 for Example 4.
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Figure 8. Approximate solutions of x(t) for N = 10 with ν = {0.8, 0.9, 0.95, 1} for Example 4.
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Table 5. Comparison of the absolute errors obtained using the MLG method for ν = 1, in Example 4,
to the absolute errors obtained using the methods in [53,55]:

t Method [55]
Method [53] Our Method

N = 12 N = 12

0.0 0.00000000 0.00000000 0.00000000
0.1 8.162× 10−10 2.8897× 10−8 2.1736× 10−8

0.2 1.0580× 10−7 5.1478× 10−8 3.1526× 10−8

0.3 1.9050× 10−6 4.6086× 10−8 3.0013× 10−8

0.4 1.5500× 10−5 3.4828× 10−8 1.5069× 10−8

0.5 8.1210× 10−5 2.3389× 10−8 1.1149× 10−8

0.6 3.3110× 10−4 5.0755× 10−8 3.4490× 10−8

0.7 1.1430× 10−3 7.3355× 10−8 4.3796× 10−8

0.8 3.5380× 10−3 4.4578× 10−8 4.3187× 10−8

0.9 1.1090× 10−3 5.8748× 10−8 3.7439× 10−8

1.0 2.8110× 10−3 2.2418× 10−8 1.7293× 10−15

Figure 9 for N = 12, the absolute error for Example 4.
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Figure 9. The graph of the absolute error for Example 4 and N = 12.
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Figure 10. The absolute error, estimation of absolute error and the corrected absolute error for
Example 4 for (N, M) = (10, 12).

Example 5. As a final example, let us consider the following FDRE [43,53]:

Dνx(t)− 2x(t) + x2(t)− 1 = 0, 0 ≤ t ≤ 1, (33)

x(0) = 0. (34)

which has the exact solution for ν = 1 is x(t) = 1−
√

2
√

2 tanh(
√

2t)−1
tanh(

√
2t)−

√
2

.

Applying the MLG method to the problem for ν = 1 and N = {4, 8, 12} yields the following
MLG solutions:

x4(t) = 0.9655t + 1.26574t2 − 0.14446t3 − 0.39736t4;

x8(t) = 0.99991t + 1.00259t2 − 0.26776t4 − 0.58544t6 − 0.35438t8 + 0.31134t3

−0.46069t5 + 1.04393t7 + 4× 10−91;

x12(t) = t + 0.99999t2 − 0.33748t4 − 0.36952t6 − 1.60334t8 − 2.81446t10 − 0.234263t12

+0.33358t3 − 0.42847t5 + 0.93948t7 + 2.90224t9 + 1.30175t11.

The results for ν = 1, N = 12 are given in Table 6 and Figure 11 with a comparison to the
approximate solutions obtained by the methods in [43,53]. In addition, Figure 12 displays Log10 of
absolute errors for ν = 1 and different values of N. We conclude that, as in the other examples, more
accurate results are obtained by increasing N. The approximate values of x(t) for N = 10, and
some values of ν, are given in Figure 13. The absolute error, with its estimation, and the corrected
absolute error for Example 5 are drawn in Figure 14 for N = 4. The estimation absolute error
for Example 5 are drawn in Figure 15 for N = 5 and N = 8.

The procedure estimates the error well, and leads to a better approximate solution. We also
compared the absolute errors estimated by the MLG method to the Bernstein collocation method [43]
for ν = 0.9, and we give the results in Table 7.
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Table 6. Comparison of the MLG solution to the methods in [43,53] for ν = 1 and Example 5.

t Exact Solution Method [43]
Method [53] Our Method

N = 14 N = 12

0.0 0.0000000000 0.000000000 0.0000000000 0.0000000000
0.2 0.2419767996 0.241977035 0.2419767995 0.24197679964
0.4 0.5678121663 0.567812472 0.5678121662 0.56781216535
0.6 0.9535662164 0.953566555 0.9535662164 0.95356621379
0.8 1.3463636554 1.346363997 1.3463636552 1.34636365269
1.0 1.6894983916 1.689510190 1.6894983916 1.68949839159

Table 7. Comparison of the estimated absolute errors for various values of N and M for ν = 0.9 of
Equation (33) to ξ = 0.5, η = 1.

t
(N, M) = (5, 7) (N, M) = (8, 9)

Method [43] Our Method Method [43] Our Method

0 0 0 0 0
0.2 2.4585× 10−3 1.8653× 10−3 5.5413× 10−5 9.2910× 10−6

0.4 2.3010× 10−3 1.4361× 10−3 6.6222× 10−5 1.1642× 10−5

0.6 2.5766× 10−3 2.3933× 10−4 6.5671× 10−5 6.2586× 10−6

0.8 1.6519× 10−3 4.8353× 10−4 5.6089× 10−5 9.4982× 10−6

1.0 6.3526× 10−3 1.1605× 10−4 6.4831× 10−4 4.2162× 10−6
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Figure 11. The absolute error for Example 5, for N = 12.
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Figure 12. Log10 of the absolute error versus N at ν = 1 for Example 5.
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Figure 13. Approximate solutions of x(t) for N = 10 with ν = {0.6, 0.8, 0.9, 0.95, 1} for Example 5.
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Figure 14. The absolute error, estimation of absolute error and the corrected absolute error for
Example 5, for (N, M) = (4, 6) with ν = 1.
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Figure 15. The estimation of absolute error for Example 5, for (N, M) = (5, 7) and (N, M) = (8, 9)
with ν = 0.9.

7. Conclusions

In this study, we introduced a new numerical method for solving fractional differential
Riccati equations. The method is based on the Mittag-Leffler function and the Galerkin
method. Some theorems related to the error analysis of the method were presented. The er-
ror can be bounded by these theorems. The residual correction method allows for estimating
the absolute error and obtaining a new approximate solution, which was presented for the
method. We applied the method to some test examples, to illustrate its effectiveness and
how the method is applied. The results obtained by the method were given by comparing
the results of some other previously known methods for the solutions of fractional Riccati
equations. The numerical test results showed that the method gave good approximation re-
sults for the examples. In addition, while only similar results were obtained by some of the
known methods, more accurate results were obtained for the problems under consideration
than were obtained by others of the known methods.
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Appendix A

1
15π

3
2

(
15 c0

2π3/2 + 30 c0c1π3/2 + 40 c0c2π3/2 + 15 π3/2c1
2 + 40 π3/2c1c2 + 28 π3/2c2

2

+15 c0π3/2 + 15 π3/2c1 + 20 π3/2c2 + 20 c1
2√π + 40 c1c2

√
π + 20 c2

2√π − 30 c0c1π

−30 c0c2π − 30 c1
2π − 75 c1c2π − 45 c2

2π − 8 π3/2 − 40 c1
√

π − 40 c2
√

π − 15 c1π

+c2π − 16 π

)
= 0,

1
210 π

5
2

(
− 420 c1

2π − 420 c2
2π + 672 c1π + 672 c2π + 560 c0c1π3/2 + 560 c0c2π3/2

−840 c1c2π + 840 π3/2c1
2 + 1176 π3/2c2

2 − 1050 π2c0c2 − 1680 π2c1c2 − 840 π2c0c1
−630 π2c1

2 − 1120 π2c2
2 − 420 c1π2 − 301 π2c2 + 2016 π3/2c1c2 + 210 π5/2c0

2

+210 π5/2c1
2 + 392 π5/2c2
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