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The nuclear pregnane X receptor (PXR; NR1I2) is an impor-
tant component of the body’s adaptive defense mechanism
against toxic substances including foreign chemicals
(xenobiotics). PXR is activated by a large number of endog-
enous and exogenous chemicals including steroids, anti-
biotics, antimycotics, bile acids, and the herbal antidepres-
sant St. John’s wort. Elucidation of the three-dimensional
structure of the PXR ligand binding domain revealed that it
has a large, spherical ligand binding cavity that allows it to
interact with a wide range of hydrophobic chemicals. Thus,
unlike other nuclear receptors that interact selectively
with their physiological ligands, PXR serves as a general-

ized sensor of hydrophobic toxins. PXR binds as a het-
erodimer with the 9-cis retinoic acid receptor (NR2B) to
DNA response elements in the regulatory regions of cyto-
chrome P450 3A monooxygenase genes and a number of
other genes involved in the metabolism and elimination of
xenobiotics from the body. Although PXR evolved to protect
the body, its activation by a variety of prescription drugs
represents the molecular basis for an important class of
harmful drug-drug interactions. Thus, assays that detect
PXR activity will be useful in developing safer prescription
drugs. (Endocrine Reviews 23: 687–702, 2002)
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I. Introduction

EVERY DAY THE body must defend itself against myriad
xenobiotics that are either ingested in the diet, in-

haled, or otherwise absorbed. The cytochrome P450
enzymes (CYPs), which comprise a large family of heme-
containing monooxygenases, represent an important con-
stituent of the body’s defense mechanism against foreign
chemicals (1). Although some CYPs are highly selective in
their interactions with substrates, others oxidize a wide
variety of chemicals, including many xenobiotics. An im-
portant feature of the CYP family is that expression of
some isoforms, notably CYP1A, CYP2B, CYP3A, and
CYP4A subfamily members, can be dramatically increased
by xenobiotics, thereby providing an adaptive, feedfor-
ward regulatory mechanism that amplifies the physiolog-
ical response to xenobiotic challenge (2). Members of the
CYP3A subfamily are noteworthy in that they are the most
abundant CYPs in the human liver and intestine and dis-
play a broad substrate specificity (3– 6). Expression of
CYP3A family members can be strongly induced by a
structurally diverse set of chemicals, many of which are
CYP3A substrates (2– 4, 6). Induction of CYP3A levels
represents the basis for the actions of catatoxic steroids,
which were first reported over 30 yr ago for their ability
to induce hepatic monooxygenase activity and to confer
resistance to toxic substances in rodents (7). However,
because CYP3A isoforms are involved in the metabolism
of more than 50% of all prescription medicines, the in-
duction of their expression also represents a basis for a
common class of potentially life-threatening drug-drug
interactions in which one drug accelerates the metabolism
of a second drug (8). Thus, elucidation of the mechanisms
underlying CYP3A gene expression are important for the
development of safer prescription medicines.

Abbreviations: AF, Activation function; BXR, benzoate X receptor;
CAR, constitutive androstane receptor; CARLA, coactivator receptor
ligand assay; CYP, cytochrome P450 enzyme; DBD, DNA binding do-
main; DR, direct repeat; ER, everted repeat; ET-743, ecteinascidin 743;
FXR, farnesoid X receptor; GR, glucocorticoid receptor; HNF-4, hepa-
tocyte nuclear factor-4; LBD, ligand binding domain; LCA, lithocholic
acid; MDR1, multidrug resistance protein 1; MRP2, multidrug resis-
tance-associated protein 2; NR, nuclear receptor; PAR, pregnane-acti-
vated receptor; PCN, pregnenolone 16�-carbonitrile; PXR, pregnane X
receptor; RXR, 9-cis retinoic acid receptor; SJW, St. John’s wort; SPA,
scintillation proximity assay; VDR, vitamin D receptor.
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The identification and characterization of the pregnane X
receptor (PXR; NR1I2)1 was an important step forward in
understanding the underpinnings of the body’s xenobiotic
defense system (9–12). PXR is a member of the nuclear re-
ceptor (NR) family of ligand-activated transcription factors
that includes the steroid, retinoid, and thyroid hormone re-
ceptors as well as many orphan receptors for which physi-
ological ligands have yet to be identified (13, 14). Several
lines of evidence indicated that PXR regulated CYP3A gene
expression: PXR is highly expressed in the liver and intestine;
PXR binds as a heterodimer with the 9-cis retinoic acid re-
ceptor (RXR; NR2B) to previously characterized xenobiotic
response elements in CYP3A gene promoters; and, impor-
tantly, PXR is activated by the spectrum of chemicals that are
known to induce CYP3A gene expression. Experiments per-
formed with transgenic mice have definitively established
that PXR functions as a critical regulator of CYP3A expres-
sion in vivo (15, 16). Additional studies have shown that PXR
regulates a large number of genes involved in different as-
pects of xenobiotic metabolism, including oxidation, conju-
gation, and transport. Recently, the elucidation of the three-
dimensional structure of the PXR ligand binding domain
(LBD) has provided important insights into the structural
basis for the promiscuous ligand binding properties of this

unusual NR (17). This review highlights the studies that have
established PXR as a generalized xenobiotic sensor that pro-
tects the body from chemical challenge, but which also rep-
resents the basis for a number of common drug-drug
interactions.

II. Regulation of CYP3A by Xenobiotics

A. Induction of CYP3A by structurally diverse compounds

For more than 30 yr, it has been understood that certain
catatoxic agents, including the synthetic C21 steroid (preg-
nane) pregnenolone 16�-carbonitrile (PCN; Fig. 1), exert their
protective effects by inducing the expression of specific CYP
isoforms (7, 18). The PCN-inducible CYP was purified and
shown to be distinct from previously characterized isoforms
(19). Isolation of the cDNA encoding this CYP, designated
CYP3A23, established it as a member of a novel gene family
(20, 21). Guzelian and co-workers demonstrated that, in ad-
dition to PCN, CYP3A23 expression was also highly induc-
ible by the potent glucocorticoid dexamethasone (22, 23).
Notably, in primary cultures of rat hepatocytes, the dose-
dependent increases in CYP3A23 mRNA after dexametha-
sone treatment did not coincide with that of a typical glu-
cocorticoid-responsive gene, tyrosine aminotransferase (24).
Moreover, the dexamethasone-mediated increase in tyrosine
aminotransferase expression was antagonized by PCN,
whereas induction of CYP3A23 was enhanced in the presence
of both steroids (24, 25). Taken together, these studies dem-

1 This protein has been variously termed PXR, pregnane-activated
receptor (PAR), or steroid and xenobiotic receptor (SXR). Work from
laboratories using these various names will be cited throughout the text.
In the interest of simplicity, we choose to adopt the name “PXR”
throughout the manuscript.

FIG. 1. PXR ligands. Chemical struc-
tures of xenobiotics and endogenous
chemicals that regulate PXR activity.
ET-743 is a PXR antagonist; all other
chemicals are PXR agonists.
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onstrated that the molecular mechanism underlying activa-
tion of CYP3A23 expression by dexamethasone was distinct
from the classical glucocorticoid receptor (GR; NR3C1) sig-
naling pathway.

It is now apparent that the rat CYP3A23 and CYP3A2
genes are inducible by an array of structurally dissimilar
compounds, including steroids such as PCN, dexametha-
sone, betamethasone, hydrocortisone, �-methylpredniso-
lone, mifepristone (RU486), dehydroepiandrosterone, and
spironolactone; the antibiotic triacetyloleandomycin; anti-
fungal drugs such as clotrimazole; polychlorinated biphe-
nyls; the organochloride pesticides trans-nonachlor and
�-chlordane; the calcium channel antagonist nicardipine;
the 11�-hydroxylase inhibitor metyrapone; and the bar-
biturate phenobarbital (23, 26 –36).

In humans, CYP3A4 is the predominant CYP expressed in
normal adult human liver, and it is reported to be involved
in the oxidative metabolism of a plethora of compounds,
including most prescription drugs. Induction of CYP3A4 ex-
pression by xenobiotics is well documented (3, 4). As out-
lined above, this phenomenon underlies a number of clini-
cally important drug interactions and, as such, has received
considerable attention (8). Although CYP3A catalytic activ-
ity, mRNA, and immunoreactive protein have been shown to
be elevated in vivo after treatment of patients with various
drugs, including dexamethasone, triacetyloleandomycin,
and rifampicin, most inducers of CYP3A4 expression have
been delineated using primary cultures of human hepato-
cytes (37–42). One of the most effective activators of CYP3A4
expression, both in vivo and in vitro, is the macrocyclic an-
tibiotic rifampicin (Fig. 1; Refs. 33, 39, 43, and 44). Like
CYP3A23, CYP3A4 expression is inducible by steroids, in-
cluding dexamethasone, RU486 (Fig. 1), spironolactone, and
cyproterone acetate (33, 37, 45, 46). Additionally, CYP3A4 is
inducible by the antifungal agent clotrimazole, phenobarbi-
tal, phenytoin, phenylbutazone, sulfadimidine, the proton
pump inhibitors omeprazole and lansoprazole, and me-
tyrapone (33, 39, 43, 47, 48).

Importantly, induction of CYP3A subfamily members ex-
hibits a distinct species-specific pharmacology. For example,
expression of the human CYP3A4 and rabbit CYP3A6 genes
is strongly activated by rifampicin, whereas the rat CYP3A23
and CYP3A2 genes are poorly induced by this drug (27, 33,
49, 50). Conversely, PCN is an effective inducer of rat CYP3A
genes but a weak inducer of the human CYP3A4 and rabbit
CYP3A6 genes (27, 33). These data hinted that there were
likely to be important species-specific differences in the re-
ceptor(s) that responded to xenobiotics and induced expres-
sion of CYP3A genes.

B. Xenobiotic response elements in CYP3A promoters

To delineate the xenobiotic response elements in the
CYP3A23 gene, Burger et al. (25) fused a 1.5-kb fragment of
the 5�-flanking region to a heterologous thymidine kinase
promoter and a reporter gene. Transient transfection of the
resultant construct into primary cultures of rat hepatocytes
revealed that this fragment was capable of conferring both
dexamethasone- and PCN-responsiveness on reporter gene
expression. Sequential deletion of this region resulted in the

identification of a 164-bp fragment (bases �220 to �56, rel-
ative to the transcription initiation site) that mediated both
the glucocorticoid and antiglucocorticoid effects on a re-
porter gene plasmid (25). In agreement with earlier studies
that characterized induction of the CYP3A23 gene, the
dexamethasone-dependent activation of CYP3A23-reporter
gene constructs was distinct from that of a GR-mediated
response (23–25). A more detailed analysis of the responsive
region led to the identification of three sites that were capable
of forming complexes with nuclear proteins, namely site A
(bases �110 to �91), site B (also known as DexRe-1, bases
�136 to �118), and site C (DexRe-2, bases �169 to �144; Refs.
51 and 52). Each site contained binding motifs for members
of the NR superfamily (53–59). Thus, site A was highly
homologous to the consensus binding site for the orphan
receptor hepatocyte nuclear factor-4 (HNF-4; Refs. 54 and
57); site B contained a direct repeat (DR) of the NR con-
sensus binding site AGTTCA separated by three nucleo-
tides (DR-3; Fig. 2); and site C contained an element that
could be viewed as either an imperfect DR separated by
four nucleotides (DR-4) or everted repeat (ER) separated
by six nucleotides (ER-6). Nuclear extracts prepared from
a rat hepatoma cell line (H4IIE) formed a common protein
complex on sites B and C (54). Importantly, none of these
sites were capable of directly interacting with GR (51, 52).
Transient transfection of CYP3A23-reporter gene con-
structs into rat H4IIE hepatoma cells demonstrated that
the integrity of all three sites was required for maximal
dexamethasone responsiveness (51, 54). Similar studies
performed in primary cultures of rat hepatocytes sup-
ported this multisite mechanism (52). Disruption of the NR
half sites embedded in site B resulted in a complete loss of
responsiveness (52, 54, 59). Moreover, the isolated site B
was shown to be capable of supporting dexamethasone-
and PCN-mediated induction of reporter gene expression
in rat hepatocytes, indicating the importance of this ele-
ment (52, 59). Although sites A and C appear to have little
or no inherent ability to mediate the transcriptional acti-
vation of reporter genes by dexamethasone or PCN, they
are clearly important for maximal induction of CYP3A23
expression (51, 52, 54).

Xenobiotic response elements have also been character-
ized in the proximal promoter regions of the human CYP3A4
and rabbit CYP3A6 genes. When transfected into rat hepa-
tocytes, chimeric CYP3A23- (bases �220 to �56), CYP3A4-
(bases �179 to �35), and CYP3A6- (bases �220 to �56)
reporter gene constructs were strongly activated by dexa-
methasone and PCN but not rifampicin. However, in pri-
mary cultures of rabbit hepatocytes, rifampicin and dexa-
methasone but not PCN transactivated the CYP3A reporter
genes. This study elegantly demonstrated that interspecies
differences in CYP3A induction were determined by cellular
environment rather than the structure of the gene (60). The
dexamethasone-, PCN-, and rifampicin-responsiveness was
mapped to a conserved 18-bp motif spanning nucleotides
�170 to �153 and �177 to �160 of CYP3A4 and CYP3A6,
respectively. This element contained two copies of a NR ER-6
motif (Fig. 2; Ref. 60).
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III. Cloning and Characterization of PXR

A. Cloning of PXR

NRs share a common domain structure that includes a
highly variable N-terminal domain, a central DNA binding
domain (DBD), and a C-terminal LBD (13, 14). The highly
conserved DBD is approximately 70 amino acids in length
and consists of two zinc fingers, each composed of four
cysteine residues that chelate a zinc atom. The LBD is ap-
proximately 250 amino acids in length and folds to form a
hydrophobic pocket into which the ligand binds. In addition
to its ligand binding properties, the LBD also contains dimer-
ization and transcriptional activation motifs, including the
well characterized activation function-2 (AF-2) helix in the
extreme C-terminal portion of the LBD (14, 61). Upon ligand
binding, the AF-2 helix undergoes a conformational change
that permits the receptor to interact with coactivator proteins
and activate transcription. The N-terminal domain of NRs is
highly variable both in terms of length and amino acid se-
quence. A second transcriptional activation function, termed
the AF-1, has been characterized in the N-terminal domains
of a number of the NRs (13, 14).

PXR belongs to the NR1I subfamily of NRs, a group that
includes the mammalian vitamin D receptor (VDR; NR1I1)
and constitutive androstane receptor (CAR; NR1I3) and the
frog benzoate X receptors (BXRs; NR1I2; Fig. 3; Ref. 62). The
two BXR subtypes are selectively activated by amino ben-
zoates present in embryonic extracts (63–65). CAR is acti-
vated by phenobarbital and other xenobiotics and will be
discussed in detail below. PXR was originally identified on
the basis of its sequence homology with other NRs. In 1997,

a mouse sequence first appeared in the Washington Univer-
sity Expressed Sequence Tag database that represented a
fragment of a novel NR LBD. A cDNA encoding the full-
length mouse protein was subsequently cloned, and the re-
ceptor was named PXR based upon its activation by various
natural and synthetic pregnanes (9). Since then, the human,
monkey, dog, rabbit, and rat PXR have been cloned as well
as closely related receptors from chicken and fish, termed
CXR and fish PXR, respectively (10–12, 65–69). The human

FIG. 2. PXR response elements. PXR binds
as a heterodimer with RXR to DR-3, DR-4,
ER-6, and ER-8 elements in the regulatory
regions of the indicated genes. The NR half
sites and their orientations are indicated.
Deviations from the consensus half-site se-
quence AG(G/T)TCA are indicated (x).

FIG. 3. Sequence comparison of PXR across species. Alignment of
human PXR and other NR1I family members. The similarity is ex-
pressed as percentage amino acid identity in the DNA binding (DNA)
and ligand binding (Ligand) domains. Only the LBDs of the pig, dog,
and fish PXRs have been cloned, and the N-terminal domain of the
rhesus PXR has not yet been cloned.
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PXR was cloned by three groups and is alternately referred
to as the pregnane-activated receptor (PAR; Ref. 11) or the
steroid and xenobiotic receptor (SXR; Ref. 12). For the sake
of consistency, we will refer to it as human PXR throughout
this review.

The DBDs of the mammalian PXRs are highly conserved,
sharing more than 95% amino acid identity (Fig. 3; Ref. 67).
However, the LBDs of the PXRs are much more divergent
across species than those of other NRs. For example, the
human and rat PXR share only 76% amino acid identity in
their LBD (Fig. 3), whereas most human and rodent NR
orthologs share more than 90% amino acid identity. Because
only one PXR gene is present in the human genome (70, 71),
it appears likely that the PXRs identified to date are bona fide
orthologs rather than paralogs.

Isoforms of NRs can arise from the same gene as a con-
sequence of either alternate mRNA splicing or differential
promoter usage. Isoforms of both mouse and human PXR
have been described. A variant of mouse PXR, termed PXR.2,
was cloned from liver cDNA and results from an in-frame
splicing event that generates a protein lacking 41 amino acids
in the N-terminal portion of the LBD (9). Mouse PXR.2 is still
a functional receptor but responds to a much more limited
set of compounds than PXR (9). A very similar variant that
lacks 37 amino acids in the LBD has been described in hu-
mans (human PXR.2; Ref. 72). A second, relatively rare hu-
man PXR variant, termed hPAR-2, results in the addition of
39 amino acids to the N terminus of PXR (11). It is not known
whether this N-terminal extension affects PXR activity.

The genomic structure of the human PXR gene was re-
cently described (73, 74). The gene consists of 10 exons and
9 introns, and it spans approximately 30 kb of genomic DNA
on chromosome 3q13–21. The first two exons are used as
alternate 5� ends of PXR transcripts, which accounts for the
hPAR-2 isoform.

B. PXR expression pattern

PXR is highly expressed in the liver, small intestine, and
colon in the human, rabbit, rat, and mouse (9–12, 67–69).
Notably, these are the same tissues where CYP3A genes are
most highly expressed and induced. In rodents, lower levels
of PXR mRNA have also been detected in the kidney, stom-
ach, lung, uterus, ovary, and placenta (9, 69, 75). In humans,
PXR mRNA has been detected in both normal and neoplastic
breast tissue (72).

The PXR promoter has not yet been characterized. How-
ever, dexamethasone increased PXR mRNA levels in pri-
mary cultures of human hepatocytes and rat H4IIE hepatoma
cells (76, 77). This effect appears to be mediated through the
GR because it required only nanomolar concentrations of
dexamethasone and was blocked by the GR antagonist
RU486. Induction of PXR mRNA levels may contribute to the
strong stimulation of CYP3A gene expression by dexameth-
asone. Interestingly, PXR expression in the mouse liver and
ovary was increased approximately 50-fold during preg-
nancy (75). These data suggest that PXR expression may be
stimulated by other hormones and, furthermore, raise the
intriguing possibility that PXR is involved in protecting the

fetus and/or mother from either xenobiotics or high levels of
endogenous steroids.

C. Activation of PXR by xenobiotics and natural steroids

Historically, compounds that activate NRs have been iden-
tified in cell-based reporter assays in which an expression
plasmid encoding the receptor of interest is cointroduced
into cells with a reporter gene plasmid (78). The receptor
expression plasmid can encode either the full-length receptor
or a chimera between the LBD of the receptor and a DBD of
another protein such as the yeast transcription factor GAL4.
The reporter gene plasmid contains binding sites for either
the full-length receptor or the receptor chimera upstream of
a gene encoding a reporter protein that can be readily quan-
titated such as chloramphenicol acetyltransferase or lucif-
erase. The advantages of the chimera system are that it elim-
inates background caused by endogenous receptors present
in the cells and it permits ligand screening without any prior
knowledge of the DNA binding characteristics of the full-
length receptor.

A variety of compounds have been shown to activate PXR
in cell-based reporter assays (Fig. 1). Studies performed with
the mouse PXR showed that it was activated efficiently by the
classic CYP3A inducer PCN as well as by both glucocorti-
coids (e.g., dexamethasone) and antiglucocorticoids (e.g.,
RU486; Ref. 9). These data were the first to suggest that PXR
might play a role in the regulation of CYP3A. Interestingly,
the PXR.2 isoform, which lacks 43 amino acids in the LBD,
displayed a much more restricted activation profile (9). To
date, only the synthetic glucocorticoid dexamethasone-t-
butyl acetate has been reported to activate mouse PXR.2
efficiently in cell-based reporter assays.

Additional studies revealed striking differences in the ac-
tivation profiles of PXR across species. Whereas PCN was an
effective activator of mouse and rat PXR, it had much less
activity on the rabbit and human receptors (10, 12, 67, 68).
Conversely, rifampicin activated human and rabbit PXR but
had virtually no activity on the mouse or rat receptors (10,
12, 67, 68). The PXR activation profiles of these chemicals
correlated closely with their CYP3A induction profiles in
hepatocytes derived from these different species (33, 67).
These data provided strong pharmacological evidence that
PXR serves as a key regulator of CYP3A gene expression and
that the species origin of PXR dictates the CYP3A induction
profile.

The number of chemicals that are reported to activate PXR
has grown rapidly and includes many drugs currently in use
(Table 1). Among the xenobiotics that activate PXR from one
or more species are the established CYP3A inducers me-
tyrapone, clotrimazole, phenobarbital, spironolactone, and
trans-nonachlor (10, 79–81). Other PXR activators include
the calcium channel blocker nifedipine (82); the HIV protease
inhibitor ritonavir (83); the anticancer drugs paclitaxel
(Taxol; Ref. 84; Fig. 1), tamoxifen (85), and 4-hydroxytamox-
ifen (85); the antidiabetic agent troglitazone (67); the choles-
terol-lowering drugs lovastatin and SR12813 (Fig. 1; Refs. 10
and 67); the sedative glutethimide (86); and the endocrine
disruptors bisphenol A, diethylhexylphthalate, and nonyl-
phenol (87, 88).
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In addition to these xenobiotics, PXR is also activated by
a number of naturally occurring steroids. All PXR orthologs,
from fish to human, are activated efficiently by the proges-
terone metabolite 5�-pregnane-3,20-dione (Fig. 1; Ref. 89).
Other steroids also activate PXR, although the effects vary
among species. Mouse PXR is activated by a variety of preg-
nanes, including pregnenolone and its 17�-hydroxylated de-
rivative (9, 67). Rabbit PXR is efficaciously activated by pro-
gesterone and its 17�-hydroxylated derivative (67). Human
PXR is activated efficiently by estradiol and to a lesser extent
by corticosterone (12, 67). These results, together with the
finding that PXR expression levels increase during preg-
nancy (75), raise the interesting possibility that PXR evolved
in part to protect the body from high concentrations of en-
dogenous steroids. PXR is also activated by natural bile acids
as discussed below.

Recently, the first PXR antagonist was reported. Nano-
molar concentrations of the marine-derived drug ecteinas-
cidin 743 (ET-743; Fig. 1), a potent anticancer agent, blocked
activation of human PXR by either SR12813 or paclitaxel in
cell-based reporter assays (84). ET-743 also blocked the in-
duction of the PXR target genes CYP3A4 and multidrug
resistance protein 1 (MDR1) in a human intestinal cell line
(84).

D. Ligand binding properties of PXR

Do the structurally diverse chemicals that activate PXR do
so by binding directly to the receptor? Two types of ligand
binding assays have been developed for PXR. The first is a
direct scintillation proximity assay (SPA) using [3H]SR12813
as the radioligand (67). SR12813 (Fig. 1) is a cholesterol-
lowering agent that efficiently induces CYP3A gene expres-
sion in human hepatocytes. SR12813 binds to human PXR
with a Kd value of approximately 40 nm and is one of the most
potent activators of human PXR identified to date (67). No-
tably, SR12813 is a much less potent activator of the rodent
PXRs and therefore cannot be used in binding assays with the
rodent receptors (67). In the SPA, human PXR is immobilized
on a scintillant-containing bead and incubated with radio-
ligand. When bound to the receptor, the radioligand is suf-
ficiently close to activate the scintillant in the bead, an event

that can be detected using a standard scintillation counter.
The binding of nonradioactive ligands can be measured on
the basis of their ability to compete with the radioligand for
binding to PXR. SPA offers the advantage of being a true
equilibrium assay in that it does not require separation of the
bound from the free radioligand. Thus, it is readily adaptable
to automated, high-throughput formats.

A second, less direct approach that has been used to de-
termine whether compounds bind to PXR is the coactivator
receptor ligand assay (CARLA; Ref. 90). CARLA exploits the
fact that the binding of an agonist to a NR results in a
conformational change that permits interactions with coac-
tivator proteins such as steroid receptor coactivator 1. This
interaction can be measured by the coprecipitation of radio-
labeled coactivator with the receptor of interest. CARLA has
been used to demonstrate that compounds bind directly to
PXR (9, 10). Although CARLA is a labor-intensive technique,
it has the distinct advantage of not requiring a high-affinity
radioligand.

Studies employing SPA and CARLA have demonstrated
that many of the diverse chemicals that activate PXR do so
by binding directly to the receptor. Among the chemicals that
have been shown to bind to human PXR are rifampicin,
clotrimazole, phenobarbital, troglitazone, and ritonavir (9,
10, 67, 83). The Ki values for these interactions vary from low
micromolar concentrations for most of the chemicals to mil-
limolar concentrations for phenobarbital. The natural ste-
roids 5�-pregnane-3,20-dione, corticosterone, and estradiol
also bind directly to human PXR with Ki values in the low
to mid micromolar range (67). As expected, PCN binds to
rodent PXR but does not bind efficiently to the human or-
tholog (9, 67). Thus, PXR is capable of binding to a remark-
ably diverse collection of chemicals with molecular weights
ranging from less than 250 kDa to more than 800 kDa. This
promiscuity is unprecedented in the NR family.

E. DNA binding properties of PXR

NRs regulate the transcription of target genes by binding
to specific DNA response elements. Members of the NR1
subfamily, which includes PXR, bind as obligate het-
erodimers with RXR to response elements composed of two

TABLE 1. Drugs that activate human PXR

Drug Therapeutic Use Reference(s)

Clotrimazole Antimycotic 10, 11
Cyproterone acetate Antiandrogen 10, 80
Dexamethasone Anti-inflammatory 10
Glutethimide Sedative 86
4-Hydroxytamoxifen Anticancer 85
Lovastatin Antihypercholesterolemic 10
Metyrapone Diagnostic aid (pituitary function) 79, 154
Mifepristone (RU486) Abortifacient 10, 11
Nifedipine Antianginal, antihypertensive 11
Paclitaxel Anticancer 84
Phenobarbital Anticonvulsant, sedative 10
Rifampicin Antibiotic 10, 12, 155
Ritonavir HIV protease inhibitor 83
St. John’s wort Antidepressant 118, 119
Spironolactone Antihypertensive 10
Tamoxifen Anticancer 85
Troglitazone Antidiabetic 67
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copies of the consensus NR binding motif AG(G/T)TCA (58).
The relative orientation and spacing of the two half-site se-
quences dictate which RXR heterodimers can bind. For ex-
ample, RXR heterodimers with the vitamin D, thyroid hor-
mone, and RXRs preferentially bind to the two half sites
organized as a DR with a spacer of three, four, or five nu-
cleotides, respectively (58). PXR was originally shown to
bind efficiently as an RXR heterodimer to DR-3 type xeno-
biotic response elements present in the proximal CYP3A23
and CYP3A2 gene promoters (Fig. 2; Refs. 9 and 79). The
PXR/RXR heterodimer also binds to a DR-3 element in
the CYP3A4 enhancer (79) and an ER-6 element located in the
proximal promoter of the CYP3A4 gene (Fig. 2; Refs. 10–12).
Reporter gene constructs containing multimerized copies of
either the DR-3 or ER-6 response elements were activated by
PXR in transient transfection assays. DR-3 and ER-6 response
elements are conserved in other xenobiotic inducible CYPs
including CYP3A7 (Fig. 2; Refs. 60 and 91).

In addition to the DR-3 and ER-6 elements, the PXR/RXR
heterodimer also binds to DR-4 and DR-5 type response
elements (12). Functional DR-4 response elements have been
identified in the promoter regions of several genes regulated
by PXR, including various CYP2B family members (92, 93)
and the MDR1 (Fig. 2; Ref. 94). Recently, the PXR/RXR het-
erodimer was shown to bind to an ER-8 response element
located in the 5� flanking sequence of the multidrug resis-
tance-associated protein 2 (MRP2) gene (Fig. 3; Ref. 95). Re-
porter gene constructs containing multimerized copies of
this element were activated efficiently by PXR. Thus, the
PXR/RXR complex is capable of binding to a variety of
xenobiotic response elements with remarkably different ar-
chitectures, including DR-3, DR-4, ER-6, and ER-8 motifs.
Notably, the PXR/RXR complex is nonpermissive in that it
is not activated by chemicals that bind to the RXR component
of the heterodimer (67). However, micromolar concentra-
tions of several RXR agonists such as 9-cis retinoic acid and
LG100268 can activate the PXR/RXR heterodimer (67). This
effect appears to be mediated through the PXR subunit of the
heterodimer, because both 9-cis retinoic acid and LG100268
can bind directly to PXR at these micromolar concentrations
(67).

F. PXR polymorphisms

The level of CYP3A4 mRNA in the liver can vary by more
than 50-fold from person to person. These differences may
account for much of the interindividual variability in the
metabolism of drugs (96). A recent study suggests that much
of this difference is due to genetic variation (97). However,
only a few polymorphisms have been described in either the
CYP3A4 protein or the CYP3A4 promoter, and these changes
generally do not appear to have dramatic effects on either
CYP3A4 expression or function (96). Do polymorphisms in
PXR contribute to differences in drug metabolism? Two re-
cent studies identified approximately 40 single nucleotide
polymorphisms in the human PXR gene, including seven
missense mutations leading to variant PXR proteins in Cau-
casian, African-American, and/or African populations (73,
74). Four of these (R122Q, V140M, D163G, and A370T) dis-
played altered basal and/or rifampicin-induced activation in

cell-based reporter gene assays (73, 74). R122Q, which alters
an amino acid in the DNA binding domain of PXR and
decreases its DNA binding activity, resulted in a slight at-
tenuation in PXR transcriptional activity in response to ri-
fampicin. V140M, D163G, and A370T all change residues in
the LBD of PXR. D163G had reduced basal and rifampicin-
induced activity relative to wild-type PXR when tested on a
reporter gene construct containing the proximal promoter
and distal enhancer of CYP3A4. In contrast, V140M and
A370T exhibited modest increases in basal activity in this
same assay. The allele frequency of each of these missense
polymorphisms was less than 2%, suggesting that they are
unlikely to account for much of the interindividual differ-
ences observed in drug metabolism (73, 74). Interestingly,
three of the silent PXR polymorphisms that do not result in
amino acid changes correlated with changes in the expres-
sion of CYP3A4 (74). However, the locations of these poly-
morphisms do not suggest obvious mechanisms to account
for altered PXR activity. Further studies will be required to
determine whether these or other PXR polymorphisms rep-
resent reliable predictors of CYP3A4 activity in vivo.

IV. Function of PXR in Vivo

A. PXR-null mice

Genetic evidence that PXR regulates xenobiotic metabo-
lism by modulating CYP3A and other genes was recently
provided by studies using mice lacking a functional Pxr gene
(15, 16). These mice developed and reproduced normally and
did not display any overt phenotypic changes. Extensive
serum analysis did not reveal any significant differences in
a number of parameters, including cholesterol, triglyceride,
glucose, or liver enzyme levels. Thus, PXR does not appear
to be essential for normal development or adult physiology
under standard laboratory conditions. However, the PXR-
null mice did not respond normally to xenobiotic treatment.
PCN causes hepatomegaly in mice through the induction of
cellular hypertrophy and hyperplasia. These effects were
absent in PXR-null mice (98). Moreover, as predicted, the
PXR-null mice did not regulate Cyp3a11 expression normally
in response to xenobiotic treatment. Neither PCN nor dexa-
methasone induced Cyp3a11 in the liver or intestine in PXR-
null mice (15, 16). These changes were also seen at the level
of enzymatic activity. In PXR-null mice, PCN treatment did
not increase the level of testosterone 6�-hydroxylation, nor
did it decrease the duration of paralysis by the muscle re-
laxant zoxazolamine, both measures of Cyp3a11 activity (98).
Moreover, mice expressing a constitutively active form of
PXR (VP16-human PXR) were resistant to zoxazolamine-
induced paralysis and tribromoethanol-induced anesthesia
(15). Thus, PXR serves as a key regulator of Cyp3a11 expres-
sion in vivo. The PXR-null mice have also been used to es-
tablish conclusively that PXR regulates a number of other
genes, including those encoding other P450 enzymes, con-
jugating enzymes, and transporters (16, 92, 99).

Notably, one group found that the basal level of Cyp3a11
expression was elevated approximately 4-fold in the livers of
PXR-null mice relative to their wild-type counterparts (16).
Although the molecular basis for this change is not yet
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known, there are at least two possibilities. First, the absence
of PXR could allow other NRs that are constitutively active,
such as CAR, access to the xenobiotic response elements in
the Cyp3a11 promoter. Alternately, PXR may interact with
corepressor proteins such as nuclear receptor corepressor
and silencing mediator of retinoid and thyroid receptor
(SMRT) and actively repress Cyp3a11 in the absence of li-
gand. The absence of PXR would then result in an increase
in the basal expression of Cyp3a11. Indeed, there is evidence
that PXR interacts with SMRT and that this interaction is
disrupted by PXR agonists (84).

B. Humanized PXR mice

To further investigate the differences in PXR pharmacol-
ogy across species, Xie et al. (15) expressed human PXR in the
livers of PXR-null mice. As expected, Cyp3a11 was not in-
duced by PCN in these transgenic animals but was efficiently
induced by the human-specific inducer rifampicin. Thus, the
species origin of PXR determines the induction profile of
CYP3A. As discussed above, Xie et al. (15) also expressed a
constitutively active form of human PXR in the livers of
PXR-null mice. In addition to metabolizing zoxazolamine
and triethanolamine more rapidly than their wild-type coun-
terparts, the VP16-hPXR transgenic mice exhibited growth
retardation, hepatomegaly, and liver toxicity, suggesting
that sustained activation of PXR may be deleterious (15).

C. PXR target genes

The list of genes regulated by PXR is growing rapidly. In
the liver, PXR-selective ligands have been shown to stimulate
the expression of genes involved in the oxidation (phase I),
conjugation (phase II), and transport (phase III) of xenobi-
otics. In addition to CYP3A family members, phase I genes
regulated by PXR in various species include CYP2B6, Cyp2b9,
CYP2C8, CYP2C9, and CYP2C19 (84, 92, 93, 100, 101). Phase
II genes that are up-regulated by PXR ligands include mem-
bers of the glutathione-S-transferase (102), sulfotransferase
(103–105), UDP-glucoronosyltransferase (106), and carboxy-
lesterase (107) families. Among the hepatic transporters, PXR
has been shown to stimulate the expression of Oatp2 (16) and
MRP2 (83, 108, 109). OATP2 is a basolateral transporter that
mediates the transmembrane movement of numerous xeno-
biotics destined for biliary excretion (110, 111). MRP2 plays
a key role in determining the rate of bile flow and is involved
in the transport of conjugated anions, including xenobiotics,
bilirubin, and bile acids, across the canalicular membrane
(110, 111). Natural mutations in MRP2 cause Dubin-Johnson
syndrome/hyperbilirubinemia II, a disorder characterized
by impaired transfer of anionic conjugates into bile (110, 111).
In the intestine, PXR has been shown to stimulate the ex-
pression of MDR1 (84, 94), which encodes an ATP-dependent
efflux pump that transports a wide variety of xenobiotics,
including many widely used prescription drugs. In sum, PXR
coordinately regulates a large number of genes in the liver
and intestine that are involved in all aspects of the detoxi-
fication and elimination of xenobiotics from the body.

D. PXR as a basis for drug interactions

The induction of CYP3A4 expression represents the basis
for an important class of drug-drug interactions in which one
drug accelerates the metabolism of a second medicine. It is
now evident that most of the prescription drugs that induce
CYP3A4 do so through activation of PXR. Notably, PXR has
also been implicated in the interaction between the herbal
remedy St. John’s wort (SJW) and prescription drugs. SJW,
which is derived from the flowering plant Hypericum perfo-
ratum, is widely used as an over-the-counter treatment for a
variety of indications including depression and inflamma-
tion. In patients, SJW induced CYP3A4 expression in the
intestine (112) and enhanced the metabolism of oral contra-
ceptives, the immunosuppressant cyclosporin, the HIV pro-
tease inhibitor indinavir, the anticoagulant warfarin, and the
cardiotonic digoxin (113–117). Each of these drugs is metab-
olized by CYP3A4 and/or CYP2C8, which suggested the
involvement of PXR. Indeed, extracts prepared from com-
mercial sources of SJW were shown to activate PXR in cell-
based reporter assays (118, 119). Analysis of the different
chemical constituents of SJW revealed that nearly all of the
PXR activity resided in a single compound, hyperforin (Fig.
1; Refs. 118 and 119). Interestingly, there is evidence that
hyperforin is the ingredient in SJW responsible for its anti-
depressant activity (120), raising the possibility that PXR is
the target for this pharmacological activity. Hyperforin
bound to human PXR with an IC50 value of approximately
20 nm and induced CYP3A4 expression in primary cultures
of human hepatocytes (118). These results provide a molec-
ular basis for the reported interactions between SJW and
various prescription drugs and, furthermore, indicate that
SJW is likely to interact with many more drugs than was
previously realized.

The discovery that PXR is responsible for many drug-drug
interactions and at least one herb-drug interaction has im-
portant pharmaceutical ramifications. Historically, the iden-
tification of compounds that induce CYP3A4 gene expression
was performed during the latter stages of the drug discovery
process using primary cultures of human hepatocytes, be-
cause studies in animals were not necessarily predictive of
induction potential in humans. These assays were time con-
suming and required human liver tissue, which is not readily
available and varies considerably in quality and induction
potential from donor to donor. The knowledge that PXR is
a critical regulator of CYP3A4 gene expression together with
the availability of robust, high throughput cell-based and
scintillation proximity binding assays for PXR permits the
rapid identification of chemicals that will induce CYP3A4
expression at the earliest stages of drug discovery. Entire
libraries of drug candidates can now be screened for PXR
activity. Those drug candidates that test positive can be re-
placed with chemicals that have similar therapeutic efficacy
but lack PXR activity. For example, the antidiabetic drugs
troglitazone, pioglitazone, and rosiglitazone are effective
PPAR� agonists, but only troglitazone is also a potent PXR
agonist (67). In humans, troglitazone interacted with other
drugs and was associated with a rare hepatotoxicity that led
to its withdrawal from the market (121). Pioglitazone and
rosiglitazone do not activate PXR and have not been linked
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to these adverse events. A second example is provided by the
cancer drug paclitaxel and its taxane analog docetaxel. Both
drugs have similar antineoplastic activity, yet paclitaxel is an
efficacious PXR activator, whereas docetaxel is not (84). This
difference is likely to account for the superior pharmacoki-
netic properties of docetaxel. PXR assays also provide a rapid
and economical means to test herbal preparations and other
over-the-counter dietary supplements for their potential to
induce CYP3A4 expression. The knowledge that PXR is the
molecular basis for common drug-drug and herb-drug in-
teractions should aid in the development of safer medicines.

V. PXR and Bile Acid Metabolism

Bile acids, which are produced by the liver, are essential
for the elimination of excess cholesterol from the body and
the solubilization, absorption, and transport of dietary lipids
in the intestine. Bile acid homeostasis is tightly regulated
because bile acids are detergents that can be extremely toxic
if their levels become elevated. An important insight into the
regulation of bile acid homeostasis was provided by the
discovery that the farnesoid X receptor (FXR; NR1H4), a
member of the NR family, is a bile acid receptor (122–124).
Several bile acids and/or their taurine and glycine conjugates
bind and activate FXR at physiological concentrations, in-
cluding cholic acid and chenodeoxycholic acid, the principal
bile acids in humans. FXR stimulates the expression of genes
involved in bile acid homeostasis, including the intestinal
bile acid binding protein and the bile salt export pump (125,
126). Activation of FXR also represses the expression of
CYP7A1, which catalyzes the rate-limiting step in the clas-
sical pathway for the conversion of cholesterol to bile acids
(127, 128). Thus, FXR mediates both feedforward and feed-
back regulation of bile acid homeostasis.

It has been known for many years that treatment of rodents
with PCN also results in a marked suppression of hepatic
cholesterol 7�-hydroxylase activity (129). More recently, it
was shown that this repression occurred at the level of
CYP7A1 mRNA (130). Studies in PXR-null mice demon-
strated that Cyp7a1 was dysregulated in two respects (16).
First, the basal expression of Cyp7a1 was reduced approxi-
mately 50% in PXR-null mice relative to their wild-type lit-
termates. Second, PCN-induced suppression of Cyp7a1 was
abolished in the PXR-null mice. These data established roles
for PXR in both the basal expression and repression of
Cyp7a1. Interestingly, many of the other PXR target genes
that are involved in xenobiotic metabolism also participate in
bile acid metabolism. For example, CYP3A4 hydroxylates
bile acids, and MRP2 and OATP2 transport bile acids across
hepatic canalicular and sinusoidal membranes, respectively.

Because PXR coordinately regulates several genes in-
volved in bile acid metabolism, a series of bile acids were
tested for their ability to bind and activate PXR in cell-based
reporter assays and SPA. Notably, the secondary bile acid
lithocholic acid (LCA; Fig. 1), which is formed in the intestine
by the bacterial 7�-hydroxylation of chenodeoxycholic acid,
and its 3-keto metabolite were both efficacious activators of
the mouse and human PXR (16, 131). LCA and 3-keto LCA
bound to human PXR in an SPA with IC50 values of approx-

imately 10 �m. As predicted, LCA treatment resulted in the
induction of PXR target genes, including Cyp3a11 and Oatp2,
in the livers of wild-type mice but not in PXR-null animals
(16).

LCA is a particularly toxic bile acid that causes cholestasis,
a disease state characterized by the impairment or cessation
of bile flow and the accumulation of bile acids and other
biliary toxins in the liver and serum (132). The most serious
forms of the disease can progress to complete liver failure
and must be treated by liver transplant. Normally, LCA
levels are low in healthy mammals. However, LCA concen-
trations of 5–10 �m have been reported in the livers of cho-
lestatic patients and in rodent models of biliary cholestasis
(133). Taken together, these findings suggest that pathophys-
iological levels of LCA and/or its metabolites activate PXR
and turn on the expression of a program of genes involved
in the detoxification and removal of these bile acids from the
body. A prediction of this model is that potent PXR agonists
may be useful for the treatment of cholestatic liver disease.
Indeed, it has been known for nearly 30 yr that treatment of
rodents with PCN blocks the severe hepatotoxicity and mor-
tality caused by LCA treatment in rats (134). Two groups
recently demonstrated that this hepatoprotective effect of
PCN is dependent on PXR (16, 131). Coadministration of
PCN severely reduced liver damage in wild-type mice
treated with LCA as assessed by liver histology and mea-
surement of serum concentrations of liver enzymes. No such
hepatoprotection from LCA toxicity was detected in PXR-
null mice. Mice expressing the constitutively active form of
the human PXR were similarly protected against LCA tox-
icity (131). Thus, PXR can protect the body against patho-
physiological concentrations of toxic bile acids.

Several lines of evidence suggest that these findings
may have implications in the treatment of human chole-
static liver disease. Patients suffering from cholestasis
have been reported to have elevated levels of 6-hydroxylated
bile acids, including the LCA metabolite hyodeoxycholic
acid, which are generated by CYP3A4 (135, 136). These
findings suggest that increased 6-hydroxylation is a rel-
evant mechanism for reducing the levels of toxic bile acids
in humans. Interestingly, the PXR ligand rifampicin has
been used successfully in the treatment of pruritus caused
by intrahepatic cholestasis and, in certain cases, has been
reported to induce remission of cholestasis (137–139). Sim-
ilarly, the herb SJW promotes bile flow and has been used
to treat a variety of hepatic disorders, including cholestasis
(140, 141). Finally, ursodeoxycholic acid, which is used
clinically for the treatment of cholestasis, was recently
shown to induce CYP3A4 expression in primary cultures
of human hepatocytes and to activate PXR in cell-based
reporter assays (142). Although the molecular bases for the
anticholestatic effects of rifampicin, SJW, and ursodeoxy-
cholic acid have remained obscure, the findings that they
all activate PXR suggest that their anticholestatic effects
may be mediated in part through activation of this NR.
These results raise the intriguing possibility that more
potent PXR ligands may prove to be efficacious drugs for
the treatment of cholestasis.
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VI. PXR Cross-Talk with CAR

The NR most closely related to PXR is CAR. These two
receptors share approximately 70% and 50% amino acid
identity in their DBDs and LBDs, respectively (Fig. 3; Ref. 12).
CAR was originally described as MB67, a liver-enriched or-
phan NR that strongly activated reporter gene activity in
cell-based assays in a ligand-independent fashion (143). The
subsequent discovery that the testosterone metabolites an-
drostanol and androstenol bind directly to MB67 and sup-
press its basal activity led to it being renamed the CAR (144).
More recently, biochemical and genetic studies have dem-
onstrated that CAR is responsible for many of the well char-
acterized biological effects of the xenobiotic phenobarbital.
Treatment of rodents with phenobarbital causes dramatic
hypertrophy and hyperplasia of the liver and a marked in-
duction of CYP2B gene expression. These effects are com-
pletely absent in mice in which the Car gene has been dis-
rupted by homologous recombination (145). Experiments
performed in hepatocytes show that CAR is localized pre-
dominantly in the cytoplasm in its inactive state (146, 147).
Phenobarbital activates CAR by promoting its translocation
into the nucleus. Notably, phenobarbital does not activate
CAR by binding directly to its LBD (89). Rather, phenobar-
bital appears to modulate CAR activity through an indirect
mechanism involving phosphorylation, because the phos-
phatase inhibitor okadaic acid blocks its effects (147).

CAR and PXR were originally shown to regulate CYP2B
and CYP3A genes, respectively (9, 79, 146). CAR regulates
CYP2B genes by binding to two imperfect DR-4 motifs within
a conserved phenobarbital responsive element module (148).
Because these xenobiotic response elements are different
from the DR-3 and ER-6 elements located upstream of the
CYP3A genes, the CAR and PXR signaling pathways ap-
peared to be distinct. However, several groups have now
demonstrated that PXR can bind to the DR-4 elements in the
phenobarbital responsive element module and regulate
CYP2B genes in cell-based reporter assays (92, 93, 149). More-
over, transgenic mice expressing the constitutively active
VP16-human PXR have elevated expression of Cyp2b10,
demonstrating that this regulation occurs in vivo (92). Con-
versely, CAR binds to the DR-3 and ER-6 xenobiotic response
elements that were originally characterized as PXR/RXR
binding sites and regulates CYP3A expression (92, 93, 145,
150, 151). Recent studies indicate that the overlap in PXR and
CAR target genes extends well beyond the CYP2B and
CYP3A genes. In the liver, CAR and PXR coregulate members
of the CYP2C, glutathione-S-transferase, sulfotransferase,
and UDP-glucoronosyltransferase families and the canalic-
ular MRP2 transporter (95, 99–101). These findings suggest
a functional redundancy in the CAR and PXR signaling path-
ways (Fig. 4). Nevertheless, there are differences in the de-
gree to which specific genes are activated by either CAR or
PXR agonists (99), which undoubtedly contributes to the
distinct pharmacologies of these xenobiotics.

Is CAR a generalized xenobiotic sensor like PXR? PXR and
CAR are regulated by several of the same chemicals, includ-
ing xenobiotics and natural steroids (89). However, studies
in which CAR and PXR were tested against collections of
xenobiotics and natural steroids in cell-based reporter assays

revealed that CAR is much less promiscuous in its interac-
tions with chemicals than PXR (65, 89). Molecular modeling
of the CAR LBD based on the PXR crystal structures suggests
that CAR is likely to have a much smaller ligand binding
pocket than PXR (see below). Nevertheless, CAR may be
activated indirectly by a variety of chemicals that promote its
translocation into the nucleus. Thus, CAR and PXR may play
complementary roles in sensing potentially harmful chem-
icals that either alter the phosphorylation status of the cell or
enter the nucleus.

VII. Structure of the PXR Ligand Binding Domain

To function as a xenobiotic sensor, PXR has evolved the
ability to recognize a wide variety of toxic substances. De-
spite this promiscuity, striking species differences are seen in
the activation profiles between PXR orthologs. The recent
determination of the three-dimensional structure of the hu-
man PXR LBD by x-ray crystallography has shed light on the
molecular basis of these properties (17). The LBD displays the
signature fold of the NR superfamily, comprising a three-
layer sandwich of �-helices and a short region of �-strands
(Fig. 5; Ref. 61). Notably, there are several unique features of
the PXR LBD that diverge from the architecture of other NRs.
Helix 2 in PXR is replaced by a four-residue turn and a
pseudohelical segment that forms the floor of the ligand
binding pocket. Adjacent to this region, PXR has a �-sheet
structure comprising five strands, rather than the usual three
seen in other NRs. Two of these �-strands (�1 and �1�; Fig.
5) are responsible for unwinding helix 6 into a flexible loop,
which may provide the ligand binding pocket with the po-
tential to expand and contract to accommodate ligands of
various sizes. These features combine to give PXR a spherical
ligand binding pocket that has a volume of more than 1150
Å3 (Fig. 5). Twenty of the 28 amino acids lining the pocket

FIG. 4. Cross-talk between the PXR and CAR signaling pathways.
Both PXR and CAR are modulated by xenobiotics and natural
steroids and bind as RXR heterodimers to response elements in the
regulatory regions of genes involved in xenobiotic and steroid me-
tabolism, including genes encoding phase I and phase II enzymes
and transporters.
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are hydrophobic, with the remaining eight residues (four
polar and four charged) evenly spaced around the pocket.

The cocrystal structure of PXR with SR12813 revealed that
a single drug molecule was bound in the pocket in three
distinct orientations (17). Each molecule was equally repre-
sented in the total electron density with 19 of the 28 residues
lining the pocket contacted by the ligand. Remarkably, the
receptor employed different hydrogen bonds and van der
Waals interactions to bind each orientation of the ligand.
These properties may allow PXR to recognize a wide range
of xenobiotics, because the large spherical pocket does not

require ligands to satisfy a single shape or arrangement of
hydrogen bonding interactions. The species specificity of
PXR activation can be explained, in part, by variations in the
sequence of the amino acids lining the binding pocket. The
mouse and human PXR LBDs have five nonconservative
changes in these residues (Fig. 6). Mutation of four of the
variant amino acids in mouse PXR to the corresponding
human sequence gave a hybrid receptor that showed a
human-like activation profile (17). The fish receptor, a distant
PXR ortholog that is activated by pregnanes but not by bile
acids, has 10 nonconservative changes, 5 of which are resi-
dues mutated in the mouse receptor (Fig. 6; Ref. 65). The
evolution of these changes in specific residues lining the PXR
binding pocket may have been driven by the need to recog-
nize different xenobiotics in each species.

As described above, three naturally occurring variants of
human PXR were recently identified within the LBD (73).
V140M and D163G lie at the N-terminal and C-terminal ends
of helix 1, respectively, and A370T is in the middle of helix
9. Although none of these mutations directly impinges on the
ligand binding pocket, they showed some effect on the tran-
scriptional activity of the receptor (73). The A370T mutant
had slightly enhanced basal activity in the absence of exog-
enous ligands. Ala370 forms part of the dimerization interface
with RXR, and mutation to Thr would increase the size and
polarity of this residue. Thus, the PXR A370T mutant may
show altered heterodimerization with RXR, although this has
not been examined. The V140M mutant also showed slightly
enhanced basal activity; however, the structural basis for this
difference remains unknown because this residue lies out-
side of the domain examined by x-ray crystallography. In
contrast to the V140M and A370T mutants, the D163G mu-
tant was almost devoid of basal activity. Asp163 initiates the
�-turn leading into the helix 1–helix 3 insert. Mutation of the
residue to Gly would be expected to destabilize this region
of the receptor. Interestingly, the D163G mutant was acti-
vated on an ER-6 response element by rifampicin but not
corticosterone (73), indicating that disruption of the helix
1–helix 3 insert has differential effects on the activities of
these two PXR ligands.

The region between helix 1 and helix 3, which comprises
approximately 50 amino acids, plays a critical role in shaping
the properties of the PXR ligand binding pocket (17). This
insert forms the floor of the binding pocket and encompasses
two of the five �-strands (17). Sequence alignment reveals
that the CAR lacks this insert, whereas the corresponding
region in VDR is unstructured and does not contribute to the
binding pocket (152, 153). All of the PXR orthologs have a
sequence element in the helix 1–helix 3 insert described as a
capping segment that results in the unwinding of helix 6 and
builds additional volume and flexibility into the binding

FIG. 5. Structure of the PXR LBD. The three-dimensional structure
of the human PXR LBD is presented as a ribbon diagram. The �-
helices and �-sheets are numbered, and the AF-2 helix is indicated.
The helix 1–helix 3 insert, which is unique to PXR among all the NRs,
is indicated in dark blue. The large (1150 Å3) solvent-accessible ligand
binding pocket is outlined in white. The 21 amino acids that were
absent from the electron density in the crystal structure are indicated
by a dotted line.

FIG. 6. Residues lining the PXR ligand binding pocket. The residues lining the human PXR ligand binding pocket are shown aligned with
corresponding residues in PXR from other species. Numbers are derived from the human PXR sequence. Residues whose charge or polarity are
not conserved are boxed.
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pocket (65). Because CAR, BXR, and VDR lack the capping
segment, their binding pockets may be unable to accommo-
date ligands that vary considerably in size. The naturally
occurring PXR.2 variant, which deletes the helix 1–helix 3
insert through alternate splicing of exon 5 (74), does not show
promiscuous activation by xenobiotics (9). A phylogenetic
analysis of the NR1I subfamily suggests that CAR and BXR
may have evolved from an ancestral receptor through dele-
tion of an exon that removed a segment of the helix 1–helix
3 insert (89). Thus, it appears that only PXR has all of the
structural features consistent with a role as a promiscuous
xenobiotic receptor.

VIII. Summary and Perspectives

In this review, we have highlighted the role that PXR plays
in protecting the body against chemical insult. PXR was
originally shown to regulate CYP3A genes, but we now know
that this receptor regulates an entire program of genes in the
liver and intestine that are involved in the metabolism and
elimination of potentially toxic chemicals from the body.
Importantly, PXR is activated by a remarkably diverse set of
chemicals, including both xenobiotics and substances made
by the body such as bile acids and other steroids. Thus, in
contrast to almost all other NRs, which are specialized to
recognize discrete physiological ligands, PXR has evolved to
function as a broad substrate chemical sensor. Although PXR
is a promiscuous receptor, there are marked differences in
PXR activation profiles between species. These differences
may reflect differences in diets or exposure to other chem-
icals across species. Alternatively, the PXR activation profiles
may be driven by differences in the production of endoge-
nous chemicals such as bile acids.

Can the biological actions of PXR be exploited to treat
human disease? Hans Selye (7) first proposed many years
ago that catatoxic steroids, which we now know act through
PXR, might prove useful in the detoxification of chemicals
ranging from xenobiotics to stress-induced hormones to bile
acids. Indeed, in the case of bile acids and biliary cholestasis,
there is already evidence that this might be the case. In
rodents, PXR ligands protect against the severe liver damage
induced by LCA. In humans, the PXR ligand rifampicin has
been used in the treatment of biliary cholestasis, although the
mechanism underlying this effect remained unknown. More-
over, SJW has been used for many years as an anticholestatic
agent for the treatment of liver disease (140, 141). Although
speculative, the knowledge that both of these agents activate
PXR raises the intriguing possibility that drugs optimized
against human PXR may prove efficacious in the treatment
of cholestasis. It remains to be determined whether PXR
ligands will have a broader role in treating diseases in which
toxins accumulate in the liver, intestine, or other tissues as
originally postulated by Selye.

Although PXR evolved to fulfill a protective role, its pro-
miscuity has become a major liability in an era in which
patients are routinely treated with multiple medications.
PXR is activated by a variety of prescription drugs and at
least one widely used medicinal herb. It is now established
that activation of PXR by these medicines represents the

molecular basis for a common class of potentially life-threat-
ening drug interactions, in which one drug accelerates the
metabolism of another. Fortunately, it should now be pos-
sible to exploit our knowledge of PXR to minimize the
chances of this type of drug interaction. High throughput
binding and activation assays can be used prospectively to
test new drug candidates as well as currently approved
drugs for their activity on PXR. Moreover, these assays can
also be extended to herbal remedies and other over-the-
counter dietary supplements. Finally, a detailed understand-
ing of the three-dimensional structure of the PXR LBD may
make it possible in the future to determine whether a chem-
ical will bind to PXR through in silico modeling, ideally
before the molecule has even been synthesized. Thus, com-
pounds that are likely to activate PXR can be removed at the
early stages of the drug discovery process and replaced with
safer molecules.

Although a tremendous amount has been learned about
the biological functions of PXR, a number of outstanding
questions remain. What other biological pathways are reg-
ulated by PXR? For example, PXR activation is known to
cause hepatomegaly in the livers of rodents. Does PXR reg-
ulate genes involved in the cell cycle? What genes and bio-
logical processes are regulated by PXR in tissues where it is
expressed at low levels such as the lung and kidney? Some
of the most fascinating questions about PXR relate to its
genetic variation. A number of PXR polymorphisms have
now been described, including several that affect PXR tran-
scriptional activity in vitro. Do these polymorphisms con-
tribute to the tremendous interindividual differences in drug
metabolism? If so, can this knowledge be used to tailor drug
regimens to individual patients so as to maximize therapeu-
tic impact and minimize adverse events? Along similar lines,
does genetic variation in PXR contribute to human disease?
Because PXR plays a central role in the detoxification of many
different substances, polymorphisms that decrease its activ-
ity might be expected to increase exposure to a wide variety
of dietary constituents and environmental pollutants and,
ultimately, contribute to diseases as diverse as liver cirrhosis
and cancer. Thus, a field that was born in the 1960s with the
discovery of steroids that had unusual pharmacological ac-
tivities in rodents has grown up to have tremendous impli-
cations in both the development and treatment of human
disease.
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