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Abstract

The function of the nuclear receptor Rev-erba (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism,
unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erba knock-out (KO)
animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBa. Loss of Rev-
erba manifested in memory and mood related behavioral phenotypes and led to overexpression of Fabp7 in various brain
areas including the subgranular zone (SGZ) of the hippocampus, where neuronal progenitor cells (NPCs) can initiate adult
neurogenesis. We found increased proliferation of hippocampal neurons and loss of its diurnal pattern in Rev-erba KO mice.
In vitro, proliferation and migration of glioblastoma cells were affected by manipulating either Fabp7 expression or REV-
ERBa activity. These results suggest an important role of Rev-erba and Fabp7 in adult neurogenesis, which may open new
avenues for treatment of gliomas as well as neurological diseases such as depression and Alzheimer.
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Introduction

In mammals the circadian clock system regulates many aspects

of systemic biology such as biochemistry, physiology and behavior

with the suprachiasmatic nuclei (SCN) as the main coordinating

entity to synchronize all cellular clocks in the body. At the cellular

level, the circadian clockwork consists of interwoven positive and

negative feedback loops, or ‘limbs’. The positive limb involves

BMAL1/CLOCK heterodimers that bind to E-boxes located in

the regulatory region of the period (Per) and cryptochrome (Cry) genes.

CRY and PER proteins form oligomers that are transported from

the cytoplasm to the nucleus, where they repress their own

transcription by inhibiting BMAL1/CLOCK (negative limb). The

positive and negative limbs are further interlaced as BMAL1/

CLOCK also induces the expression of the nuclear receptor REV-

ERBa (NR1D1), which represses the transcription of Bmal1 via

direct binding to a REV-ERBa response element (RORE) in the

Bmal1 promoter [1]. In addition to its action in the circadian clock

mechanism, REV-ERBa also has strong regulatory functions in

liver metabolism [2,3] and drugs targeting it may have potential

applications for treatment of metabolic syndrome [4]. However,

the roles of REV-ERBa in the central nervous system remain

unclear.

Components of the clock mechanism modulate neurogenesis.

For example Per2 regulates neural stem/progenitor cell prolifer-

ation in the adult hippocampus [5] while Bmal1/Clock seems to

regulate neurogenic transcription factors such as Neuro D1 and

differentiation of neuronal stem/progenitor cells in the subven-

tricular zone (SVZ) of the lateral ventricle [6]. Furthermore, gene

expression profiling revealed an increased expression of Rev-erba in

neural progenitor cells (NPCs) compared to immature neurons [7].

Outside of the central nervous system, in the skin, the clock

appears to play a role in the regulation of stem cell differentiation

[8,9].

Adult neurogenesis is an important process, because it may

replace lost or dysfunctional cells by generating new neurons via

neural stem cells (NSCs) [10]. A dysfunction of this process may

lead to neuropsychiatric diseases such as age-related cognitive

decline [11] and depression (reviewed in [12]). Substantial

generation of new neurons occurs mainly in two brain areas: the

subventricular zone (SVZ) lining the lateral ventricles [13] and the

subgranular zone (SGZ) of the hippocampal dentate gyrus (DG)

[14]. Adult hippocampal neurogenesis in mammals is a sensitive

process, which is affected by environmental stimuli, such as stress

[15,16], physical activity [17], sleep deprivation [18], enriched

living conditions [19], and jet-lag [20,21]. Such environmental

changes directly affect the circadian clock [22], suggesting that the

clock may be a mediator between environmental change and

neurogenesis. This hypothesis is supported by the observation that

neurogenesis fluctuates over the day [23–26] indicating that the

circadian clock or components of it may influence neurogenesis.
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Since REV-ERBa is strongly expressed in the brain [27] and in

NPCs [7] we performed genome wide expression profiling in the

SCN of wild-type and Rev-erba KO mice. We found fatty acid

binding protein 7 (FABP7), also termed brain lipid binding protein

(BLBP), to be strongly up-regulated in Rev-erba KO animals.

FABP7 is a family member of the fatty acid binding protein family,

which facilitates the solubility of hydrophobic long chain fatty

acids. They function primarily in fatty acid uptake/transport [28],

and have been widely implicated in cell growth and differentiation

[29]. FABP7 is a well-known marker for NPCs [30] in neurogenic

niches of the hippocampal SGZ [31] and in the forebrain SVZ

[32]. It is expressed in type 2 and 3 NSCs and early transitory

amplifying cells (TAPs) but not in late TAPs and neuroblasts [32].

Interestingly, Fabp7 mRNA is expressed in a time of day

dependent manner in hippocampal granule precursors in adult

mice [33] and its localization and grade of polyadenylation are

diurnal [34]. These observations implicate an involvement of

circadian clock components in the regulation of Fabp7 and adult

neurogenesis.

In this study we show that Fabp7 is a direct target gene of Rev-

erba and that both genes are involved in aspects of adult

neurogenesis in mice.

Methods

Animal experiments
Animal handling and care was performed in accordance with

the guidelines of the Schweizer Tierschutzgesetz (TSchG, SR455)

and the declaration of Helsinki. The protocol was approved by the

state veterinarian of the Canton of Fribourg. Suffering of animals

was minimized by anesthesia that was induced at 4.5 to 5%

isoflurane and lowered to 2–1.5% isoflurane mixed with oxygen

(0.8l/min). Rev-erba2/2 knockout mice [27] were obtained from

heterozygous Rev-erba breeding pairs originally provided by Prof.

U. Schibler, Geneva. Two to four month old animals were used

for experiments and wild-type mice served as controls. Animals

were kept under 12 h light and 12 h dark (LD 12:12) with food

and water ad libitum.

Cell culture
NG 108-15, mouse neuroblastoma x rat glioblastoma cells [35]

and U-251 MG, human malignant glioblastoma tumour [36] were

used for in vitro experiments. Cells were maintained in Dulbecco’s

Modified Eagle Medium (DMEM), high glucose [4.5 g/l](Sigma

6429) containing 10% fetal calf serum (FCS) and 100 U/ml

penicillin/streptomycin at 37uC in a humidified atmosphere

containing 5% CO2. Sub-confluent cultures were split 1:3 to 1:6.

Affymetrix oligonucleotide microarray hybridization
To obtain sufficient amounts of SCN, tissue of 18 male mice (3

months) were used per genotype. Dissection was performed at time

point ZT 14. SCN of 6 animals were pooled to yield 3 samples of

wild-type and Rev-erba2/2 mice each, and homogenized in RNA-

Bee (AMS Biotechnology) using syringe and needle (Ø 0.19 mm).

RNA extraction was performed with chloroform, followed by

isorpropanol precipitation and wash with EtOH. For further

purification RNA was precipitated again with 0.4 M NaOAc/

0.2% SDS and extracted using phenol:chloroform:isoamylalcohol.

RNA quality and integrity was checked by absorbance ratio A260/

A280, on denaturing agarose gels and by using the Agilent 2100

Bioanalyzer. 5 mg of total RNA were employed for the synthesis of

biotinylated cRNA and 17.5 mg of this cRNA were hybridized to

Affymetrix Mouse Genome 430 2.0 array (according to the

Affymetrix protocol). The signal intensities were analyzed using

Partek Genomics suites (Partek, St. Louis, MI, USA) and Matlab

(The MathWorks Inc., Natick, Massachusetts, USA) The data

were normalized using RMA [37]. The selections were based on

the fold-change intensities and p values (p,0.05). Genes for which

the concordance in the pairwise comparisons exceeded the

imposed threshold of 77% (seven out of nine comparisons) were

considered as statistically significant and only transcripts whose

accumulation had an average change of at least 1.5-fold were

extracted (Tables S1 and S2).

In situ hybridization
The in situ hybridization probe for mFabp7 was cloned from

cDNA corresponding to nucleotides 34–588 (accession number:

NM_021272). Primer used for pCR II TOPO (Invitrogen) cloning

are displayed in Table S1. Specimen preparation, 35S-rUTP

labeled riboprobe synthesis and hybridization steps were per-

formed as described earlier [38]. Quantification was performed by

densitometric analysis of autoradiograph films (Amersham Hy-

perfilm MP) using the Quantity One 1-D analysis software

(Biorad). Data from the region of interest was normalized by

comparison with the signal intensities in an equal area of the

lateral hypothalamus. Relative mRNA abundance was calculated

by defining the maximal value of each experiment as 100%. Slides

were further analyzed by dipping in NTB-2 emulsion and

microscopy (Zeiss Axioplan 2). Silver grains were visualized with

dark field illumination and tissue was visualized by counterstaining

of nuclei with Hoechst-dye.

Luciferase reporter assays and transfection
A 1.4 kb fragment of the mouse Fabp7 promoter region

(nucleotides -19348 to the transcriptional start site, containing

RORE at 2934 and 2257) was cloned into the pGL3 basic vector

(Promega) using the primers indicated in Table S1. Deletion of the

proximal RORE (nucleotide 2257) was achieved by site directed

mutagenesis using primers displayed in Table S1, which led to

replacement of the proximal RORE (TGACCT) by nucleotides

GATATC. Expression vectors for Rev-erba (NM_145434) and Rora

(NM_013646) have been described [39] and an expression vector

for b-galactosidase was used as control. Transfection and luciferase

reporter assays were performed with NG108-15 cells (Neuroblas-

toma) according to [40]. Empty pGL3-vector and Bmal1 promoter

region cloned into pGL3 [39], were used as negative and positive

controls, respectively. Real-time bioluminescence was monitored

as described in [39] using a LumiCycle apparatus (Actimetrics).

Chromatin immunoprecipitation (ChIP)
Hippocampal tissue was dissected using a mouse brain slicer

(Zivic instruments). Freshly isolated tissue of two animals was

combined for homogenization in 1% formaldehyde/1xPBS

pH 7.4 and cross-linked for 5 min at RT. Nuclei and soluble

chromatin fragments were obtained by ultracentrifugation through

1.8 M sucrose cushions and sonication according to [41].

Chromatin was precipitated with antibodies raised against REV-

ERBa [42] and co-immunoprecipitated DNA was quantified with

TaqMan real-time PCR using the primers and probes described in

Table S1. ChIP data was normalized against corresponding input

data and results were presented as percent of input.

Quantitative Real-time PCR (qRT-PCR)
Total RNA was extracted and purified from snap frozen brain

tissue using RNeasy kit (Qiagen) with on column DNAse digestion.

RNA from cultured cells was extracted using RNA-Bee (AMS

Biotechnology), purified by phenol:chloroform extraction and

REV-ERBa and Adult Hippocampal Neurogenesis

PLOS ONE | www.plosone.org 2 June 2014 | Volume 9 | Issue 6 | e99883



ethanol precipitation. cDNA was synthesized with SuperScript II

(Invitrogen) and random priming. SYBR green fluorescence-based

real-time PCR was performed for RNA quantification (KAPA

SYBR FAST Universal, KAPA Biosystems, RotorGene 6000,

Corbett Research). All RNA samples were normalized to Gapdh.
Primers are listed in Table S3.

Western blot analysis
Using RIPA buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl,

1 mM EDTA, 0.1% SDS, 1% Triton X-100, 0.5% sodium

deoxycholate containing protease and phosphatase inhibitors),

protein of cultured cells and brain tissue was extracted. Proteins

were separated on 12.5% SDS-PAGE and transferred to

nitrocellulose (Protran BA 83, 0.2 mm pores, GE healthcare).

Primary antibodies were incubated over night at 4uC, Anti-rabbit

FABP7 1:250 (Abcam ab27171), Anti-rabbit actin 1:5000 (Sigma,

A5060) and Anti-BMAL1 1:1000 [42]. Detection of the immune

complexes was performed using Western Bright Quantum system

(Advansta) and quantification was done with the Quantity One

analysis software (BioRad). Actin was used for normalization and

relative protein levels were calculated by defining maximal protein

levels as 1.

Behavioral studies
Porsolt Forced swim tests were performed using a cylindrical tank

(35 cm height, 25 cm diameter) filled with water to a height of

20 cm. The water temperature was maintained at 2762uC. An

initial period of 2 min was given for habituation, then immobility

time was recorded during 4 min using a stopwatch. Mice were

considered immobile, when no obvious limb movements were

observed and the floating body did not move actively through the

water. After a total session of 6 min, mice were warmed up on a

heating pad, and then placed back into their home cage. Mice

were tested the same time of day (ZT 6 and ZT 18) at three

subsequent days and mean values were plotted as cumulative

immobility time in seconds.

For Tail suspension tests mice were suspended individually from

the tail, fixed to a cord hanging in a box (36.5 cm high,

30.5630.5 cm2) (according to the EMPRESS standard operating

procedure http://empress.har.mrc.ac.uk). Animals were judged to

be immobile when not agitating and not attempting to escape.

Immobility was recorded during 6 min with a stopwatch. Tests

were repeated for three subsequent days at the same time point

(ZT 6 and ZT 18) and mean values were plotted as cumulative

immobility time in seconds.

Prepulse inhibition (PPI) tests were carried out with acoustic stimuli.

Mice were tested in a startle chamber (SR-lab System, San Diego

instruments) positioned within a sound-proof cabinet in a sound-

attenuating room according to standard methodology [43]. A

constant background white noise of 64 dB was presented

throughout the test. To measure prepulse inhibition, mice were

presented with a 68, 72, 76, 80 and 84 dB prepulse (for 20 ms)

followed by a 120 dB pulse (for 40 ms in length) 100 ms later. The

percentage PPI of the startle response was calculated using the

following formula: 100-[(SRPP/SR)x100]. SR denotes the startle

response to the pulse stimulus, whereas SRPP denotes the startle

response to the pulse with prepulse stimulus.

Elevated O-maze test was used to test anxiety, which affects mood-

related behaviors. The relationship between curiosity/exploration

and fear/hiding in a protected area is investigated. The elevated

O-maze consisted of an elevated (42 cm above the floor) annular

runway (outer diameter was 46 cm with 5.5 cm in with) divided

into 4 sectors. The two 90u closed sectors were protected by 11 cm

high inner and outer walls, while the remaining two open sectors

were unprotected. Animals were released at the interface of the

closed and open area and recorded for 5 min using a video

camera. Number of entries and time spent in the open sector were

counted. In order to avoid habituation to the maze, mice were

tested once for a total session of 5 min.

Y-maze spontaneous alternations test was performed to test the

working memory of mice using a Y-shaped maze with three plastic

arms (height: 12.7 length: 38.3, width: 7.6 cm) at 120u angles.

After introduction in the middle of the maze, mice were allowed to

freely explore the three arms for 5 minutes. Sessions were

videotaped and the sequential entries into each arm (A, B, C) were

noted. An arm entry was scored when all four limbs of the animal

were within an arm. Each set of three consecutive choices where

no repeated entries occurred (counting also overlapping triplets)

was scored as alternation. The Y-maze score was calculated as

follows [number of alternations/(number of total entries-2)*100], a

Y-maze score of 50% indicates random selection of arm entries.

The maze was cleaned with 70% ethanol after each test. Tests

were performed during the resting phase of mice between ZT 4 to

ZT 6.

Spatial object recognition (SOR) tasks were performed in an

arena (30630630 cm) with two objects, a plastic square

(6.562.568.5 cm) and a metal cylinder (h: 9 cm, r: 2.2 cm). The

bottom plate of the arena was decorated on one side with black

and white stripes as a spatial cue. Mice were habituated to the

empty arena for 10 min, subsequently the arena was cleaned with

70% ethanol and two objects were placed in the arena at opposite

corners (upper left and lower right). The mice were introduced in

the center of the arena and allowed to explore the arena for

10 min (object training). Object training was repeated on three

consecutive days (24-h intervals) for 10 min each. Twenty-four

hours after the third training one object was displaced to a new

location (displaced object, DO) while the other object was not

moved (non-displaced object, NOD) and the mice were allowed to

explore the new situation during 10 min. The identity of the DO

(plastic square or metal cylinder) was balanced between groups.

The third training session and test session were videotaped. The

response to spatial change was assessed by calculating the

percentage of time spent exploring the DO vs. NOD. Exploration

was scored when mice were facing and sniffing the objects within

very close proximity and/or touching them.

Immunohistochemistry
Animals used for immunohistochemistry were sacrificed at ZT

6. Perfused brains were cryoprotected and sectioned (40 mm,

coronal) using a cryostat. Sections chosen for staining were placed

in 24-well plates (up to 4 sections of one sample per well), washed 3

times in 1xTBS and twice in 2xSSC pH 7.0 (0.3 M NaCl/0.03 M

tri-Na-citrate). Antigen retrieval was performed with 50%

formamide/26SSC by heating to 65uC for 50 min. Then, sections

were washed twice in 2xSSC and 3 times in 1xTBS pH 7.5 (0.1 M

Tris/0.15 M NaCl), before blocking them for 1 h in 10% fetal

bovine serum (FBS)/0.1% Triton X-100/1xTBS at room

temperature (RT). Directly after the blocking step, primary

antibodies (DCX [Santa Cruz, SC8066], NeuN [Millipore,

MAB377], FABP7 [abcam ab27171]) diluted in 1% FBS/0.1%

Triton X-100/1xTBS were added to the sections and incubated

overnight at 4uC. The next day sections were washed 3 times in

1xTBS and incubated with the appropriate fluorescent secondary

antibodies diluted 1:500 in 1% FBS/0.1% Triton X-100/16TBS

for 3 h at RT (Dk-Anti-mouse Cy5 [715-605-150], Dk-Anti-rabbit

Cy2 [711-545-152], Dk-Anti-rabbit Cy3 [711-165-152], Dk-Anti-

goat Cy3 [705-165-147], all from Jackson Immuno Research).

After 3 washes with 1xTBS, nuclei were counterstained with DAPI
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for 10 min. Finally the tissue sections were washed again twice in

1xTBS and mounted on glass microscope slides. Slides were stored

horizontally for at least one day at 4uC to allow the mounting

medium to solidify. Fluorescent images were taken by using a

confocal microscope (Leica TCS SP5), equipped with objectives

10x, 20x, and 40x, and an inverted DMI6000 stand with

motorized stage. Images were taken with a resolution of

102461024, scan speed 400 Hz and Z-stack of 1.5 mm through

the whole section with frame average 3. Images were processed

with LAS AS software from LEICA.

Assessment of cell proliferation and neurogenesis
Mice aged 6–12 weeks were used for the assessment of

neurogenesis. To assess the total amount of newborn cells in the

adult dentate gyrus, bromodesoxyuridin (BrdU) was administered

by intraperitoneal injection (ZT6) at 100 mg/kg body weight and

the mice (3 per genotype) were sacrificed 4 days later at ZT6. For

the diurnal evaluation of proliferation, mice received a single dose

of BrdU (100 mg/kg body weight) for 10 hour labeling. The

injection schedule was as follows: injection at ZT 1 and perfusion

at ZT 11 for light phase labeling; injection at ZT 13 and perfusion

at ZT 23 for dark phase labeling (4 mice per genotype and time

point). The tissue was fixed by cardiovascular perfusion, cryopre-

served and sections of 40 mm were cut using a cryostat. For

immunohistochemical detection of BrdU streptavidin-biotin de-

tection was chosen. Free-floating sections were incubated in 1 M

HCl on ice for 10 min, then in 2 M HCl at RT for 10 min and

finally in 2 M HCl at 37uC for 20 min. Incubation in 0.1 M boric

acid at pH 8.5 for 12 min was performed for neutralization.

Sections were blocked for 1 h in 10% FBS/0.1% Triton X-100/

16TBS at RT, followed by specific blocking of streptavidin and

biotin binding sites in the tissue (Streptavidin-Biotin blocking kit

Vector labs). Primary antibodies diluted in 1% FBS/0.1% Triton

X-100/16TBS were added to the sections and incubated

overnight at 4uC. Antibodies were Anti-DCX (abcam ab18723),

Anti-BrdU [BU1/75 (ICR1)] (abcam ab6326) and Anti-NeuN

(Millipore MAB377). Secondary antibodies were biotinylated Anti-

rat (Vector Laboratories BA9400), Anti-mouse Cy5 and Anti-

rabbit Cy3 (Jackson Immuno Research 715-605-150 and 711-165-

152) for 3 h at RT and subsequently Streptavidin-FITC conjugate

(Vector Laboratories SA5001) 2 h at RT. Mounted tissue sections

were analyzed with a confocal microscope (Leica TCS SP5).

Fluorescent images covering the DG region were taken with 406

magnification and Z-stack of 1.5 mm through the entire coronal

section with frame average 3. Images were processed with LAS AS

software from LEICA. To estimate the number of immunolabelled

BrdU+ cells in the dentate gyrus (DG), systematic random

sampling of every sixth 40-mm coronal section along the rostro-

caudal axis of the DG (21.06 mm to 23.80 mm from bregma)

was chosen and performed according to [5]. Immunopositive cells

were counted and the total amount of cells per DG was calculated

by multiplying the results by six (because every sixth section had

been used).

Knockdown of Fabp7 by siRNA
SiRNA-mediated gene knockdown was achieved by using

Lipofectamine RNAiMAX transfection kit (Invitrogen). U-251

MG cells plated to 6-well plates and grown to 30-50% confluence

were transfected with 10 nM Stealth siRNA duplexes (Invitrogen):

FABP7HSS103516, FABP7HSS103517, FABP7HSS103518 and

siRNA negative control medium GC. Knockdown efficiency was

assessed 72 h post-transfection by western blotting and real-time

PCR.

SR8278 (REV-ERBa antagonist) treatment
25 mM SR8278 (Sigma) stock solution in DMSO was prepared.

Confluent cells were incubated during 24 h in presence of 10 mM

SR8278, if not otherwise stated. Equal volumes of DMSO were

used as control treatment.

Cell migration assay
Experiments were carried out with 24-well plates and polycar-

bonate Trans-well membrane inserts containing 8 mm pores

(Corning, 3422). 72 h after siRNA mediated gene knockdown

and 18 h after addition of 10 mM SR8278 (antagonist of REV-

ERBa) in DMSO (equal volumes of DMSO were used as control

treatment), U-251 MG cells were removed from the plate using

0.1% trypsin in 1xPBS and counted. 20’000 cells, in DMEM

without FCS, were plated to trans-well inserts and put in the

receiver-wells. DMEM containing 10% FCS in the receiver-well

was used as attractant. To allow migration, cells were incubated

for 6 h in a CO2 incubator. A Q-tip was used to remove non-

migrated cells from the upper side of the membrane, whereas

migrated cells on the lower side of the membrane were fixed and

stained for 10 min in 0.5% crystal violet/25% methanol. The

number of migrated cells was determined by counting them in

three random big squares of a Neubauer chamber and the results

were displayed as percent of migrated cells of the total amount of

cells plated per trans-well (3 mm2). Experiments were performed

in duplicates and repeated least three times. Representative

pictures of migrated cells were taken with a Zeiss Axioplan 2

microscope.

Proliferation study
The Luna automated cell counter (Logos Biosystems) was used

to assess proliferation of U-251 MG cells. Experiments were

carried out 72 h post transfection and 18 h after treatment with

10 mM SR8278. Cells were detached using 0.1% trypsin in 1xPBS

(2 min at 37uC), resuspended in growth medium and mixed with

an equal volume of trypan blue stain (0.4% in 1xPBS). 10 ml of

stained cell suspension was used per cell counting chamber,

samples were counted twice and experiments were performed four

times. Results were displayed as total cell number per well, since

the ratio of living and dead cells did not vary between samples.

Statistical analysis
Statistical evaluation of all experiments was performed using

GraphPad Prism4 software. Depending on the type of data, either

unpaired t-test, 1- or 2-way ANOVA with Bonferroni post-test was

performed. Values were considered significantly different with p,

0.05 (*), p,0.01 (**), or p,0.001 (***).

Results

Genome wide analysis reveals an increase of Fabp7 in the
SCN of Rev-erba KO mice
In order to detect differences in gene expression in brains of

wild- type versus Rev-erba KO mice we performed a microarray

analysis. We focused our analysis on the SCN, because REV-

ERBa is a component of the circadian clock of which the

pacemaker resides in the SCN [44]. In order to identify Rev-erba

regulated genes, we collected tissue 2 hours after the beginning of

the activity phase at zeitgeber time (ZT) 14, which is 2–4 hours

after maximal mRNA expression of Rev-erba [27]. Using Affimetrix

whole genome arrays we identified a number of differentially

expressed genes between the two genotypes (up-regulated genes

Table S1, down-regulated genes Table S2). The strongest
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differences in gene expression are summarized in Figure 1. The list

of up-regulated genes includes Bmal1 (Arntl) and Npas2, two clock

components that are directly regulated by REV-ERBa [27,45].

We focused on genes that were up-regulated in Rev-erba KO mice

(red, lower part in Fig. 1A), because REV-ERBa acts as a

repressor binding to RORE elements in the promoter of target

genes. Lack of Rev-erba will therefore lead to up-regulation of direct

target genes. Plotting the RMA (Robust Multi-array Analysis)

signals [37] from Rev-erba KO versus wild-type mice clearly

identified Fabp7 as the most up-regulated (4.5-fold) gene in the

SCN of Rev-erba KO animals (Fig. 1B).

Fabp7 is over-expressed in different brain regions of Rev-
erba KO mice
As a next step we verified the increased expression of Fabp7 in

Rev-erba KO mice using in situ hybridization, quantitative RT-

PCR (qRT-PCR) and further extended the validation at the

protein level by Western blotting. In situ hybridization experi-

ments performed on brain slices of wild-type, Per2Brdm1 mutant and

Rev-erba KO animals revealed increased expression of Fabp7

mRNA in Rev-erba KO mice. This expression was increased not

only in the SCN, but also throughout various brain regions,

including the hippocampus (HIP), the habenula (HB) (Figs. 2A and

S1) and the cortex (CX) (Fig. S1), which are known sites of Fabp7

expression [33]. In wild-type and Per2Brdm1 mutant mice, Fabp7
mRNA displayed a shallow diurnal pattern of expression (black

and red lines, respectively) in the SCN and HB, whereas in Rev-
erba KO animals, this expression was elevated at all time points

(green line, Fig. S1). More detailed analysis of the in situ

hybridization experiment revealed that in Rev-erba KO mice,

Fabp7 expression appeared to be elevated in the molecular layer

(Fig. 2B) and the SGZ of the hippocampus (arrows, Fig. 2B). Next

we quantified Fabp7 by qRT-PCR in hippocampus and found it to

be expressed in a phase consistent with the repression of its

expression by REV-ERBa (Fig. 2C). Similar to the increase in

mRNA expression of Fabp7 Western blot analysis on hippocampal

extracts from wild-type and Rev-erba KO mice revealed elevated

levels of FABP7 protein in the brain of Rev-erbaKOmice (Fig. 2D),

suggesting that Fabp7 is a target gene of REV-ERBa.

REV-ERBa regulates Fabp7 expression in vitro and in vivo
Expression analysis suggested that Fabp7 may be directly

regulated by REV-ERBa. To test this hypothesis we performed

transactivation experiments using a part of the Fabp7 promoter

fused to luciferase (Fabp7::luc) as a reporter and transfected this

construct into the neuroblastoma cell line NG108-15. We found

that REV-ERBarepressed the activity of the Fabp7 promoter in a

dose dependent manner comparable to the known REV-ERBa

mediated repression of the Bmal1 promoter (Fig. 3A). Deletion of

the proximal REV-ERBa binding element (RORE) on the Fabp7

promoter (2257 nt upstream of the transcription initiation site)

abolished REV-ERBa mediated repression (Fig. 3B). Interestingly,

the positive acting counterpart of REV-ERBa, the retinoic acid

related orphan receptor alpha (RORa), which also binds to

ROREs, activated the Fabp7 promoter in a similar fashion as it

activates Bmal1 (Fig. 3C). These results indicate that Fabp7 is

regulated by the nuclear receptors REV-ERBa and RORa. Since

these two nuclear receptors are components of the circadian clock,

we tested whether Fabp7 is activated in a time dependent fashion.

First, we verified that Fabp7 is regulated by a similar mechanism in

NIH 3T3 fibroblasts (Fig. S2). Thereafter, we monitored cyclic

expression of Fabp7::luc after synchronization of cells with

dexamethasone (Fig. 3D). Our experiments indicated a time

dependent regulation of the Fabp7 promoter in vitro in phase with

Bmal1.

In a next step, we tested whether REV-ERBa binds to the Fabp7

promoter in vivo by performing chromatin immunoprecipitation

(ChIP) using chromatin prepared from the hippocampal area.

Figure 1. Genome wide expression profiling of wild-type and Rev-erba2/2 tissue from suprachiasmatic nuclei (SCN). (A) The strongest
up- and down-regulated genes are displayed with red color marking the up-regulated genes and blue the down-regulated genes. The heat map is a
selection of genes from the array based on p,0.01 (t-test) and an absolute fold change greater than 1.75. The color code is based on the log2 value
of the fold change of the RMA values. The three columns per genotype represent the individual experiments (n = 3). (B) Plot of the RMA signals from
wild-type versus Rev-erba2/2 SCN reveals Fabp7 as the most up-regulated gene in Rev-erba2/2 mice (dotted lines represent 2 fold changes).
doi:10.1371/journal.pone.0099883.g001
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Figure 2. Expression profile of Fabp7 mRNA and protein in brain tissue. (A) In situ hybridization on coronal brain sections of wild-type,
Per2Brdm1, and Rev-erba2/2 mice at ZT4. The sections in the left column contain the SCN, the sections in right column the hippocampus (HIP) and
habenula (HB). (B) The panel shows dark-field microscopy of the hippocampus (HIP) in the dentate gyrus region. Blue represents Hoechst-dye stained
cell nuclei and the yellow signal represents the hybridization signal detecting Fabp7mRNA. (C) Quantification of Fabp7mRNA in the hippocampus of
wild-type (black) and Rev-erba2/2 mice (green) over the period of 24 hours (left panel). The right panel depicts the Rev-erba mRNA in the
hippocampus of wild-type (black) and Rev-erba2/2 mice (green). 2-way ANOVA reveals a significant difference between wild-type and Rev-erba2/2

mice (n = 3, p,0.05, mean6 SEM). (D) The left panel shows a Western blot illustrating FABP7 protein levels in the hippocampus area of wild-type and
Rev-erba2/2 mice. The right panel illustrates the quantification of FABP7 signal. 2-way ANOVA reveals a significant difference between wild-type and
Rev-erba2/2 mice (n = 3, p,0.05, mean 6 SEM).
doi:10.1371/journal.pone.0099883.g002
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Figure 3. Molecular regulation of the Fabp7 promoter. (A) The top panel depicts the murine Fabp7 (mFabp7) promoter with its two REV-ERBa
response elements (ROREs). Transactivation experiments in NG108-15 neurobalstoma cells show a repression potential of REV-ERBa that is similar for
both the Bmal1::luc and Fabp7::luc reporter constructs (n = 3, *p,0.05, mean 6 SD). (B) Deletion of the RORE element 257 nucleotides upstream of
the transcription start site of Fabp7 (Fabp7DRORE) abolishes the repression by REV-ERBa (n = 3, *p,0.05, mean 6 SD). (C) RORa activates the
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REV-ERBa bound to the Fabp7 promoter in a time dependent

fashion and this binding was absent in Rev-erba KO mice (Fig. 3E).

This suggests that our observations made in cell cultures most

likely also apply in vivo.

Rev-erba KO mice show alterations in mood-related
behaviors and hippocampus-dependent cognitive
performance
Next, we performed behavioral tests comparing wild-type and

Rev-erba KO mice. Fabp7 maps to a quantitative trait locus for a

schizophrenia endophenotype [46] and therefore we employed a

prepulse inhibition (PPI) test, which is used as a measure for

schizophrenia. However, we found no difference between wild-

type and Rev-erba KO mice (Fig. 4A), which overexpress Fabp7, in

contrast to animals lacking Fabp7, which displayed a reduced

response in the PPI test [46]. In order to test anxiety related

behavior we used the elevated O-maze test during the light phase.

Both genotypes spent the same amount of time in the open area

(Fig.4B, left panel) and also the number of entries into the open

area was similar (Fig. 4B, right panel), indicating no significant

differences in anxiety. Next, we performed despair-based behav-

ioral tests that detect differences in mood-related behavior such as

mania and depression. The two genotypes did not differ in their

behavior in the tail suspension test (TST) at ZT6 as well as at

ZT18 (Fig. 4C). The data are shown over 3 consecutive days to

illustrate no changes due to learning or adaptation. A more

sensitive mood-related behavioral test, the forced swim test (FST)

revealed a tendency of wild-type animals towards higher

immobility at ZT6 compared to ZT18 (Fig. 4D). This is consistent

with our previous observations [47]. Interestingly, Rev-erba KO

mice showed significantly reduced immobility compared to wild-

type animals at ZT6 (Fig. 4D), although the total locomotor

activity levels are similar to wild-type animals [27]. In the

literature reduced immobility is often associated with ‘mania-like’

behavior, however, it may also reflect a deficit in learning to adapt

to a hopeless situation [48,49]. Therefore, we tested both

genotypes in memory related tests. Spontaneous alterations in a

Y-maze are considered a test of short term or working memory.

Mice tend to avoid an arm they just have visited and alternate

their entries among the arms, so re-entry into an arm just visited

suggests memory impairment [50]. In the Y-maze task, Rev-erba

KO mice showed reduced spontaneous alterations between the

arms compared to wild-type animals (Fig. 4E), suggesting a deficit

in working and short-term memory. To assess long-term memory

we employed the spatial object recognition test (SOR), which relies

on the innate propensity of mice to explore their environment and

recall where objects are located [51]. After training the mice to

learn the position of objects, one object was moved 24 hours later.

Wild-type mice will recall the position of the nondisplaced object

(NDO) and the exploration of the displaced object (DO) will be

favored. During the training session neither wild-type nor the Rev-

erba KO animals showed a preference for either object, but Rev-

erba KO mice showed less preference for the DO than wild-type

mice when tested 24 hours later (Fig. 4F, left panel). However, it

appeared that Rev-erba KO animals were in general less

explorative than wild-type animals (Fig. 4F, right panel). The

SOR test suggests long-term memory deficits of Rev-erba KO mice

as previously observed [52]. Taken together the results indicate

that Rev-erba KO animals display impaired hippocampal functions

regarding mood-related behavior and memory. We do not know,

however, whether these two behavioral phenotypes are function-

ally related, since Rev-erba may be responsible for the regulation of

several transcriptional events in the brain as evidenced in

figure 1A. In addition to Fabp7 up-regulation many other genes

including the glucocorticoid receptor (Nr3c1) are down-regulated

in Rev-erba KO mice and therefore it is very likely that the

behavioral phenotypes are the result of changes in more than one

transcriptional network.

Neurogenesis and FABP7 protein expression are
increased in the dentate gyrus of Rev-erba KO mice
Neurogenesis-deficient mice exhibit increased immobility in the

FST thus indicating a direct role of adult neurogenesis in

depressive illness [53]. Therefore we hypothesized that Rev-erba

KO animals, which show decreased immobility in the FST

(Fig. 4D), may display increased neurogenesis.

To test this hypothesis we performed immunohistochemistry to

visualize the formation of neurons in the SGZ of the hippocampal

DG. We found that expression of doublecortin (Dcx), a marker for

immature neurons, is increased in the Rev-erba KO hippocampus

(Fig. 5A). Furthermore, an increased number of cells has divided in

Rev-erba KO animals, as evidenced by the cell-cycle dependent

incorporation of bromodeoxyuridine (BrdU) (Fig. 5B). Dcx

staining and BrdU staining partially overlapped (Fig. 5B, magni-

fication), consistent with the accepted model of neurogenesis [32].

In the molecular layer of the hippocampus a partial overlap in

expression was observed between FABP7 and GFAP (Fig. S3).

This is consistent with previous observations describing FABP7 as

a marker for a subpopulation of glial cells [54].

Since we observed increased Fabp7 mRNA expression in the

SGZ of Rev-erba KO mice (Fig. 2B) we investigated its expression

at the protein level. Similar to its mRNA expression, more FABP7

protein containing cells were observed in the SGZ of Rev-erba KO

mice (Fig. 5C). Its expression did not co-localize with Dcx,

indicating that FABP7 may be a marker of a subpopulation of

neuronal stem cells (NSCs, Type-2 and Type-3) and early

transitory amplifying cells (TAPs) before Dcx starts to be expressed

in neuroblasts [32]. Overall these results suggest a correlation

between neurogenesis, FABP7 and REV-ERBa function.

The diurnal pattern of hippocampal neurogenesis is lost
and constantly high in Rev-erba KO mice
Because REV-ERBa appears to be responsible for the diurnal

expression of the NPC marker Fabp7 (Fig. 2, 3), we tested whether

the known diurnal pattern of neurogenesis [23–26] is lost in

FABP7 overexpressing Rev-erba KO mice. In wild-type animals we

observed a time of day dependent BrdU incorporation into

newborn cells in the SGZ of the hippocampus with higher

incorporation during the dark phase (ZT13-23) as compared to the

light phase (ZT1-11) (Fig. 6A left panel, 6B). In contrast

incorporation of BrdU into newly formed cells of Rev-erba KO

was constantly high and did not show a diurnal pattern. This

observation correlates with the observed constant overexpression

of Fabp7 in Rev-erba KO animals, suggesting that Rev-erba is

involved in establishing the diurnal pattern of adult neurogenesis.

Fabp7::luc reporter in a similar fashion as the Bmal1::luc reporter (n = 3, *p,0.05, mean 6 SD). (D) Real-time monitoring of NIH 3T3 cells transfected
with the Bmal1::luc and Fabp7::luc reporters, respectively. (E) Chromatin immunoprecipitation (ChIP) reveals time of day dependent binding of REV-
ERBa on the Fabp7 promoter in hippocampal tissue (n = 4, ***p,0.001, mean6 SEM, one-way ANOVA). denotes background binding of REV-ERBa at
the unrelated Fgf21 promoter.
doi:10.1371/journal.pone.0099883.g003
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Migration and proliferation of glioblastoma cells are
modulated by Rev-erba and Fabp7 in vitro
Approximately 80% of dividing progenitors in the SGZ are

directed to the neuronal fate and develop into dentate granule

neurons. They migrate radially into the inner third of the granule

layer where they start to display the morphology of mature granule

neurons (reviewed in [55]). Hence, migration is part of adult

neurogenesis. In order to establish a functional link between

increased expression of FABP7 in Rev-erba KOmice and migration

of neuronal cells, we looked at the migration properties of FABP7

expressing U-251 MG glioblastoma cells [36] in a transwell

migration assay.

Migration of the cells through micropores from one compart-

ment to the other was observed if the latter contained 10% fetal

calf serum (FCS). In contrast, no migration was observed if it was

left serum-free (Fig. 7A, B). Addition of the REV-ERBa antagonist

Figure 4. Mood-related behavior and hippocampus-dependent cognitive performance is altered in Rev-erba2/2 mice. (A) Mice were
subjected to prepulse inhibition (PPI) during the light phase. Startle response after a prepulse at 68, 72, 76, 80 and 84 dB, followed by a pulse at
120 dB represented as percentage of PPI with 100% as the first absolute startle values. Wild-type and Rev-erba2/2 mice display a comparable amount
of PPI, which is a measure related to schizophrenia (mean6 SEM, n = 6). (B) Mice were tested at ZT0-2 in the anxiety related elevated O-maze test and
no significant differences between the two genotypes were observed (mean 6 SEM, n = 12, 2-way ANOVA). (C) Mice were subjected to the tail
suspension test (TST) at ZT6 and ZT18. No differences between the genotypes could be observed (mean 6 SEM, n= 6, 2-way ANOVA). (D) Mice were
subjected to the forced swim test (FST) at ZT6 and ZT18 for 3 consecutive days. Rev-erba2/2 mice were significantly less immobile compared to wild-
type animals at ZT6 (mean 6 SEM, n = 10, ***p,0.001, 2-way ANOVA). (E) Short term spatial memory was assessed between ZT4-6 using the Y-maze
test (mean6 SEM, Student’s t-test, **p,0.01, n = 12). (F) Long term spatial memory was assessed between ZT4-6 using the spatial object recognition
test (SOR). The left panel shows the preference for the displaced object (DO) 6 SEM (2-way ANOVA, p,0.05, n = 10). The right panel shows the total
time exploring objects in general (mean 6 SEM, 2-way ANOVA, **p,0.01, ***p,0.001, n = 10).
doi:10.1371/journal.pone.0099883.g004
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Figure 5. Immunohistochemistry in the dentate gyrus (DG) of wild-type and Rev-erba2/2 mice at ZT6. (A) Cell nuclei stained with DAPI
are in blue and antibodies recognizing doublecortin (Dcx) are in red. Dcx expression is increased in the subgranular zone of Rev-erba2/2 mice
indicating the presence of more neuroblasts in these animals. Scale bar: 100 mm. (B) Left panel: Visualization of cell division using bromodeoxyuridine

REV-ERBa and Adult Hippocampal Neurogenesis

PLOS ONE | www.plosone.org 10 June 2014 | Volume 9 | Issue 6 | e99883



SR8278 [56] increased FABP7 expression (Fig. S3A) and

migration of the cells compared to the solvent control DMSO,

indicating that suppression of REV-ERBa had a positive influence

on the migration properties of U-251 MG glioblastoma cells

(Fig. 7A, B). Introduction of siRNA against Fabp7 into the cells

suppressed both FABP7 expression (Fig. S3B) and migration in the

absence and presence of SR8278, (Fig. 7A, B) further supporting

the notion that Rev-erba modulates migration via Fabp7.

Another hallmark of neurogenesis is cell proliferation. Therefore

we tested in the same glioblastoma cell line whether the REV-

ERBa antagonist SR8278 and siRNA against Fabp7 can affect

proliferation. 72 hours after transfection of control and Fabp7

siRNAs, respectively, we counted the number of cells that have

grown in presence or absence of SR8278. Suppression of REV-

ERBa by its antagonist SR8278 increased proliferation, whereas

down regulation of FABP7 by its siRNA decreased it (Fig. 7C).

These results were in agreement with our in vivo finding that lack

of Rev-erba in mice increased proliferation in the DG (Fig. 5B). This

indicates that our observations in U-251 MG glioblastoma cells are

likely to be applicable to the DG. Overall it appears that Rev-erba

and Fabp7 are involved in the regulation of proliferation and

migration during the process of neurogenesis.

Discussion

In this study we used genome wide profiling to compare gene

expression in the SCN of wild-type and Rev-erba KO mice. We

identified Fabp7 as a direct target gene of REV-ERBa. In situ

hybridization and immunohistochemistry revealed an increase in

FABP7 expression in Rev-erba KO mice in several brain regions

including the SGZ of the hippocampus, suggesting an involvement

of REV-ERBa and FABP7 in adult neurogenesis. In accordance

with this notion Rev-erba KO mice displayed constantly high

proliferation of cells over the day compared to wild-type mice,

which displayed a diurnal pattern of neurogenesis in the SGZ. In

addition, in vitro manipulation of REV-ERBa and FABP7

affected migration and proliferation properties of glioblastoma

cells.

Gene expression profiling of NSCs and their neuronal progeny

in adult hippocampal tissue revealed many genes to be involved in

neurogenesis [7]. Interestingly, this study indicated that in NSCs

Rev-erba (Nr1d1) is about 4 times up-regulated compared to

immature neurons expressing Dcx [7], suggesting an involvement

of Rev-erba in the early steps of adult neurogenesis. Among the

potential target genes of Rev-erba identified in our study (Fig. 1,

Table S1), Fabp7 was found to affect neuronal differentiation [57].

However, because Fabp7 levels are low in NSCs (type 1) and

absent in Dcx expressing immature neurons (Fig. 5C, [32]) the

study by Bracko et al. [7] did not identify Fabp7 to be differentially

expressed between NSCs and immature neurons.

Analysis of Fabp7 over 24 hours revealed a diurnal expression of

its mRNA in brain tissue which is comparable to a previous study

[33] with a trough of expression around ZT16 that is almost anti-

phasic to the expression of Rev-erba (Fig. 2C). Although FABP7

protein levels do not fluctuate over time, lack of Rev-erba

significantly increased FABP7 protein levels in the brain

(Fig. 2D). Our transactivation and ChIP studies indicate that

REV-ERBa is a regulator of Fabp7 mRNA expression (Fig. 3).

Thus FABP7 appears to be one of the mediators of REV-ERBa

function in the brain.

Lack of Fabp7 in mice leads to altered emotional behavioral

responses [54] and has been associated with a schizophrenia

endophenotype [46]. In particular, Fabp7 KO mice exhibited a

differential response in the PPI test accompanied by reduced

proliferation in the SGZ [46]. In Rev-erba KO mice, which

overexpress Fabp7 (Fig. 2), the opposite phenotype with increased

proliferation in the SGZ (Fig. 5B, 6) and no change in the PPI test

(Fig. 4A) was observed. Similarly, anxiety related behavior is

(BrdU). Antibodies recognizing NeuN in blue mark nuclei of mature neurons, antibodies recognizing Dcx are in red and antibodies against BrdU are in
green. Scale bar: 50 mm. Right panel: Quantification of the BrdU+ cells after 4 days. Rev-erba2/2 mice display more BrdU positive cells (mean 6 SEM,
n = 3, **p,0.005, t-test). (C) FABP7 protein expression (green) does not overlap with Dcx protein expression and both expression levels are higher in
Rev-erba2/2 mice. The orthogonal sectioning to the right and at the bottom show reconstructions from a confocal z-stack in xz and yz direction,
respectively. The dotted white lines mark the granular layer of the DG. Scale bar: 50 mm.
doi:10.1371/journal.pone.0099883.g005

Figure 6. Neurogenesis in Rev-erba2/2 mice is constantly high and not diurnal. (A) BrdU was injected at ZT1 (upper panels) or ZT13 (lower
panels) and incorporation was assessed 10 hours later (ZT11 and ZT23, respectively) in wild-type (left panels) and Rev-erba2/2 KO (right panels).
Antibodies recognizing Dcx are in red and antibodies against BrdU are in green. The dotted white lines mark the granular layer of the DG. Scale bar:
50 mm. (B) Quantification of the BrdU+ cells after 10 hours. Rev-erba2/2 mice display more BrdU positive cells during the light phase (ZT1-11)
compared to wild-type (mean 6 SEM, n= 4, *p,0.05, 2-way ANOVA) whereas in the dark phase (ZT13-23) no difference in the number of BrdU
positive cells was observed between the genotypes.
doi:10.1371/journal.pone.0099883.g006
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altered in Fabp7 KO mice [54] but in the Fabp7 overexpressing

Rev-erba KO mice this is not the case (Fig. 4B). Furthermore, Rev-

erba KO animals did not differ in the tail suspension test (TST)

compared to wild-type, however, they responded differently to the

FST, spending less time immobile than their wild-type counter-

parts (Fig. 4D). Decreased immobility has been associated with

mania while increased immobility with depression [48] and

reduced neurogenesis [53]. Accordingly, one would expect an

increase of neurogenesis in Rev-erba KO mice. Our results support

this notion as more Dcx positive neuroblasts are observed in the

SGZ of Rev-erba KO animals (Fig. 5A). However, the effect of

REV-ERBa regulation via FABP7 appears to manifest before

neuroblasts are committed, as FABP7 expression did not co-

localize with Dcx positive cells (Fig. 5C). This is consistent with

previous observations describing a transitory expression of FABP7

in type 2 and 3 NSCs and early TAPs but not in late TAPs and

Dcx positive neuroblasts in the SVZ [32].

Adult neurogenesis in the hippocampus has also been associated

with learning and memory (for review see [55,58]). The short-term

memory and long-term memory tests we applied to the Rev-erba

KO mice revealed, that these animals had a deficit in the process

of memory formation (Fig. 4E, F). An increase in adult

neurogenesis in the hippocampus, as observed in Rev-erba KO

animals would, however, predict an improvement of memory

formation. This contradiction may be rooted in the multiple

functions of Rev-erba. Our microarray analysis (Fig. 1, Tables S1

and S2) clearly shows that many genes are altered in their

expression in Rev-erba KO mice. Of special interest in this context

is the down-regulation of the nuclear glucocorticoid receptor

(Nr3c1), because decreased signaling of this receptor in the

hippocampus impaired spatial memory in rats [59,60]. Interest-

ingly, a recent study shows that adult hippocampal neurogenesis

regulates forgetting indicating that too much neurogenesis may

jeopardize memory retention [61]. This notion correlates with our

findings.

The challenge for NSCs as for any other type of stem cells is to

keep the balance between proliferation and quiescence. This

balance is extremely important not only to keep a certain amount

of pluripotent NSCs in their niche, but also to avoid cancer

development due to over-proliferation. Niche signals, such as

notch signaling, can control dormant NSCs and push them

towards proliferative or keep them in a quiescent state [62]. Fabp7

may serve as a potential marker for mitotically activated NSCs in

the SVZ [32]. Rev-erba, as a repressor of Fabp7, may provide an

additional niche stimulus and therefore function as a brake to

avoid excessive proliferation of NSCs. This may explain why we

observe a strong increase in neurogenesis in the SGZ of Rev-erba

KO animals. If proliferation is constantly increased, gliomas may

develop, which are the most common primary malignancy in the

central nervous system of humans. In mice, however, gliomas are

hardly observed and we did not note development of gliomas in

Rev-erba KO mice. This may be due to compensation of increased

neurogenesis by elevation of cell death and/or apoptosis in Rev-

erba KO animal, which has been observed in the developing

cerebellum of these mice [63]. Alterations in cell death and

apoptosis in the adult hippocampus will have to be investigated in

Rev-erba KO mice in the future.

Glioblastoma tumors appear to contain cells with stem cell-like

properties, which contribute to invasion and chemoresistance

[64,65]. The stem cell-like cells grow as neurospheres in culture

and in comparison to adherent glioblastoma cells, they express

elevated levels of Fabp7 accompanied by elevated migration and

proliferation [57]. Manipulation of Rev-erba and Fabp7 in U-251

MG glioblastoma cells shows effects on migration and proliferation

(Fig. 7) that are in line with the observations described above.

Hence, it can be speculated that agonists for REV-ERBamay help

to reduce proliferation and migration in gliomas, which may

Figure 7. Influence of Rev-erba and Fabp7 on migration and
proliferation of U-251 MG glioblastoma cells. (A) Cells were
analyzed under non-migrating (0% FCS) and migrating (10% FCS)
conditions 6 hours after treatment. The Rev-erba antagonist SR8278
(10 mM) increased migration of the cells compared to DMSO control.
siRNA against Fabp7 (Fabp7 16) reduced this migration. Scale bar:
200 mm. (B) Quantification of the experiment in A. Shown is the mean
6 SD for n= 3 independent experiments (*p,0.05, **p,0.005, t-test).
(C) Number of cells 72 hours after transfection with either control or
Fabp7 siRNA in presence or absence of the Rev-erba antagonist SR 8278.
The mean 6 SD for n = 4 experiments (*p,0.05, **p,0.01, t-test) is
shown.
doi:10.1371/journal.pone.0099883.g007
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represent a novel avenue to combat this type of tumors in humans.

Interestingly, it appears that circadian genes are to some extent

related to glioma risk and outcome [66]. In particular elevated

levels of CLOCK contribute to cell proliferation and migration in

glioma [67]. Of note is that Clock is directly regulated by REV-

ERBa [45] and therefore agonists for REV-ERBa [4] may not

only reduce Fabp7 expression but also Clock levels, which may

reduce neurogenesis and lower the potential of glioblastoma

development.

Neurogenesis in the brain continuously declines with age [68].

This might be partially due to an increased quiescence of NSCs

and loss of Fabp7 expressing cells, as it has been observed in the

SVZ of aged mice [32]. Increasing Fabp7 by the application of

REV-ERBa antagonists may awake potentially dormant NSCs in

neurogenic pools and they may replenish dying cells. Hence,

REV-ERBa antagonists may improve the performance of the

ageing brain and help in the treatment of neurodegenerative

diseases such as Alzheimer disease [58].

Furthermore, antagonists for REV-ERBa may serve as anti-

depressants by increasing proliferation and migration (Fig. 7)

leading to a reduction of depressive symptoms (Fig. 4D). However,

future experiments will show to what extent the above predictions

can be met.

Overall our study shows that Rev-erba regulates Fabp7 and that

both genes appear to be involved in the modulation of

neurogenesis. This finding has far reaching implications, as

pharmacological targeting of Rev-erba may lead to improved

treatments for gliomas as well as neurological and depressive

disorders.

Supporting Information

Figure S1 Expression profile of Fabp7 mRNA and protein in

brain tissue. (A) Dark-field microscopy of the SCN and the

habenula (HB) comparing wild-type and Rev-erba2/2 mice at ZT4

and ZT16. The yellow signal represents the hybridization signal

detecting Fabp7 mRNA and blue represents Hoechst-dye stained

cell nuclei. (B) Quantification of the signal in the SCN, the HB and

cortex (CX) over time: black line = wild-type, red line =

Per2Brdm1, green line = Rev-erba2/2. The signal at ZT4 is double

plotted. The values comparing wild-type (or Per2Brdm1) with Rev-
erba2/2 are significantly different (n = 3, p,0.05, 2-way ANOVA,

mean 6 SEM).

(TIF)

Figure S2 Inhibition of Fabp7 transcription by REV-ERBa in

NIH 3T3 fibroblasts. Transactivation experiments show a dose

dependent repression potential of REV-ERBa that is similar for

both the Bmal1::luc and Fabp7::luc reporter constructs (n = 3, *p,

0.05, mean 6 SD).

(TIF)

Figure S3 Immunohistochemistry in the dentate gyrus (DG) of

wild-type and Rev-erba2/2 mice at ZT6. Overlapping signals

(yellow) of FABP7 (green) with GFAP expressing cells (red). The

orthogonal sectioning to the right and on the bottom depict

reconstructions from a confocal z-stack in xz and yz direction to

confirm that the FABP7 signal cell belongs in fact to the GFAP-

positive cell. Scale bar: 50 mm.

(TIF)

Figure S4 Immunobots showing efficiency of inhibition of REV-

ERBa activity and verification of siRNA knockdown of Fabp7 in

U-251 MG glioblastoma cells. (A) Quantification of FABP7 and

BMAL1 protein expression after treatment for 24 h with different

concentrations of REV-ERBa antagonist SR8278. Actin was used

for normalization. (n = 3, *p,0.05, mean 6 SD, t-test). (B) Left

panel: Comparison of Fabp7 knock down efficiency between three

different siRNAs against Fabp7 (16, 17, 18) and negative control

siRNA. Efficiency was tested 72 h post transfection with siRNA

and actin was used for normalization control. The fold change of

FABP7 protein expression was calculated setting the control

siRNA to 1 (n= 4, **p,0.01, mean 6 SD, t-test). Right panel:

Quantification of Fabp7 expression 72 h after siRNA knock down

or 18 h after treatment with 10 mM REV-ERBa antagonist

SR8278 by qRT-PCR. The fold change of Fabp7 mRNA

expression was calculated setting the control siRNA or solvent

control, DMSO, to 1. Experimental conditions were the same as

used for migration and proliferation assays (n = 3, *p,0.05, **p,

0.01, ***p,0.001, mean 6 SD, t-test).

(TIF)

Table S1 List of genes up-regulated in Rev-erba KO SCN.

(PDF)

Table S2 List of genes down-regulated in Rev-erba KO SCN.

(PDF)

Table S3 List of oligonucleotides used in this study.

(PDF)
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