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Abstract
The steroidogenic acute regulatory protein plays an essential role in steroid biosynthesis in steroidogenic cells. It is

involved in the transport of cholesterol through the mitochondrial membrane where the first step of steroidogenesis

occurs. Star gene expression in testicular Leydig cells is regulated by the pituitary LH through the cAMP signaling

pathway. So far, several transcription factors have been implicated in the regulation of Star promoter activity in these

cells. These include the nuclear receptors NUR77 and SF1, AP-1 family members (particularly c-JUN), GATA4, C/EBPb,

DLX5/6, and CREB. Some of these factors were also shown to act in a cooperative manner to further enhance Star

promoter activity. Here, we report that NUR77 and c-JUN have additive effects on the Star promoter. These effects were

abolished only when both elements, NUR77 at K95 bp and AP-1 at K78 bp, were mutated. Consistent with this, in vitro

co-immunoprecipitation revealed that NUR77 and c-JUN interact and that this interaction is mediated through part of the

ligand binding domain of NUR77. Furthermore, we found that SF1 could cooperate with c-JUN on the mouse Star

promoter but this cooperation involved different regulatory elements. Collectively, our data not only provide new insights

into the molecular mechanisms that control mouse Star transcription in Leydig cells but also reveal a novel mechanism for

the regulation of NR4A1-dependent genes in tissues where NUR77 and c-JUN factors are co-expressed.
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Introduction

The steroidogenic acute regulatory protein (STAR)
plays a crucial role in the regulation of steroid
biosynthesis by transporting cholesterol from the
outer to the inner membrane of the mitochondria
(reviewed inManna et al. 2003a), an essential step in the
initiation of steroidogenesis. In Leydig cells, the main
steroidogenic cell within the mammalian testis, Star
gene expression and steroidogenesis are mainly
regulated by the pituitary LH that binds to its
G-protein coupled receptor leading to production of
cAMP and activation of cAMP-regulated pathways
ultimately resulting in transcriptional activation.

Transcriptional regulation of the Star gene in
steroidogenic cells was shown to require two groups of
transcription factors: some already present in the cell
activated by post-translational modifications, and others
that must be de novo synthesized. In Leydig cells, Star
transcription was shown to rely on several transcription
factors belonging to the first group. These include
SF1, LRH1, GATA4, C/EBPb, SREBP, SP1, DLX5/6,
CREB/CREM, members of the AP-1 family (c-FOS and
c-JUN), and DAX-1 (reviewed in Manna et al. 2003a).
Regarding transcription factors belonging to the
second group, we have recently identified the orphan
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nuclear receptor NUR77 (NR4A1) as a rapidly and
strongly induced transcription factor that contributes
to mouse Star transcription in Leydig cells in response
to cAMP/forskolin stimulation (Martin et al. 2008).

The orphan nuclear receptor NUR77 (NGFI-B,
NR4A1) is the founding member of a family that also
comprises NURR1 (NR4A2) and NOR1 (NR4A3), all of
which are characterized as immediate early response
genes expressed in various tissues (Maxwell & Muscat
2005), including in hormonally stimulated steroido-
genic cells (Davis & Lau 1994, Park et al. 2001, 2003,
Song et al. 2001, Li et al. 2004, Martin & Tremblay 2005,
Martin et al. 2008). NUR77 transactivation potential is
also enhanced by post-translational modifications
(Davis et al. 1993, Hirata et al. 1993, Li & Lau 1997,
Martin et al. 2008) and/or modulation of its intra-
cellular localization in response to certain stimuli
(Klopotowska et al. 2005). NUR77 binds to DNA as a
monomer to a regulatory element called NGFI-B
response element (NBRE) similar to that recognized
by the nuclear receptor steroidogenic factor 1 (SF1,
Ad4BP, NR5A1; Wilson et al. 1993), a critical regulator
of steroidogenic cell development and of many
steroidogenic genes (Parker et al. 2002). Consistent
with this, NUR77 and SF1 have been found to regulate a
common set of genes involved in steroidogenesis in
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Leydig cells (Zhang & Mellon 1997, Bassett et al. 2004,
Hong et al. 2004, Havelock et al. 2005, Martin &
Tremblay 2005), including Star (Martin et al. 2008). As
for many other transcription factors regulating Star
transcription, NUR77 is also expressed in non-steroido-
genic tissues (Maxwell & Muscat 2005). The tissue- and
cell-specific expression as well as hormonal regulation
of the Star gene in steroidogenic cells is believed to be
the result of cooperations between transcription
factors. Indeed, various studies of the Star promoter
have reported protein–protein interactions between
GATA4 and C/EBPb (Tremblay et al. 2002), CREB, and
SF1 (Manna et al. 2003b), SF1 and C/EBPb (Reinhart
et al. 1999), SP1 and SF1 (Sugawara et al. 2000), DLX5/6
and GATA4 (Nishida et al. 2008), and between c-JUN
and SF1, GATA4, and C/EBPb (Manna et al. 2004).

Transcription factors belonging to the AP-1 family are
ubiquitously expressed and can be divided into two
groups based on their amino acid similarity; the FOS
(c-FOS, FRA-1, FRA-2, and FOSB) and the JUN (c-JUN,
JUNB, and JUND) subfamilies (O’Shea et al. 1992).
AP-1 family members have been shown to bind as
dimers to specific DNA sequences located in the
promoter of target genes (O’Shea et al. 1992). The
FOS subfamily members must heterodimerize with JUN
proteins, whereas JUN members can form either homo-
or heterodimers with any other AP-1 members.

Since the DNA binding elements for NUR77 and AP-
1 are only 12 bp apart in the mouse Star promoter from
various species, we hypothesized that these two
transcription factors might work together to regulate
Star transcription in Leydig cells. Here, we report that
all three NR4A family members (NUR77, NURR1, and
NOR1) and c-JUN have additive effects on mouse Star
transcription. Although, SF1 and LRH1 (NR5A family
members) can also cooperate with c-JUN, we found that
different regulatory elements are involved in the
NR4A/c-JUN and the NR5A/c-JUN cooperation.
Thus, our results provide new insights into the
mechanisms of action of two closely related families of
nuclear receptors in the regulation of the mouse Star
promoter in Leydig cells.
Materials and methods

Plasmids

Luciferase reporter constructs harboring the K902 bp
murine Star promoter, deletions of the Star promoter to
K193, K144, K121, K104, and K71 bp, and the
K902 bp Star reporter construct with a mutation
inactivating the SF1/NBRE element at K95 bp
(CATCCTTGA to CATAATTGA) have been described
previously (Tremblay & Viger 2001, Martin et al. 2008).
The K902 bp Star reporters containing either a
Journal of Molecular Endocrinology (2009) 42, 119–129
mutation of the AP-1 element at K78 bp or a double
mutation of the AP-1 and SF1/NBRE elements were
generated by site-directed mutagenesis using the
QuikChange XL mutagenesis kit (Stratagene, La Jolla,
CA, USA) and the wild-type and mutated at SF1/NBRE
Star reporter constructs as template and the following
pair of oligos (mutations are italicized): AP-1 element at
K78: sense: 5 0-CCT TGA CCC TCTGCA CAATGA GAG
TTG ACT TTT TTA TCT CAA GTG-3 0, antisense: 5 0-
CAC TTG AGATAA AAA AGTCAA CTC TCATTGTGC
AGA GGG TCA AGG-3 0. The K104 bp Star reporter
containing a mutation in the K95 bp SF1/NBRE
element was generated by PCR using the mutated
K902 bp as template. The K104 bp Star reporter
containing mutations in both the K95 bp SF1/NBRE
and K45 bp SF1 elements was generated by site-
directed mutagenesis (QuikChange XL mutagenesis
kit, Stratagene) using the K104 bp Star reporter
mutated in the K95 bp SF1/NBRE and the following
oligos (mutations are italicized): sense: 5 0-CTT TTT
TAT CTC AAG TGATGATGC ATA CGTATC CAC GGG
AAG CAT TTA AGG CAG C-3 0, antisense: 5 0-GCT GCC
TTA AAT GCT TCC CGT GGATACGTA TGC ATC ATC
ACT TGA GAT AAA AAA G-3 0. The mouse SF1
expression vector has been described previously
(Tremblay & Viger 2001). Rat NUR77, NOR1, and
NURR1 expression vectors (Philips et al. 1997) were
provided by Dr Jacques Drouin (Laboratoire de
Génétique Moléculaire, Institut de Recherches Clin-
iques de Montréal, Montréal, Canada). The c-JUN,
c-FOS, JUNB, JUND, FRA-1, and FRA-2 expression
vectors (Teyssier et al. 2001) were obtained from Dr
Dany Chalbos (Institut National de la Santé et de la
Recherche Médicale, Endocrinologie Moléculaire et
Cellulaire des Cancers, Montpellier, France).

Expression vectors for in vitro co-immunoprecipita-
tion were generated by inserting the coding sequences
(CDS) of the various transcription factors in the
pRSETb vector (Invitrogen). For c-JUN, the CDS was
obtained by PCR using mouse cDNA as template and
the forward primer (5 0-GCTCTAGAA TGA CTG CAA
AGA TGG AAA CG-3 0) containing an Xba I cloning site
(italicized) and the reverse primer (5 0-CGGGTACCT
CAA AAC GTT TGC AAC TGC TG-3 0) containing a Kpn
I cloning site. The full-length NUR77 and a truncated
protein lacking amino acids (aa) 1–225 were generated
by PCR using rat cDNA as template, along with a
common reverse primer containing a Bam HI (itali-
cized) cloning site (5 0-CGGGATCCT CAG AAA GAC
AAG GTG TCC AT-3 0) and the following forward
primers containing a Xba I cloning site: full length
NUR77, 5 0-GCTCTAGAA TGG ACC TGG CCA GCC
CCG AG-3 0; and 226 to 577 aa NUR77, 5 0-GCTCTA GAG
TGA CCT CCA CCA AGT CCC GG-3 0. Vectors for other
NUR77 deletion variants have been generated by
restriction enzyme digestions followed by purification
www.endocrinology-journals.org
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and ligation. NUR77 lacking aa 389 to 467 was obtained
by internal deletion using Bsg I. NUR77 lacking aa
1–225 and 389–467, aa 1–225 and 426 to C-terminal, or
aa 1–225 and 454 to C-terminal were obtained by
internal deletion of the truncated NUR77 (lacking aa
1–225) using Bsg I, Sac I, and Pst I respectively.
Cell culture and transfections

MouseMA-10 Leydig cells (Ascoli 1981), provided by Dr
Mario Ascoli (University of Iowa, Iowa City, IA, USA),
were grown and transfected as described in Martin et al.
(2008).
Protein purification and western blots

Mouse MA-10 Leydig cells were incubated in serum-free
medium containing 0.5 mM (Bu)2cAMP for times
ranging from 0 to 6 h. MA-10 cells were then rinsed
twice with ice cold PBS and harvested for nuclear
protein extractions. Nuclear proteins were prepared by
the procedure outlined by Schreiber et al. (1989).
Protein concentrations were estimated using standard
Bradford assay. Twenty microgram nuclear proteins
were boiled for 10 min in a denaturing loading buffer,
fractionated by SDS-PAGE, and transferred onto
Polyvinylidene Fluoride (PVDF) membrane (Millipore,
Billerica, MA, USA). Immunodetection was performed
using an avidin–biotin approach according to the
manufacturer’s instructions (Vector Laboratories Inc.,
Ontario, Canada). Detections of NUR77, SF1, LRH1,
c-JUN, c-FOS, STAR, and a-TUBULIN were performed
using a monoclonal anti-NUR77 antibody (1:500
dilution; BD Biosciences Pharmingen, San Diego, CA,
USA), an anti-SF1 polyclonal antiserum (1:5000
dilution; kindly provided by Ken-Ichirou Morohashi,
National Institute for Basic Biology, Japan), an anti-
LRH1 polyclonal antiserum (H-75X, 1:2000 dilution;
Santa Cruz Biotechnologies, Santa Cruz, CA, USA), an
anti-c-JUN polyclonal antiserum (N, 1:200 dilution;
Santa Cruz Biotechnologies), an anti-c-FOS polyclonal
antiserum (4, 1:200 dilution; Santa Cruz Bio-
technologies), an anti-STAR polyclonal antiserum (FL-
285, 1:200 dilution; Santa Cruz Biotechnologies), and a
monoclonal anti-a-TUBULIN antibody (1:50 000
dilution; Sigma–Aldrich) respectively.
Figure 1 c-JUN and c-FOS are expressed in MA-10 Leydig cells.
MA-10 Leydig cells were treated with (Bu)2cAMP (0.5 mM) for the
indicated times. For detection of c-JUN, c-FOS, SF1, LRH1, and
NUR77, nuclear extracts (since located in the nucleus) were
prepared while whole cell extracts were used for STAR (since
located in mitochondria). TUBULIN was used as a loading control.
Western blots were done as described in Materials and methods.
All experiments were repeated at least three times and produced
identical results.
Protein–protein interaction assays

In vitro interactions were analyzed using NUR77, c-FOS
or c-JUN full-length proteins and either 35S-labeled full-
length SF1, c-FOS, c-JUN, or truncated NUR77
proteins. All proteins were obtained using the Quick
Coupled TnT in vitro transcription/translation kit
(Promega Corp, Madison, WI, USA). Proteins were
www.endocrinology-journals.org
incubated in 500 ml binding buffer (Tremblay et al.
2002) with 4 mg NUR77, c-FOS, or c-JUN antisera for
24 h at 4 8C with agitation, followed by an additional
24 h in the presence of 20 ml protein G-Sepharose beads
(GE Healthcare, Baie d’Urfe, QC, Canada). Bound
immunocomplexes were washed five times in binding
buffer, resuspended in 20 ml 2! SDS-loading buffer,
and subjected to SDS-PAGE. Gel was soaked in 10%
glycerol for 5 min, and dried at 80 8C for 90 min.
Proteins were visualized by autoradiography.
Statistical analyses

To identify significant differences between multiple
groups, statistical analyses were done using a non-
parametric Kruskal–Wallis one-way ANOVA followed by
Mann–Whitney U-tests. Single comparisons between
two experimental groups were done using the Mann–
Whitney U-test. For all statistical analyses, P!0.05 was
considered significant. All statistical analyses were done
using the SigmaStat software package (Systat Software
Inc., San Jose, CA, USA).
Journal of Molecular Endocrinology (2009) 42, 119–129
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Results

MA-10 Leydig cells have been shown to express c-JUN
and c-FOS (Li et al. 1997, Manna et al. 2004). We tested
whether expression of these two proteins in MA-10
Leydig cells is influenced by (Bu)2cAMP treatment. As
shown in Fig. 1, we found that only c-JUN was
upregulated in response to cAMP treatment and that
Journal of Molecular Endocrinology (2009) 42, 119–129
this increase occurred within 30 min. As previously
reported (Martin et al. 2008), NUR77 and STAR were
both strongly upregulated in response to cAMP in
MA-10 Leydig cells (Fig. 1). The same treatment led
to a weak increase in the nuclear receptors SF1 and
LRH1 (Fig. 1).
NUR77 and c-JUN have additive effects on the mouse

Star promoter

Although, chromatin immunoprecipitation assay
revealed that NUR77 is significantly recruited to the
proximal region of the Star promoter (Martin &
Tremblay 2008, Martin et al. 2008), in vitro approaches
such as EMSA showed a weak binding of NUR77 to the
K95 bp SF1/NBRE element (Martin et al. 2008),
suggesting that recruitment of NUR77 to the Star
promoter might be mediated by interactions with other
DNA-bound transcription factors. Moreover, the close
proximity of the AP-1 (K78 bp) and SF1/NBRE
(K95 bp) elements on the Star promoter (Fig. 2A)
combined with the fact that AP-1 and NUR77 can
individually regulate Star promoter activity in Leydig
cells (Manna et al. 2004, Martin et al. 2008) raised the
possibility that NUR77 and AP-1 family members might
work together on the Star promoter. To test this,
expression vectors encoding NUR77 and various AP-1
family members were transiently transfected in MA-10
Leydig cells along with a K902 bp mouse Star reporter.
Consistent with previous reports (Wooton-Kee & Clark
2000, Manna et al. 2004, Martin et al. 2008), both
NUR77 and c-JUN individually activated the Star
promoter 3.5 and 9 fold respectively (Fig. 2B). An
Figure 2 Additive effects of NR4A family members and c-JUN on
the mouse Star promoter. (A) DNA sequence alignment of the
K104 to K61 bp region of the Star promoter from different
species highlighting the SF1/NBRE and AP-1 elements (grey
shaded box). The sequence of the consensus SF1/NBRE and
AP-1 elements is also shown. WZA or T, RZG or A, SZG or C.
(B) c-JUN and NUR77 activate the Star promoter in an additive
manner. MA-10 Leydig cells were co-transfected with a K902 to
C17 bp mouse Star promoter construct along with an empty
expression vector (CTL; open bar) or expression vectors for
various AP-1 family members as indicated in the absence (grey
bars) or presence (black bars) of an expression vector encoding
NUR77. (C) NR4A family members and c-JUN have additive
effects. MA-10 Leydig cells were co-transfected with a K902 to
C17 bp mouse Star promoter construct along with an empty
expression vector (CTL; open bar) or expression vector for NR4A
family members (NUR77, NURR1, NOR1 as indicated) in the
absence (grey bars) or presence (black bars) of an expression
vector encoding c-JUN. The number of experiments, each
performed in duplicate, is indicated. Results are shown as fold
activation over control (GS.E.M). An asterisk (*) indicates a
statistically significant difference from control (empty expression
vector). # indicates that the effect observed with a combination of
transcription factors is statistically different than the effect of each
factor individually.
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additive effect reaching 14 fold was observed when both
factors were combined (Fig. 2B). Addition of c-FOS did
not further enhance Star promoter activity (data not
shown), suggesting that c-JUN homodimers are
prevalent in Star transcriptional activation or that
c-FOS is already sufficiently abundant in MA-10 Leydig
cells (Fig. 1). As shown in Fig. 2C, other NR4A family
members (NURR1 and NOR1) also had additive effects
with c-JUN on the Star promoter.

To identify the binding elements required for these
additive effects, transfections were performed using
Star reporter constructs harboring mutations known to
prevent NUR77 (Martin et al. 2008) and/or c-JUN
(Manna et al. 2004) binding/transactivation. The
NUR77/c-JUN additive effect was still observed on
Star reporters harboring mutations in either the SF1/
NBRE (at K95 bp) or AP-1 (at K78 bp) element
(Fig. 3). The absolute fold activation, however, was
lower when the AP-1 element was mutated (Fig. 3).
The NUR77/c-JUN additive effect was only abolished
Figure 3 The NUR77/c-JUN additive effect requires either the
SF1/NBRE element at K95 bp or the AP-1 element at K78 bp.
MA-10 Leydig cells were co-transfected with expression vectors
for NUR77 and c-JUN as indicated by the plus sign, along with a
wild type K902 to C17 bp Star reporter, a reporter harboring a
two nucleotide mutation in the SF1/NBRE element at K95 bp
(CCATCCTTGA to CCATAATTGA), a reporter containing a three-
nucleotide mutation in the AP-1 element at K78 bp (TGACT-
GATG to TGAGAGTTG), or a reporter containing mutations in
both elements (K95 bp and K78 bp). Mutated elements are
represented by a large X. The number of experiments, each
performed in duplicate, is indicated. Results are shown as fold
activation over control (GS.E.M). A different letter indicates a
statistically significant difference.

www.endocrinology-journals.org
when both elements were mutated (Fig. 3). Residual
c-JUN-dependent activation of the Star promoter
constructs containing a mutated AP-1 element at K
78 bp might be attributed to the presence of other
functional AP-1 elements within the K902 bp Star
promoter fragment (Shea-Eaton et al. 2002). There-
fore, the additive effect of NUR77/c-JUN requires an
intact binding site for one of the factors.
NUR77 physically interacts with c-JUN in vitro

The fact that an intact SF1/NBRE or AP-1 element is
sufficient to sustain the NUR77/AP-1 additive effect
suggests that the two factors might interact. To assess
this possibility, co-immunoprecipitation using 35S-
labeled in vitro translated proteins was performed. As
shown in Fig. 4A, NUR77 physically interacts with c-JUN
(lane 6) but not with c-FOS (lane 4). Co-immunopre-
cipitation of NUR77 and SF1 (Fig. 4A, lane 2) was used
as a negative control since these nuclear receptors were
Figure 4 NUR77 physically interacts with c-JUN through its LBD.
(A) NUR77 physically interacts with c-JUN in in vitro co-immu-
noprecipitation. In vitro produced 35S-labeled and unlabeled
proteins were mixed, immunoprecipitated using a NUR77 or
c-FOS antibody as indicated, and subjected to SDS-PAGE
followed by proteins visualization by autoradiography. (B)
Protein–protein interaction between NUR77 and c-JUN is
mediated by NUR77 LBD. In vitro co-immunoprecipitation using
various deletion constructs of NUR77 were performed as
described above. Positive c-JUN/NUR77 interactions are
indicated on the right (plus and minus signs). Results are
representative of three independent experiments.
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previously shown not to directly interact (Hong et al.
2004). Interaction between c-FOS and c-JUN (Fig. 4A,
lane 8) served as a positive control (Kouzarides & Ziff
1988). Taken together, our results indicate that NUR77
physically interacts with c-JUN in a protein complex
that contributes to Star transcriptional regulation.

The same approach was next used with various
truncated NUR77 proteins and the full length c-JUN
to map the region of NUR77 involved in the
interaction. As reported in Fig. 4B, we found that the
region between aa 388 and 425 of NUR77 which
contains the N-terminal portion of the ligand binding
domain (LBD) was essential for the interaction with
c-JUN in this in vitro protein–protein interaction assay.
Figure 5 NR5A family members cooperate with c-JUN on the
mouse Star promoter. MA-10 Leydig cells were co-transfected
with a K902 to C17 bp mouse Star promoter construct along with
an empty expression vector (CTL; open bar) or expression
vectors for various AP-1 family members as indicated in the
absence (grey bars) or presence (black bars) of an expression
vector encoding SF1 (A) or LRH1 (B). The number of
experiments, each performed in duplicate, is indicated. Results
are shown as fold activation over control (GS.E.M). An asterisk (*)
indicates a statistically significant difference from control (empty
expression vector). # indicates that the effect observed with a
combination of transcription factors is statistically different than
the effect of each factor individually.
SF1 and LRH1 cooperate with c-JUN on the Star

promoter

In addition to NUR77 (this study), c-JUN has recently
been reported to cooperate with the nuclear receptor
SF1 to regulate human CYP11A1 promoter activity in
steroidogenic cells (Guo et al. 2007). SF1 was also
found to directly interact with c-JUN in a mammalian
double-hybrid system (Manna et al. 2004). Since SF1 is
an essential regulator of Star expression in Leydig
cells, we tested the possibility that SF1 and c-JUN
might work together on the mouse Star promoter. As
shown in Fig. 5A, we found that SF1 and c-JUN can
each activate the mouse Star promoter (2 and 11 fold
respectively) and that the combination of both factors
resulted in a transcriptional cooperation (20 fold).
Similar results were obtained with LRH1 (FTF,
NR5A2), another member of the NR5A family that
has identical DNA binding properties to SF1 and is
expressed in Leydig cells (Pezzi et al. 2004; Fig. 5B).
Thus, although SF1 and LRH1 are weak activators of
the Star promoter in MA-10 Leydig cells, they can also
cooperate with c-JUN as do NR4A members (NUR77,
NURR1, NOR1). The weak activation by SF1 and
LRH1 may be explained by the already high levels of
these factors in MA-10 cells (Zhang & Mellon 1997,
Daggett et al. 2000, Aesoy et al. 2002) since in
heterologous cells that do not express SF1, SF1 can
activate the Star promoter (Sugawara et al. 1996, Rust
et al. 1998, Reinhart et al. 1999, and our unpublished
data).
NUR77 and SF1 have different site requirements for

the cooperation with c-JUN

The K95 bp element in the mouse Star promoter, that
we identified as essential for NUR77 responsiveness
(Martin et al. 2008) and important for the additive
effects of NUR77 and c-JUN (Fig. 3), can also be bound
by SF1/LRH1. In fact, NR5A members (SF1 and LRH1)
Journal of Molecular Endocrinology (2009) 42, 119–129
have a better affinity for this site than NR4A members
(NUR77, NURR1, NOR1; Martin and Tremblay, unpub-
lished data). We therefore tested whether this K95 bp
element, along with the K78 bp AP-1 element, were
required for the cooperation between c-JUN and NR5A
family members. As shown in Fig. 6, a double mutation
(K95 bp SF1/NBRE and K78 bp AP-1), which
completely abrogated the NUR77/c-JUN additive effect
(Fig. 3), had no impact on the SF1/c-JUN and LRH1/
c-JUN cooperations on the mouse Star promoter. This
www.endocrinology-journals.org
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Figure 6 Distinct site requirements for the cooperation between
c-JUN and NR5A members on the mouse Star promoter. MA-10
Leydig cells were co-transfected with an empty expression vector
(open bars) or expression vectors for NR5A family members (SF1,
LRH1) and c-JUN as indicated by the plus signs, along with a
wild-type K902 to C17 bp Star reporter or a reporter containing
mutations in both the K95 and K78 bp elements as described
in Fig. 3. Mutated elements are represented by a large X. The
number of experiments, each performed in duplicate, is indicated.
Results are shown as fold activation over control (GS.E.M).
A different letter indicates a statistically significant difference.

Figure 7 Mapping of the elements required for the SF1/c-JUN
cooperation on the mouse Star promoter. MA-10 Leydig cells
were co-transfected with an empty expression vector (open bars)
or expression vectors for SF1 and c-JUN as indicated by the plus
signs, along with (A) various 5 0 progressive deletions of the mouse
Star promoter or (B) K104 bp Star reporter constructs harboring
mutations in the SF1/NBRE element at K95 bp (CCATCCTTGA
to CCATAATTGA) or in both the K95 bp SF1/NBRE, and the
K45 bp SF1 (AAGGCTG to ATACGTA) elements. The mutated
elements are depicted by large X. The number of experiments,
each performed in duplicate, is indicated. Results are shown as
fold activation over control (GS.E.M). A different letter indicates a
statistically significant difference.
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indicates that another SF1/LRH1 element within the
mouse Star promoter is involved in the NR5A/c-JUN
cooperation.

In addition to the K95 bp element, the mouse Star
promoter contains three other SF1 elements at K890,
K135, and K45 bp (Caron et al. 1997). To identify
which of these elements is sufficient for the cooperation
with c-JUN, 5 0-progressive deletion constructs of the Star
promoter were transiently transfected in MA-10 Leydig
cells. Deletion constructs fromK902 toK104 bp which
remove two SF1/LRH1 elements did not impair the
SF1/c-JUN cooperation (Fig. 7A). Further deletion to
K71 bp which removes the K95 bp SF1/NBRE and
K78 bp AP-1 elements completely abrogated the
synergy between SF1 and c-JUN. This indicates that
the -45 bp SF1 element alone is not sufficient and that
elements located within the K104 bp promoter frag-
ment are required and sufficient for the SF1/c-JUN
cooperation. To assess whether the K95 bp SF1/NBRE
element is implicated in this cooperation, the K104 bp
Star reporter construct harboring a mutation in the
K95 bp SF1/NBRE element was tested and found to
still be cooperatively activated by SF1 and c-JUN
(Fig. 7B). Collectively, these results indicate that the
K95 bp SF1/NBRE element is not essential for the
SF1/c-JUN cooperation and that the K78 bp AP-1 and
K45 bp SF1 elements are both required and/or that
www.endocrinology-journals.org
theK78 bp AP-1 element alone is sufficient. To test this
possibility, mutations were introduced in both the SF1/
NBRE at K95 bp and the SF1 at K45 bp elements in
the context of the K104 bp Star reporter keeping only
the K78 bp AP-1 element intact. This reporter was still
cooperatively activated by SF1 and c-JUN (Fig. 7B).
Journal of Molecular Endocrinology (2009) 42, 119–129
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Discussion

Transcriptional regulation of the mouse Star gene is
complex and yet the most important regulatory
elements responsible for Star basal and hormone-
induced expression are located within a relatively
short promoter region encompassing the first 150 bp
upstream of the transcription start site. More speci-
fically, a 40 bp region located between K105 and
K65 bp is perhaps the most intricate since it was
shown to contain overlapping binding sites for several
transcription factors. For instance, an element at
K95 bp of the mouse Star promoter was found to be
important for basal and cAMP-responsiveness and
shown to bind SF1 (Caron et al. 1997, Sugawara et al.
1997, Wooton-Kee & Clark 2000). We recently reported
that this K95 bp element is also essential to confer
NUR77 responsiveness to the Star promoter (Martin
et al. 2008). Less than 20 bp away, atK78 bp, is another
species-conserved sequence (TGACTGA) found to be
important for basal and cAMP stimulation of the mouse
Star promoter (Wooton-Kee & Clark 2000, Manna et al.
2004). This element closely resembles an AP-1 element
(consensus: TGA(C/G)TCA, O’Shea et al. 1992) as well
as a cAMP response element (CRE) for the binding of
CREB/CREM family members (consensus:
TGACGTCA Montminy et al. 1986). AP-1 family
members and CREB were both found to bind this
element (Wooton-Kee & Clark 2000, Manna et al.
2002, 2004, Hiroi et al. 2004, Clem et al. 2005, Manna
& Stocco 2007).

How these transcription factors (SF1, NUR77, CREB,
c-JUN, c-FOS) are recruited to this region of the Star
promoter and how they contribute to the basal and
cAMP responsiveness of Star expression remains to be
fully elucidated. Recent studies, however, have pro-
vided some answers. For instance, it was reported that
some transcription factors, such as CREB and AP-1, are
constitutively associated with the proximal Star
promoter in mouse Leydig cells and upon cAMP
stimulation, CREB becomes rapidly phosphorylated
leading to the recruitment of the CBP co-activator and
to acetylation of histones (Hiroi et al. 2004, Clem et al.
2005). Furthermore, dominant negative forms of
c-FOS, c-JUN, and CREB blunted cAMP responsiveness
of the Star promoter confirming their implication in
this process (Manna et al. 2002, 2004). On the other
hand, binding of other transcription factors such as
SF1 and GATA4 to the proximal Star promoter was
shown to be increased following cAMP stimulation
even though their protein levels remained unchanged
(Hiroi et al. 2004, Martin & Tremblay 2008). Finally, we
found that cAMP stimulation of Leydig cells results in
a rapid and strong induction in NUR77 protein levels
that correlates with an increased association of NUR77
with the proximal Star promoter in an intact
Journal of Molecular Endocrinology (2009) 42, 119–129
chromatin environment in primary Leydig cells and
in MA-10 Leydig cells (Martin & Tremblay 2008,
Martin et al. 2008).

Because the binding motifs for NUR77, CREB, and
AP-1 within the K105 to K65 bp region of the Star
promoter are not perfect consensus sequences for these
factors, it has been suggested that increased DNA
binding and stability of these transcription factors
might be achieved through protein–protein
interactions. Consistent with this, there have been
numerous reports of direct protein–protein
interactions involving these transcription factors on
the Star promoter in Leydig cells (Reinhart et al. 1999,
Sugawara et al. 2000, Tremblay et al. 2002, Manna et al.
2003b, 2004). In the present study, we have found that
NUR77 and c-JUN have additive effects on the mouse
Star promoter in Leydig cells. This finding may also
have broader implications since NUR77 and c-JUN are
co-expressed in a number of tissues where they could
potentially act together to regulate gene transcription.
In vitro interaction between NUR77 and c-JUN

Using an in vitro co-immunoprecipitation approach, we
provide evidence that NUR77 can physically interact
with c-JUN. So far, in vivo co-immunoprecipitation
assays using nuclear extracts from MA-10 Leydig cells to
detect the presence of endogenous NUR77 and c-JUN
together in a protein complex have been inconclusive
(our unpublished data). This could be explained by
inadequate epitope accessibility for the antisera tested
in in vivo co-IP. Alternatively, the interaction between
NUR77 and c-JUN might be weak and may be better
observed with overexpressed proteins. Although, the
NUR77/c-JUN protein interaction data need to be
validated in a in vivo system, there is nonetheless
evidence in the literature reporting that both NUR77
and c-JUN are associated with the proximal Star
promoter region in vivo in Leydig cells (Manna &
Stocco 2008, Martin & Tremblay 2008, Martin et al.
2008). Through our in vitro approach, we found that
the region of NUR77 involved in the interaction with
c-JUN was located within the LBD. This is unusual for
NUR77 since most of its intra- and intermolecular
interactions, including co-factor recruitment, described
so far are mediated through the AF-1 domain (aa 50–
160; Wansa et al. 2002). It is therefore possible that the
interaction of c-JUN with NUR77 LBD might alleviate
the need for a ligand. In agreement with this, ligand-
independent activation of nuclear receptors mediated
by post-translational modifications (phosphorylation)
or protein–protein interactions have been previously
described (Tremblay et al. 1999a,b).

In addition to the c-JUN/NUR77 interaction
reported herein, there has been only one other report
of a protein–protein interaction involving NUR77 LBD
www.endocrinology-journals.org
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and it is with protein kinase C (PKC; Kim et al. 2006).
This is relevant to the present study since AP-1 factors,
including c-JUN, typically mediate PKC signaling
induced by phorbol-12-myristate-13-acetate (PMA;
Angel et al. 1987). Furthermore, Leydig cells respond
to PMA/PKC with increased phosphorylation of CREB
and upregulation of Star transcription through regulat-
ory elements located within the proximal Star promoter
(Jo et al. 2005). Interestingly, CREB, which can bind to
the K78 bp element of the Star promoter (Manna et al.
2002, Clem et al. 2005), was also reported to physically
interact with NUR77 in another system (Mynard et al.
2004) raising the possibility that NUR77 and CREB
might also interact in Leydig cells to activate Star
transcription. We did not, however, observe any
cooperation between CREB and NUR77 on the Star
promoter in MA-10 Leydig cells (data not shown).
SF1/c-JUN and NUR77/c-JUN cooperations involve
different regulatory elements

SF1, which is known to directly interact with c-JUN (Li
et al. 1999), was recently reported to transcriptionally
cooperate with c-JUN on the human CYP11A1
promoter in steroidogenic cells (Guo et al. 2007). In
the present study, we found that SF1, as well as LRH1,
can cooperate with c-JUN to synergistically activate the
Star promoter in Leydig cells. Consistent with the fact
that the Star promoter contains multiple SF1 elements,
we found that the SF1/c-JUN cooperation does not
require the K95 bp SF1/NBRE element. Mutation of
this element was previously reported to impair SF1- and
NUR77-responsiveness/binding (Wooton-Kee & Clark
2000, Martin et al. 2008). Here, we also found that this
element also contributes to the additive effects between
NUR77 and c-JUN. Thus, the NUR77/c-JUN and SF1/
c-JUN effects on the mouse Star promoter involve
different regulatory elements. This suggests that the
collaborations between c-JUN and NR5A (SF1 and
LRH1) or NR4A (NUR77, NURR1, and NOR1) nuclear
receptors are not mutually exclusive on the mouse Star
promoter and may play complementary roles in Star
basal and hormonally regulated expression.

Another mechanism by which NUR77 might contrib-
ute to Star transcription is by removing a transcriptional
inhibitor. Indeed, NUR77 is known to directly interact
with DAX-1 (Song et al. 2004), a nuclear receptor
involved in the transcriptional repression of the Star
gene (Zazopoulos et al. 1997). Therefore, the impli-
cation of NUR77 in Star promoter activation might
happen via distinct mechanisms that are not mutually
exclusive. These include direct recruitment to the
promoter (Martin & Tremblay 2008, Martin et al.
2008), interaction with other transcriptional activators
such as c-JUN (this study), and removal of repressors
such as DAX-1 from the Star promoter region.
www.endocrinology-journals.org
Supporting this is the fact that the DAX-1-mediated
repression of Star transcription is associated with
NUR77 and SF1 (Manna et al. 2008).

In conclusion, our current findings along with data
from the literature support the existence of a multi-
protein complex containing NUR77, SF1, AP-1, PKC,
GATA4, DLX5/6, C/EBPb, and CREB along with
co-activators assembled on the proximal Star promoter.
Because more than one factor can bind to the same
element (e.g., NUR77 and SF1 at K95 bp and CREB
and AP-1 atK78 bp), this complex would be variable in
composition depending on the absence or presence of
a stimulus and on the nature of the stimulus itself. This
would allow for a rapid integration of various signals
ultimately leading to a fine-tuned regulation of Star
transcription in Leydig cells.
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