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Abstract

The nucleolus is a prominent nuclear structure that is the site of ribosomal RNA (rRNA) 

transcription, and hence ribosome biogenesis. Cellular demand for ribosomes, and hence rRNA, is 

tightly linked to cell growth and the rRNA makes up the majority of all the RNA within a cell. To 

fulfil the cellular demand for rRNA, the ribosomal RNA genes (rDNA) genes are amplified to high 

copy number and transcribed at very high rates. As such, understanding the rDNA has profound 

consequences for our comprehension of genome and transcriptional organization in cells. In this 

review we address the question of whether the nucleolus is a raft adrift the sea of nuclear DNA, or 

actively contributes to genome organization. We present evidence supporting the idea that the 

nucleolus, and the rDNA contained therein, play more roles in the biology of the cell than simply 

ribosome biogenesis. We propose that the nucleolus and the rDNA are central factors in the spatial 

organization of the genome, and that rapid alterations in nucleolar structure in response to 

changing conditions manifest themselves in altered genomic structures that have functional 

consequences. Finally, we discuss some predictions that result from the nucleolus having a central 

role in nuclear organization.

Introduction

Nucleoli are the largest non-chromosomal structures present within the eukaryotic nucleus. 

In yeast, the single nucleolus occupies approximately ¼ of the total nuclear volume in a 

position that is distal to the spindle pole body and in close contact with the nuclear envelope 

(1–3). In metazoans there can be multiple nucleoli, formed around distinct chromosomal 

loci, that differ from yeast in details of morphology but retain the dense staining caused by 

the prodigious production of ribosomes (e.g. reviewed in (4, 5)). Nucleoli are organised 

around the core ribosomal RNA (rRNA) gene regions, referred to as nucleolus organizer 

regions (NORs) (6). NORs can, in some instances, form secondary constrictions on 

metaphase chromosomes during mitosis.
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In eukaryotes, the NORs usually consist of rRNA genes that are organized into tandem 

repeat arrays, collectively known as the rDNA (Figure 1). rDNA gene copy number can vary 

from a few copies up to tens-of-thousands of copies, depending on the species (see (7) for a 

comprehensive table). For example, the well-characterized single rDNA array in S. 
cerevisiae consists of around 180 copies (8), while in humans there are five rDNA arrays (9) 

that together comprise 300–400 copies per diploid genome (10). There are very few known 

exceptions to the tandem repeat rule: the intra-cellular human pathogen Pneumocystis carinii 
(11) and Tetrahymena (12) both appear to have just a single rDNA locus, although the latter 

amplifies this copy in the macronucleus (12). Nevertheless, the vast majority of eukaryotes 

characterized to date have the canonical rDNA organization, in which the polycistronic 

rRNA coding region, consisting of 18S, 5.8S and 28S rRNA species (precise nomenclature 

varies somewhat between species), is interspersed with an intergenic spacer region (IGS) 

(13). The rDNA genes are the most highly-transcribed in the genome, with rRNA accounting 

for approximately 80% of total RNA in a cell (14, 15). Despite this, the rDNA is a mosaic of 

transcribed, typically highly, copies and completely silent copies (16). The organization of 

active and silent repeats within the linear rDNA array has yet to be determined. Similarly the 

role of the silent copies has not been completely resolved, although they are required for 

efficient DNA repair in budding yeast (17).

The nucleolus is a domain of the nucleus, rather than a body delineated by a membrane or 

the like. Nevertheless, it has a specific structure that, in mammalian nuclei, consists of an 

inner fibrillar centre, a dense fibrillar component outside of this, and a granular component 

surrounding this (18, 19), although see (20)). While this is the case in mammalian nuclei, 

lower eukaryotes, in particular several yeast species, only have two distinctly visible 

components: a fibrillar component and granules. Furthermore, the fibrillar component in 

many yeast species is more a collection of strands, rather than a dense body (5). In either 

case, it has been shown that at least the non-transcribed parts of the rDNA are concentrated 

in the FC (21).

The nucleolus is very protein dense (e.g. reviewed in (4)) and in humans contains at least 

700 different proteins (22), while being relatively DNA sparse. The nucleolus emerges from 

the complex mixture of proteins that associate with the rDNA, such as upstream binding 

factor (UBF) (23). Creation of the spatial domain of the nucleolus may result from high 

concentrations of binding sites in a small volume effectively causing retention of these 

proteins (24) by preventing movement out of the zone, as shown for ribosome movement 

(25). However, rapid shuttling of proteins between the nucleolus and nucleus has been 

observed (18, 19), suggesting that the nucleolus is a dynamic structure.

The nucleolus is not just a site of ribosome biogenesis: it functions in a myriad of other 

nuclear processes, including cell cycle control (reviewed in (4)). Several proteins are known 

to localize to the nucleolus in a cell cycle-specific manner, including several that are 

associated with human disease (26). Furthermore, nucleolar localization of viral proteins 

involved in viral replication, including HIV, appears to be necessary for replication (19). 

Additionally, nucleolar structure changes in response to both environmental conditions and 

the cell cycle (18, 26). Such structural alterations, as well as alterations in the numbers of 

rDNA repeats, would relieve or exacerbate the retention of proteins sequestered in the 
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nucleolus as a result of changes in the spatial clustering of binding sites. Strikingly, several 

noncoding RNA transcripts from the rDNA IGS appear to bind and sequester proteins in the 

nucleolus, and are regulated by stress (27). Given its dynamic nature, and the central role it 

plays in responding to cellular and environmental challenges, we hypothesize that the 

nucleolus has a direct role in coordinating nuclear structural organization.

The nucleolus as an organizer of genome structure

The nucleolus can contribute to nuclear organisation through the sequestration and release of 

proteins that then, directly or indirectly, affect the organisation of the nucleus. However, for 

the remainder of this review we are going to consider the issues surrounding the possibility 

that the nucleolus plays a direct role in the regulation of genome structure and how this 

might be achieved. In this context, we refer to genome structure as the spatial organisation of 

the genome within the nucleus, thus this form of organization focuses on the DNA, although 

obviously all the attendant proteins and other factors are also part of this.

There is growing evidence that the genome takes on a specific structural arrangement within 

the nucleus. In human cells, different chromosomes are found to occupy chromosome 

“territories”, which have different positions in different cell types (28, 29). Genes are also 

observed to inhabit specific locations in the nucleus (3). Gene loops, that bring linearly 

distant enhancers in close spatial proximity to promoters, are also thought to be important 

for regulation of gene expression (e.g. (30–33)). Recently developed techniques derived 

from proximity-based ligation (34–36), such as GCC (37) and HiC (38), have been 

developed to experimentally determine global genome structure. While extremely powerful, 

these techniques suffer from limitations when it comes to aligning sequences from repetitive 

elements. Essentially because repetitive elements cannot be positioned to a unique position, 

they provide potentially confusing information in proximity-based ligation assays and are 

typically ignored (38–40). However, the rDNA is a special case and useful information can 

be obtained by collapsing the rDNA sequences to a single locus (37, 41, 42).

Computational-based approaches, utilising proximity-ligation data and biophysical 

characteristics, have been taken to model global genome structure (e.g. (38, 40, 43, 44)). 

Interestingly, few restraints are required to impart a crude order on in silico polymer-based 

reconstructions of the budding yeast nucleus (43, 44). However, one restraint that is required 

is the positioning of the nucleolus opposite to the spindle pole body (43), suggesting the 

nucleolus is a significant landmark for spatial organization of the genome.

Nucleolar localisation of rDNA has been shown to influence the organisation of other 

genomic loci in the malaria parasite, Plasmodium falciparum (45). Despite this, a structured 

nucleolus is not essential for nuclear function in yeast, as the rDNA genes can be deleted 

from their chromosomal locus and replaced with plasmid-encoded copies (46). These extra-

chromosomally encoded rDNA genes form multiple, tiny dispersed nucleoli (47), and the 

growth of these strains is compromised. However, it remains unknown whether the growth 

defects stem from disruption of nuclear organization, or from attenuated rRNA transcription/

processing (46). Nucleolar structure is also disrupted when yeast are forced to transcribe the 

chromosomal rDNA repeats with RNAP II, rather than RNAP I (48). The entire yeast rDNA 
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array can be shifted to another location within the genome, but in this case only minor 

phenotypic changes are observed, despite the nucleolus changing its position in the nucleus 

(49). This is consistent with a limited amount of published data that shows that specific 

rDNA:non rDNA interactions are sequence specific and independent of the chromosomal 

position of the non-rDNA locus (42). Thus, more work is required to deduce the effects of 

changes in nucleolar position on genome structure and function.

If the nucleolus directly regulates nuclear structure then it stands to reason that interactions 

between the rDNA repeats and other non-nucleolar loci are central to this. This is borne out 

experimentally in budding yeast where a majority of DNA-DNA interactions involve the 

rDNA (37). While it can be argued that this interpretation is simplistic and does not take into 

account the copy number of the rDNA, any interactions between rDNA and non-rDNA loci 

are candidates for interactions by which the nucleolus shapes genome organization. These 

interactions should involve rDNA loci that are directly accessible from the nucleoplasm and 

are not protected by being internalized within the nucleolar structure.

The division of rDNA units into highly transcribed copies and completely silenced copies 

may reflect a functional distinction between units buried in the nucleolar interior and those 

located at the nuclear-nucleolar interface, respectively (T. Kobayashi, pers. communication). 

While it is almost certain that a main driver for nucleolar organization is the centralization of 

massive biosynthesis of ribosomes, we speculate that the tandem repeat organization of 

eukaryotic rDNA genes also enables the conservation of contacts at the nuclear:nucleolar 

boundary while still maintaining dedicated transcription units within the nucleolus. Such a 

system would allow the flexible assignment of rDNA repeats to the different functional 

categories: transcription, repair, replication and structural associations, the latter having 

hitherto largely gone unrecognized. Therefore, the maintenance in eukaryotes of rDNA 

repeats with identical sequences (notably the non-coding regions (50)) at a much greater 

copy number than is needed for transcription alone, may ultimately stem from the ability of 

this system to seamlessly replace one repeat with another, ensuring that critical functions are 

maintained.

Transcription and nucleolus directed organization

The rDNA is not transcriptionally homogenous; instead, all three classes of RNA 

polymerase are present in the nucleolus, in at least some organisms. Aside from RNAP I 

transcription, RNAP II transcription appears to be widespread in eukaryote rDNA (27, 51–

55). Furthermore, RNAP III-transcribed 5S rDNA genes are located within the rDNA repeat 

in several species, including yeast (Figure 1; (56)). Moreover, around thirty small 

interspersed nuclear element (SINE) retrotransposons that derive from RNAP III-transcribed 

genes are found scattered throughout the human rDNA intergenic spacer (57). This opens up 

the question as to the effect of this transcriptional heterogeneity on the spatial organisation 

of the nucleolus/nucleus.

Transcription-induced clustering represents a simple mechanism for spatial genome 

organization (58–60). Thus, polymerase class-dependent association of active or primed 

promoters in the rDNA may contribute to the coordination of nuclear-nucleolar structure. In 
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support of this idea, structures consistent with RNAP I transcription factories involving 

rDNA repeats have been observed in metazoan cells (60). Furthermore, RNAP III forms foci 

within the nucleoplasm, and not the nucleoli, of human cells, although it is possible that this 

is the result of SINE transcription (61). Transcription by all three eukaryotic RNA 

polymerases on overlapping regions of the rDNA repeat complicates this picture.

The simplest explanation for the overlapping polymerase activities within rDNA repeats is 

that the different RNA polymerase activities are temporally and spatially separated. This is 

supported by evidence that suggests a reciprocal relationship between RNAP I and II 

transcription in the rDNA (62, 63). Thus the presence of rDNA repeats on the nucleus/

nucleolus interface may free them up to be transcribed by RNAP II and/or III. However in a 

yeast strain where rDNA repeat number is reduced to the extent that most copies are likely 

to be transcribed by RNAP I (64), RNAP II transcription is also high (51). This suggests that 

transcription by these two polymerases is not mutually exclusive.

In the case of RNAPs I and III, it is clear that the transcription units can co-exist. Not only 

are the 5S rRNA genes and 35S rRNA genes (transcribed by RNAP III and I, respectively) 

interspersed in the linear repeats but there is substantial evidence in the literature that 5S 

rRNA genes are associated with nucleoli even when located at distant sites in the linear 

genome (see below). Thus the dynamics of rDNA repeat transcription is an important area 

for future research.

The nucleolus and RNA polymerase III decoded genes

The spatial organisation of the 5S rDNA genes is one of the clearest examples of the 

nucleolus affecting nuclear organisation. While in S. cerevisiae the 5S rDNA are located 

with the large rDNA repeats, in most eukaryotes they are not, and instead are present either 

as one or more clusters of repeats (e.g. Drosophila melanogaster, chicken, Arabidopsis 
thaliana and human), in other repeat clusters (e.g. crustaceans, and dinoflagellates), or 

entirely linearly dispersed (e.g. Neurospora crassa and Schizosaccharomyces pombe) (56, 

65–70). However, these differences in the linear organization of the 5S genes between 

species belie commonalities in their spatial localization. For example, in mice ectopic 5S 

rDNA gene sequences have been shown to promote nucleolar localisation (71). Similarly, in 

humans, one of the transcribed, linear clusters of 5S genes on chromosome I was shown to 

localize to a perinucleolar compartment (72). Moreover, the linearly dispersed 5S genes in 

many other eukaryotes have been shown to co-localize with nucleoli in three dimensions 

(73), suggesting that there are benefits to co-localizing the 5S genes with the other ribosomal 

genes. This is strong evidence for the nucleolus playing a direct role in the spatial 

organisation of the nucleus.

The co-localization of RNAP III decoded loci with nucleoli is not restricted to the 5S rDNA: 

tRNA genes also show interesting patterns of spatial organization. Eukaryotic tRNA genes 

are generally dispersed throughout the linear genomes, although in rare cases there are 

isolated linear clusters of tRNA genes. Xenopus laevis oocytes have developmentally 

regulated tRNA genes that are found in clusters (74), and multiple clusters of tRNA genes in 

S. pombe are located within the centromeric heterochromatin (73, 75, 76). They are also 
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frequent sites of genomic rearrangements (77, 78). In S. cerevisiae both microscopy and 

crosslinking proximity analysis show that tRNA genes cluster together and co-localize with 

the nucleolus (37, 42, 79–81). In addition, a smaller cluster of tRNA genes has also been 

identified at the centromere of S. cerevisiae (40, 43), consistent with the observation that the 

tRNA genes in S. pombe are primarily clustered at the centromere at a position offset from 

the nucleolus (82). As previously noted for 5S rDNA sequences, yeast tRNA coding regions 

confer interaction specificity with the nucleolus (42) indicating that position alone is 

insufficient to explain this phenomenon.

Little is known about the three-dimensional organization of tRNA genes in most eukaryotes, 

however, and whether they co-localize with nucleoli. This is important to determine, as 

metazoan nuclei can be 100 times larger than yeast but have only 2–3 times as many tRNA 

genes (83). Thus, there is a significantly greater structural problem to overcome, and the 

relative effect of tRNA gene clustering on overall genome organization will be much less. In 

this context, if RNAP III transcription units are key components for spatial organization, a 

significantly more frequent DNA element would be needed in complex eukaryotes. In this 

context it is interesting to consider that SINEs, retrotransposons derived from RNAP III 

transcripts (usually tRNA and 7SL RNA), are found in great quantities in large eukaryotic 

genomes (84–86). There is evidence that SINEs can form clusters in mammalian nuclei (87, 

88) and substantial evidence that at least some SINEs bind RNAP III complex components 

in vivo (89). It will be interesting to test whether some subset of these SINE clusters co-

localize with nucleoli, especially in light of the finding that Alu SINEs are processed in the 

nucleolus (90).

By definition rDNA:non rDNA interactions must involve interplay between different loci, 

but it need not be direct and may involve RNA, proteins or other factors (e.g. epigenetic 

modifications) that facilitate either directed or self-assembled interactions. Irrespective of 

how the associations are stabilized, they must be flexible enough to allow reassignment of 

the rDNA repeat to another function without interfering with the primary function of the 

nucleolus: ribosome production. A simple model to explain the origin of these interactions is 

that the act of transcription or transcriptional regulation is responsible for interaction 

formation and/or maintenance. This is consistent with polymerase class-dependent 

association of different regions of the rDNA, and more generally with the idea of 

transcription factories. However, in the yeast strain where all the rDNA repeats are 

transcriptionally active due to enforced reductions in copy number, little or no phenotype is 

observed (17). It is possible that interactions with the rDNA may function to position non-

nucleolar loci during nuclear division (91), when the rDNA are transcriptionally or 

replicatively inactive and accessible to other factors. In this case, transcription would not be 

the sole driver of interactions that involve the rDNA repeats.

The nucleolus and heterochromatin

The nucleolus appears to influence the chromatin structure of the DNA that surrounds it. In 

metazoans the nucleolus is commonly observed to be surrounded by shell of late-replicating 

heterochromatin. Similarly, tephritids (fruit flies) and other dipterans (true flies) also exhibit 

preferential associations of the rDNA with heterochromatin-rich chromosomes (92). In 
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Drosophila, there appears to be a direct relationship between the nucleolus and non-rDNA 

heterochromatin (93, 94). Furthermore, nucleolar association seems to be an important 

factor to maintain the heterochromatic state of the inactive human X chromosome (95), with 

the Barr body originally being known as the “nucleolar satellite” (96). Analysis of 

nucleolus-associated chromatin domains (NADs) in two human cell lines (i.e. HeLa and 

HT1080) identified satellite repeats as being the major components of the NADs (97). 

Repetitive elements have also been implicated as forming part of the NAD in yeast (98).

Overlap between some metazoan NADs and reported lamina-associated domains suggests 

that specific genomic regions could alternate between associating with the nucleolus and the 

nuclear periphery, either in different cells or at different times (97, 99). The regulation of this 

recruitment would necessarily affect the organization of the remainder of the genome too. 

However, large-scale relocations are not a necessity if relative long-range positioning can be 

maintained through alterations to the compaction levels of intervening regions, rather than 

simply by physical relocation of the DNA. In effect some contacts can be broken while 

others are maintained. However, direct recruitment of non-rDNA loci to the nucleolar 

boundary remains to be demonstrated. Therefore regulation of these interactions in response 

to specific signals or pathways is still a hypothesis that requires testing.

Do bacteria have nucleoli and do they also function to organize the 

nucleoid?

It has traditionally been thought that bacteria lack the equivalent of a nucleolus as their 

repetitive ribosomal DNA genes are organised as dispersed repeats. However, it is clear that 

the bacterial nucleoid is structured (100–108), and recent evidence suggests that the rRNA 

genes in E. coli may be transcribed in specific foci in the cell, opening up the idea that 

bacteria contain a nucleolus-like structure (109, 110) to facilitate recycling of RNA 

polymerase and coordination of ribosome assembly(111).

The different copies of bacterial ribosomal RNA genes, including the spacer regions, have 

high levels of sequence similarity. This finding was unexpected given the apparent dispersal 

of these genes in the genome. It has been proposed that sequence similarity is maintained 

through a process of gene conversion (112). Therefore putative bacterial nucleoli may serve 

not only to optimise rRNA transcription and hence growth (111), but also to juxtapose 

ribosomal DNA genes to facilitate gene conversion between the disparate copies.

Whether the bacterial equivalent of a nucleolus actually exists is an important area for future 

study as it will shed light on critical aspects of bacterial growth rate regulation(111).

Conclusions

Accepting that the nucleolus is not simply a raft adrift the nuclear landscape, what advantage 

is there in the nucleolus controlling nuclear structure? We contend that the answer lies in the 

central position that ribosomes have within cellular metabolism (Figure 2). Stresses of all 

kinds affect ribosome activity (e.g. reviewed in (113)), the production of ribosomes, and 

consequently the nucleolus itself. Responses to stress (e.g. reviewed in (114)) may 
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sometimes involve gross alterations to nucleolar structure (e.g. (115)). These alterations have 

been related to the release and stabilization of proteins from the nucleolus (e.g. (115) and 

reviewed in (114)) therefore it is likely that alterations to the NADs associated with the 

nucleolar boundary also occur during stress response, but direct evidence for this is lacking. 

Our hypothesis predicts that such alterations occur and cause stress related alterations to the 

associated genes, and these events are part of how the stress response is relayed to 

appropriate transcriptional networks outside the nucleolus (Figure 2). Thus, nucleolar 

structure acts as an intermediary between the genomic structural network that co-ordinates 

transcription, and the cytoplasmic translational network (Figure 2). The fact that regions of 

the nucleolus are acted on by the three different polymerases supports the rDNA’s sensory 

role. This model is conceptually similar to the rDNA theory of aging proposed by Kobayashi 

(2008) (116). In this theory, the repetitive nature of the rDNA makes it uniquely prone to 

instability, and this instability acts as an early warning system for general genomic 

instability, triggering the aging pathway. Therefore we propose that nucleolar structure is the 

keystone that synchronizes expression and cellular responses by linking the distinct genomic 

and cytosolic protein networks within cells.
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Figure 1. 
Structure of the eukaryotic rDNA repeat. The structure of a typical eukaryotic rDNA repeat 

unit is shown in the upper part of the figure (not to scale), with the regions encoding the 

three major rRNA species (18S, 5.8S and 28S) illustrated as blue boxes. The inclusion of the 

5S rRNA gene (hatched box) within the rDNA repeat unit is variable and depends on the 

organism being investigated. The direction of RNA pol-I transcription is indicated, as is the 

known variation in size of the coding region and the intergenic spacer amongst eukaryotes. 

Individual rDNA repeats are usually arranged into arrays of tandem as illustrated.
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Figure 2. 
Nucleolar structure and NADs act as an intermediary between the genomic structural 

network that coordinates transcription and the cytoplasmic translational network. A) In a 

permissive environment, the structure of the nucleolus is dictated largely by the RNAP I 

transcription levels. In turn, this sets the organization of the rDNA repeats and interactions 

with the genomic loci in particular the NADs, which affect RNAPII and RNAPIII 

transcription patterns (i.e. genes that are transcribed and also whether this transcription is 

efficient [occurring in factories] or less efficient [dispersed]) and levels (depicted by black 

arrows). Cytoplasmic translation also feeds back to the nucleus and all facets of RNAP 

activity (for simplicity these linkages have been omitted from this cartoon). The net effect of 

this is that nucleolar structure acts as a link to help coordinate nuclear processes while the 

nucleolar product (the ribosome) is the central facet in the cytoplasmic network. B) In a non-

permissive (i.e. stress) environment (depicted by the red zone), environmental signals (red 

arrows) target nuclear (i.e. RNAP I RNAP II, RNAP III transcription) and cytoplasmic 

processes. By targeting RNAP I transcription, alterations are affected in nucleolar structure 

(depicted by smaller nucleolus) including changes in the NADs (depicted by alteration to 

shape). The net effect of this is to reinforce the signalling to the RNAP II and RNAP III 

transcription and subsequently effect a change in cytoplasmic translation.
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