
ETH Library

The nucleolus and the core-center
of multi-sided Bohm-Bawerk
assignment markets

Journal Article

Author(s):
Tejada, Oriol; Nunez, Marina

Publication date:
2012-04

Permanent link:
https://doi.org/10.3929/ethz-b-000048609

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Mathematical Methods of Operations Research 75(2), https://doi.org/10.1007/s00186-012-0381-x

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000048609
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s00186-012-0381-x
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Math Meth Oper Res (2012) 75:199–220
DOI 10.1007/s00186-012-0381-x

ORIGINAL ARTICLE

The nucleolus and the core-center of multi-sided
Böhm-Bawerk assignment markets

Oriol Tejada · Marina Núñez

Received: 17 June 2010 / Accepted: 8 March 2012 / Published online: 24 March 2012
© Springer-Verlag 2012

Abstract We prove that both the nucleolus and the core-center, i.e., the mass cen-
ter of the core, of an m-sided Böhm-Bawerk assignment market can be respectively
computed from the nucleolus and the core-center of a convex game defined on the
set of m sectors. What is more, in the calculus of the nucleolus of this latter game
only singletons and coalitions containing all agents but one need to be taken into
account. All these results simplify the computation of the nucleolus and the core-
center of a multi-sided Böhm-Bawerk assignment market with a large number of
agents. As a consequence we can show that, contrary to the bilateral case, for multi-
sided Böhm-Bawerk assignment markets the nucleolus and the core-center do not
coincide in general.

Keywords Multi-sided assignment games · Core · Nucleolus · Core-center

1 Introduction

The bilateral assignment game was introduced by Shapley and Shubik (1972) as a
cooperative model for a two-sided market with transferable utility in which each seller
supplies one good and each buyer acquires at most one good in exchange for money.
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200 O. Tejada, M. Núñez

Goods may be heterogeneous, and thus a buyer may value differently the goods of
different sellers. Shapley and Shubik prove that the core of these games is nonempty
and is endowed with a lattice structure. Bilateral assignment games have been widely
studied ever since: Solymosi and Raghavan (2001) analyze some properties of the
core, whereas Solymosi and Raghavan (1994) and Núñez (2004) prove some results
on the nucleolus.

In the present paper we consider a market with an arbitrary finite number of sec-
tors. One sector consists of a finite number of buyers, and each one of the remaining
sectors consists of a finite number of sellers. Each seller offers one unit of a good
and each buyer demands one bundle formed by exactly one good of each sector. This
market can be studied within the framework of multi-sided assignment games, which
are introduced by Quint (1991) as the generalization of bilateral assignment games.
Unlike these latter games, multi-sided assignment games may have an empty core
(Kaneko and Wooders 1982). Multi-sided assignment games have also been studied
in Stuart (1997), Sherstyuk (1999) and Tejada and Rafels (2010).

In the aforementioned paper, Shapley and Shubik (1972) also analyze the case of
a two-sided market with no product differentiation, known as the bilateral Böhm-Ba-
werk horse market due to Böhm-Bawerk (1923). For these games it is well known that
the core reduces to a segment. Single-valued solutions for the bilateral Böhm-Bawerk
assignment game are studied in Núñez and Rafels (2005) who conclude that, without
additional information about the bargaining capabilities of the agents, the classical
cooperative theory seems to recommend the midpoint of the core segment. This asser-
tion is supported by the fact that, among other single-valued solutions, the nucleolus
(Schmeidler 1969) coincides with the midpoint of the core segment, that is, with the
mass-center of the core. The mass-center of the core was introduced by González-
Díaz and Sánchez-Rodríguez (2007), with the name of core-center, as a single-valued
solution for arbitrary coalitional games.

In the case of multilateral markets, the particular case where each buyer places
the same valuation on all the bundles is introduced in Tejada (2010) with the name
of multi-sided Böhm-Bawerk assignment market. There it is shown that the core of
these games is nonempty and it is completely determined by the core of a convex game
played by some fictitious players—called sectors—instead of the original agents. This
convex game is called the associated sectors game.

The aim of the present paper is to analyze the nucleolus and the core-center of
multi-sided Böhm-Bawerk assignment markets. We show that both the nucleolus and
the core-center of a multi-sided Böhm-Bawerk assignment market can be respectively
computed from the nucleolus and the core-center of the associated sectors game, this
being a game with many less players. What is more, only singletons and coalitions
containing all agents but one need to be taken into account in the calculation of the
nucleolus of this latter game. These results simplify the computation of the nucleolus
and the core-center of a multi-sided Böhm-Bawerk assignment market with a large
number of agents. As a consequence we can show that, unlike the case of two-sided
Böhm-Bawerk markets, the nucleolus does not coincide in general with the core-center
in the case of multi-sided Böhm-Bawerk assignment markets.

The structure of the paper is as follows. The preliminaries on coalitional games
and multi-sided Böhm-Bawerk assignment games are presented in Sect. 2. In Sect. 3
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The nucleolus and the core-center of multi-sided 201

we determine which coalitions are to be taken into account for the computation of
the nucleolus of a multi-sided Böhm-Bawerk assignment game and we also show that
its nucleolus can be obtained from the nucleolus of the related sectors game. Section
4 establishes a parallel result for the core-center. An example is used throughout the
paper to illustrate both the model and the results.

2 Preliminaries and notation

A coalitional game (a game) is a pair (N , v), where N is the nonempty finite set of
players and, for all S ⊆ N , v(S) ∈ R is the worth that coalition S can obtain without
the cooperation of agents in N \ S, with v(∅) = 0. Let |S|, or alternatively s, denote
the cardinality of coalition S ⊆ N . As usual, we denote by 2N the set of all subsets
of N and we use the notation x(S) = ∑

i∈S xi and x(∅) = 0. An imputation is a
payoff vector x ∈ RN , where xi stands for the payoff to player i ∈ N , that is efficient,
i.e.,

∑
i∈N xi = v(N ), and individually rational, i.e., xi ≥ v({i}) for all i ∈ N . The

set of imputations is denoted by I (v). The core of a game is the set of imputations
that satisfy coalitional rationality and thus are not blocked by any coalition. Formally,
given (N , v), the core is the set C(v) = {x ∈ RN | x(N ) = v(N ) and x(S) ≥ v(S)

for all S ⊂ N }. A game (N , v) is convex if for all i ∈ N and for all S ⊆ T ⊆ N\{i}
we have v(S ∪{i})−v(S) ≤ v(T ∪{i})−v(T ). The core is an example of set-solution
concept. A single-valued solution (or point-solution) on a given set of games Γ is a rule
α that assigns to each game (N , v) in this set Γ an efficient payoff vector α(v) ∈ RN .
Examples of single-valued solutions are the nucleolus and the core-center. Each one
of these two solutions selects a core allocation that occupies a “central” position in
the core. Although for arbitrary coalitional games these two solutions do not coincide,
they do coincide for the particular situation of two-sided Böhm-Bawerk markets.

2.1 Multi-sided assignment games and the Böhm-Bawerk case

An m -sided assignment problem, denoted by (N 1, . . . , N m; A), is given by m ≥ 2
pairwise disjoint nonempty finite sets (or types) of agents, N 1, . . . , N m , and a non-
negative m-dimensional matrix A = (aE )E∈∏m

k=1 N k . We refer to the i th agent of type

k as i ∈ N k , and thus we write, with some abuse of notation, N k = {1, 2, . . . , nk}
for all k ∈ {1, . . . , m}. To any m-tuple of agents E = (i1, . . . , im) ∈ ∏m

k=1 N k it is
associated the coalition composed of agents i1 ∈ N 1, . . . , im ∈ N m , which is called
an essential coalition. We also refer to the m-tuple E as an essential coalition. Each
entry aE ≥ 0 represents the profit associated to the essential coalition E .

A matching among N 1, . . . , N m is a set of essential coalitions, μ = {Eh}n
h=1 with

n = mink∈{1,...,m} nk , such that any agent belongs at most to one coalition in μ. We
denote by M(N 1, . . . , N m) the set of all matchings among N 1, . . . , N m . An agent
i ∈ N k , for some k ∈ {1, . . . , m}, is unmatched under μ if it does not belong to
any of its essential coalitions. A matching μ is optimal if it maximizes

∑
E∈μ aE in

M(N 1, . . . , N m). We denote by M∗
A(N 1, . . . , N m) the set of all optimal matchings

of (N 1, . . . , N m; A).
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202 O. Tejada, M. Núñez

For each multi-sided assignment problem (N 1, . . . , N m; A), the associated multi-
sided assignment game is the cooperative game (N , ωA) with the set of players com-
posed of all agents of all types, N = ∪m

k=1 N k , and characteristic function

ωA(S) = max
μ∈M(N 1∩S,...,N m∩S)

⎧
⎨

⎩

∑

E∈μ

aE

⎫
⎬

⎭
for any S ⊆ N , (1)

where the summation over the empty set is zero.
It is known that the core of a multi-sided assignment game, C(ωA), coincides

with the set of efficient nonnegative vectors x = (x11, . . . , x1n1; . . . ; xm1, . . . , xmnm ),
with xki standing for the payoff to agent i ∈ N k , that satisfy x(E) ≥ aE for all
E ∈ ∏m

k=1 N k . As a consequence, the above inequality must be tight if E belongs
to some optimal matching, and xki = 0 if agent i ∈ N k is unmatched under some
optimal matching.

A particular case of multi-sided assignment games are multi-sided Böhm-Bawerk
markets, introduced in Tejada (2010). In these markets, each sector k ∈ {1, 2, . . . , m−
1} is composed of a nonempty finite set N k of sellers, whereas sector m is composed
of a nonempty finite set N m of buyers. Each seller ik ∈ N k has one good of type k to
sell, with a reservation price ckik . Each buyer i ∈ N m wants to buy a bundle formed
by one good of each type, with the singularity that, from her point of view, goods of
the same type are homogeneous. We denote by wi the valuation that buyer i places on
an arbitrary bundle of m − 1 goods, one from each sector N 1, . . . , N m−1.

An m-sided Böhm-Bawerk market (or problem) can be summarized by a pair (c;w)

where c = (c1, . . . , cm−1) ∈ R
N1 × · · · × R

Nm−1 are the sellers’ valuations and
w = (w1, . . . , wnm ) ∈ RNm are the buyers’ valuations.

From now on, in order to simplify the analysis of the model, we will assume that val-
uations of the sellers of each sector are arranged in a nondecreasing way and valuations
of the buyers are arranged in a nonincreasing way, i.e.

ck1 ≤ ck2 ≤ · · · ≤ cknk for all k ∈ {1, 2, . . . , m − 1} , and w1 ≥ w2 ≥ · · · ≥ wnm .

(2)

Given an m-sided Böhm-Bawerk problem (c;w), we denote by A(c;w) the m-dimen-
sional matrix defined by

aE = max

{

0, wim −
m−1∑

k=1

ckik

}

for all E = (i1, . . . , im) ∈
m∏

k=1

N k . (3)

A consequence of (2) is that

aE ≥ aE ′ ⇔ E ≤ E ′ for all E, E ′ ∈
m∏

k=1

N k, (4)
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The nucleolus and the core-center of multi-sided 203

where E = (i1, . . . , im) ≤ E ′ = (i ′1, . . . , i ′m) if and only if ik ≤ i ′k for all k ∈
{1, . . . , m}. When no confusion may arise, we write simply A instead of A(c;w).

Then, (N , ωA(c;w)), where N is composed of all sellers and buyers, is the multi-
sided assignment game—see (1)—associated to the multi-sided Böhm-Bawerk market
(c;w), which we call the multi-sided Böhm-Bawerk assignment game associated to
(c;w).

For all i ∈ N, we introduce the notation Di = (i, . . . , i) ∈ R
m . By (2), the

diagonal matching μ = {Di | i ∈ {1, . . . , n}} is an optimal matching (recall n =
mink∈{1,...,m} nk). Then, the core C(ωA(c;w)) of (N , ωA(c;w)) coincides with the fol-
lowing set:

⎧
⎨

⎩
x ∈ RN 1

+ × · · · × RN m

+

∣
∣
∣
∣
∣
∣

x(Di ) = aDi for all i ∈ {1, . . . , n},
x(E) ≥ aE for all E ∈ ∏m

k=1 N k and
xki = 0 for all i ∈ N k, k ∈ M and i > n.

⎫
⎬

⎭
. (5)

Let us define r as the highest buyer’s position that obtains a positive profit when
matched with all the sellers in the same position r :

r = max
i∈{1,...,n}

{
i | aDi > 0

}
, (6)

with the convention that r = 0 if all entries of A(c;w) are zero. For each k ∈
{1, . . . , m}, agents i ∈ N k with i ∈ {1, . . . , r} are said to be active, while agents
i ∈ N k with i ∈ {r + 1, . . . , nk} are called inactive. It is not difficult to check that any
matching formed by essential coalitions with all agents active is optimal.

From now on, without loss of generality and for the sake of simplicity of the anal-
ysis, we add an agent with an arbitrarily high cost if she is a seller, or an agent with
an arbitrarily low valuation if she is a buyer, to those sectors k ∈ M with nk = r .
A consequence of this assumption is that the existence of the r + 1th agent for each
sector is ensured.

In Tejada (2010), a new game defined on the set of sectors M = {1, . . . , m} is asso-
ciated to each multi-sided Böhm-Bawerk assignment game. To this end, for any S ⊆ M
let us define E S = r1S + (r + 1) 1M\S ∈ Rm , where, for each T ⊆ M, 1T ∈ Rm

is the vector such that 1T (k) = 1 if k ∈ T and 1T (k) = 0 if k /∈ T . Notice that,
whenever r > 0, E S corresponds to the essential coalition formed by the r th agent of
each sector in S and the (r + 1)th agent of each sector not in S.

The following definitions and Theorem 1 below are necessary to obtain our results
and can be found in Tejada (2010). We include them for the sake of comprehensiveness
of the paper.

Definition 1 Given an m-sided Böhm-Bawerk assignment market (c;w), the asso-
ciated sectors game (M, vc;w) is the coalitional game with set of players M =
{1, 2, . . . , m} composed of all sectors and characteristic function defined, for each
S ⊆ M , by

vc;w(S) =
{

aE S if r>0,

0 if r=0.
(7)
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204 O. Tejada, M. Núñez

By definition, whenever r > 0 we have vc;w(M) = aDr > 0 and vc;w(∅) = 0.
When no confusion may arise we write v instead of vc;w. For each m-sided Böhm-
Bawerk assignment game (N , ωA(c;w)), we introduce two more definitions.

Definition 2 The replica operator Rc;w : RM −→ R
N 1 × · · · × RN m

is defined by

R(x1, . . . , xm) = (x1, . . . , xm), where xk = (

r
︷ ︸︸ ︷
xk, . . . , xk,

nk−r
︷ ︸︸ ︷
0, . . . , 0) ∈ R

N k
for all

k ∈ {1, . . . , m}.
Notice that Rc;w is an injective linear function that maps payoffs of the sectors

game to payoffs of the multi-sided Böhm-Bawerk game.

Definition 3 Let (c;w) be an m-sided Böhm-Bawerk assignment market. Then, the
translation vector tc;w = (t11, . . . , t1n1; . . . ; tm1, . . . , tmnm ) ∈ RN 1 × · · · × RN m

is
defined by

tki = max{0, ckr − cki } for all k ∈ {1, . . . , m − 1} and i ∈ {1, . . . , nk},
tmi = max{0, wi − wr } for all i ∈ {1, . . . , nm}. (8)

A relationship between the core of any multi-sided Böhm-Bawerk assignment game
and the core of the corresponding sectors game is stated in the following result.

Theorem 1 Let (c;w) be an m-sided Böhm-Bawerk assignment market. Then,

1. (M, vc;w) is convex.
2. C(ωA(c;w)) = tc;w + Rc;w(C

(
vc;w

)
).

A consequence of Theorem 1 and (8) is that, for all x ∈ C(ωA(c;w)), k ∈ M and
i ∈ {1, . . . , r}, we have xki = xkr + tki . In the next two sections we show that a
statement analogous to Part 2 of Theorem 1 holds for two single-valued solutions that
are tightly linked to the core: the nucleolus and the core-center.

It is also worth noting that the relationship of Part 2 of Theorem 1 is not satisfied
by every solution concept, e.g. the kernel.1 Indeed, on the one hand, since the sectors
game is convex, its kernel always reduces to the nucleolus. On the other hand, it is
easy to check that the kernel of the 2-sided Böhm-Bawerk assignment game defined
by (c, w) = (1, 1; 2, 2) is the whole core, which is a non-trivial segment. Therefore,
the kernel does not satisfy that property.

3 The nucleolus

The nucleolus is a single-valued solution for coalitional games introduced by Schmei-
dler (1969). For any imputation x of (N , v) and any coalition S ⊆ N , the excess of
coalition S with respect to x is defined by ev(S, x) = v(S)− x(S), and it is a measure

1 The kernel is a solution concept introduced by Davis and Maschler (1965). In the case of a multi-sided
assignment game (N , ωA), the kernel is the set K (ωA) = {x ∈ I (ωA)|si, j (x) = s j,i (x) for any i = j ∈
N }, where si, j (x) = max {v(S) − x(S)|i ∈ S, j /∈ S}.
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The nucleolus and the core-center of multi-sided 205

of the satisfaction of coalition S with respect to the allocation x . Given an arbitrary
game (N , v) with a nonempty set of imputations and an imputation x ∈ I (v), we
define the vector λ(x) ∈ R2N \{∅,N } of excesses of all proper coalitions of N arranged
in a non-increasing order, so that those coalitions with a greater complaint occupy
the first positions in λ(x). That is, λk(x) = ev(Sk, x) for all k ∈ {1, . . . , 2n − 2} and
λk(x) ≥ λ j (x) if 1 ≤ k < j ≤ 2n − 2, where {S1, . . . , Sk, . . . , S2n−2} is the set of all
proper coalitions of N . The nucleolus of the game (N , v) is the imputation η(N , v)

(we write η(v) for short when no confusion regarding the player set can arise) that
minimizes λ(x) with respect to the lexicographic order2 over the set of imputations.
That is, λ(η(v)) ≤Lex λ(x) for all x ∈ I (v). It is known that the nucleolus is always
a single point and, whenever the core of the game is nonempty, it belongs to the core.

Maschler et al. (1979) give an alternative definition of the nucleolus of a game
(N , v) by means of a finite process that iteratively reduces the set of payoffs to a
singleton, called the lexicographic center of the game, that is proved to coincide with
the nucleolus.

Given a game (N , v) with a nonempty core, let C be an arbitrary nonempty subset
of coalitions of N , and consider the algorithm in Maschler et al. (1979) restricted to
coalitions in C. This restricted procedure constructs a sequence of coalitions �0

C ⊇
�1

C ⊇ · · · ⊇ �s+1
C and a sequence of subsets of payoffs X 0

C ⊇ X 1
C ⊇ · · · ⊇ X s+1

C
such that initially α0

C = 0,X 0
C = C(v),�0

C = C and �0
C = ∅ and, for t ∈ {0, . . . , sC},

we define recursively

(a) αt+1
C = minx∈X t

C
maxS∈�t

C
ev(S, x),

(b) X t+1
C =

{
x ∈ X t

C
∣
∣
∣ maxS∈�t

C
ev(S, x) = αt+1

C
}

,

(c) �C
t+1 = {S ∈ �t

C
∣
∣
∣ ev(S, x) is constant on x ∈ X t+1

C },
(d) �t+1

C = �t
C\�C

t+1 and �t+1
C = �t

C ∪ �C
t+1,

(9)

where sC is the last index for which �sC = ∅. The set X sC+1 is called the C -lexico-
graphic center of (N , v). When no confusion is possible we omit the superscript or
subscript C. By Maschler et al. (1979), if we take C to be the set 2N of all coalitions,
the 2N -lexicographic center reduces to only one point and it is the nucleolus. For an
arbitrary collection C, the procedure is well defined but X s+1 is not necessarily a single
point, and even in that case it might not coincide with the nucleolus.

Huberman (1980) shows that it may be that not all coalitions need to be taken
into account for the computation of the nucleolus. Given a game (N , v), a nonempty
coalition S ⊆ N is an essential coalition in the sense of Huberman (1980) if v(S) >∑

T ∈P(S) v(T ) for any non-trivial partition P(S) of S. It is then proved that only
essential coalitions in the sense of Huberman are relevant for the computation of the
nucleolus. This means that, if C ⊆ 2N is the set of essential coalitions in the sense
of Huberman for (N , v), then the C-lexicographic center of (N , v) coincides with the
nucleolus η(v). Moreover, following the proof of Lemma 6.5 in Maschler et al. (1979),

2 Given x, y ∈ R
h , we say x <Lex y if there is some 1 ≤ i ≤ h such that xi < yi and x j = y j for

1 ≤ j < i . Also, we say x ≤Lex y if x <Lex y or x = y.

123



206 O. Tejada, M. Núñez

it is immediate to show that the C-lexicographic center of (N , v) coincides with η(v)

if and only if

λC
v (η(v)) ≤Lex λC

v (x) for all x ∈ I (v),

where λC
v (x) ∈ R|C| is the non-increasingly ordered vector of excesses at x of coali-

tions in C.
For a given multi-sided assignment game, let us denote by E the set of individ-

ual coalitions and coalitions formed by exactly one agent of each type (what we call
essential coalitions in the present paper). As in the bilateral case, it is easy to check
that coalitions not in E are not essential in the sense of Huberman. Notice, however,
that it may be the case that an essential coalition has worth zero and in that case it
would not be essential in the sense of Huberman. As a consequence of Huberman’s
result, the E-lexicographic center also reduces to only one point and coincides with
the nucleolus. Observe that |E | = n1 · · · nm + n1 + · · · + nm which is much lower
than |2N | = 2n1+···+nm .

In this section we show that, in the case of m-sided Böhm-Bawerk assignment
games, the set of coalitions to be considered in the computation of the nucleolus can
be further restricted. To this end we shall use the following lemma (see the “Appendix”
for the proof).

Lemma 1 Let (N , v) be a game with a nonempty core and C a nonempty subset of
coalitions of N such that the C-lexicographic center coincides with the nucleolus. Let
∅ = F ⊆ C such that, for all S ∈ C\F , there is TS ⊆ F satisfying that

(i) ev(S, x) ≤ ev(F, x) for all x ∈ C(v) and all F ∈ TS,
(ii) for any ∅ = X ⊆ C(v), if ev(F, x) = ev(F, y) for all x, y ∈ X and all F ∈ TS

then ev(S, x) = ev(S, y) for all x, y ∈ X .

Then, the nucleolus of (N , v) coincides with the F-lexicographic center of (N , v).

The above lemma is now applied to the m-sided Böhm-Bawerk assignment game
to see that only essential coalitions formed by either one (or m − 1) last active agents
of some sectors and m − 1 (or one) first inactive agents of the remaining sectors need
to be taken into account to compute the nucleolus. Formally, given (N , ωA(c;w)) an
m-sided Böhm-Bawerk assignment game, let F N = F N

m−1 ∪ F N
1 be the subset of

coalitions of N defined as

F N
m−1 =

{

E S
∣
∣
∣
∣ S ⊆ M, |S| = m − 1

}

(10)

and

F N
1 =

{

E S
∣
∣
∣
∣ S ⊆ M, |S| = 1

}

, (11)

where we recall that E S = r1S + (r + 1) 1M\S . Observe that |F N | = 2m, which in
general is much lower than |E | = n1 · · · nm + n1 + · · · + nm .
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Theorem 2 Let (c;w) be an m-sided Böhm-Bawerk assignment market. Then the
nucleolus η

(
ωA(c;w)

)
coincides with the F N -lexicographic center of (N , ωA(c;w)).

Proof We assume r > 0, since the case r = 0 is trivial. Consider the E-lexicographic
center of (N , ωA), which is known to coincide with the nucleolus η (ωA). It can be
easily checked that at step t = 1 in (9) we obtain α1 = 0,X 1 = C(ωA),�1 =
�1 = {S ∈ E | e(S, x) is constant in C(ωA)} and �1 = E\�1. Hence, we can start
the algorithm of the E-lexicographic center with α0 = 0,X 0 = C(ωA) and

�0 = �0 = {S ∈ E | e(S, x) is constant in C(ωA)} and �0 = E\�0. (12)

Thus, the E-lexicographic center of (N , ωA) coincides with the �0-lexicographic cen-
ter of (N , ωA) and, therefore, we can consider the latter instead of the former.

Since any essential coalition formed by either only active agents or only inactive
agents belongs to some optimal matching, by (5) each such coalition receives a con-
stant payoff in C(ωA), and hence, in the above algorithm, �0 is only composed of all
essential coalitions containing both active agents and inactive agents, and all singletons
formed by one active agent.

Let x ∈ C(ωA) be an arbitrary core allocation. To prove the theorem we will show
that F N satisfies the assumptions of Lemma 1. Thus, let S ∈ �0\F N . We distinguish
two cases, depending on whether S is an essential coalition or a singleton.

Case 1: S = E = (i1, . . . , im) ∈ ∏m
k=1 N k .

Consider a set of sectors associated to E defined by SE = {k ∈ M | 1 ≤ ik ≤ r}.
By (12), we have ∅ � SE � M . Due to the non-symmetrical notation of buyers’
and sellers’ valuations, we must write separately the cases m ∈ SE and m /∈ SE .
Nevertheless, the proof of the latter case is analogous to the proof of the former and
hence we assume m ∈ SE , whereas the case m /∈ SE is left to the reader. Let us also
denote by E ′ = ∑

k∈SE
ik1{k} +(r + 1) 1M\SE the essential coalition obtained from E

by replacing agents of each sector k ∈ M\SE by the r + 1th agent of the same sector.
Since E ′ ≤ E , by (4) we have aE ≤ aE ′ . We start by proving that, for all x ∈ C(ωA),

eωA (E, x) ≤ eωA (E SE , x). (13)

Indeed,

eωA (E, x) = aE −
m∑

k=1

xkik ≤ aE ′ −
∑

k∈SE

xkik −
∑

k∈M\SE

xkik = aE ′ −
∑

k∈SE

xkik

= aE ′ − (
xmr + (wim − wr )

) −
∑

k∈SE \{m}

(
xkr + (ckr − ckik )

)

= max

⎧
⎨

⎩
0, wim −

∑

k∈SE \{m}
ckik −

∑

k∈M\SE

ck(r+1)

⎫
⎬

⎭

− (
xmr + (wim − wr )

) −
∑

k∈SE \{m}

(
xkr + (ckr − ckik )

)
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= max

⎧
⎨

⎩
0, wr −

∑

k∈SE \{m}
ckr −

∑

k∈M\SE

ck(r+1) + (
wim − wr

)

+
∑

k∈SE \{m}

(
ckr − ckik

)
⎫
⎬

⎭

−
⎛

⎝(wim − wr ) +
∑

k∈SE \{m}
(ckr − ckik )

⎞

⎠ −
∑

k∈SE

xkr

= max

⎧
⎨

⎩
−
⎛

⎝(wim − wr ) +
∑

k∈SE \{m}
(ckr − ckik )

⎞

⎠ , wr

−
∑

k∈SE \{m}
ckr −

∑

k∈M\SE

ck(r+1)

⎫
⎬

⎭
−

∑

k∈SE

xkr

≤ max

⎧
⎨

⎩
0, wr −

∑

k∈SE \{m}
ckr −

∑

k∈M\SE

ck(r+1)

⎫
⎬

⎭
−

∑

k∈SE

xkr

= aE SE −
∑

k∈SE

xkr = eωA (E SE , x),

where the second and the third equalities hold by (5) and Theorem 1, the fifth equality
holds by adding and subtracting wr −∑

k∈SE \{m} ckr to the second term in the maxi-
mum operator, and the last inequality holds by (2). We continue by distinguishing two
subcases.
Case 1.1: aE SE > 0.

Recall that by (12), SE � M . We now prove that, for each k′ /∈ SE ,

eωA (E SE , x) ≤ eωA (E M\{k′}, x). (14)

Before proving (14) observe that, since x ∈ C(ωA), by (5) we have

x(E M ) =
∑

l∈M

xlr = aE M = wr −
∑

l∈{1,...,m−1}
clr

and, for each k ∈ M \ {m},

x(E M\{k}) =
∑

l∈M\{k}
xlr ≥ aE M\{k} ≥ wr − ck(r+1) −

∑

l∈M\{k,m}
clr .

Combining the two above expressions we obtain

xkr − (
ck(r+1) − ckr

) ≤ 0 for all k ∈ M \ {m}. (15)
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Then, for each k′ /∈ SE ,

eωA (E SE , x) = aE SE −
∑

k∈SE

xkr = wr −
∑

k∈SE \{m}
ckr −

∑

k∈M\SE

ck(r+1) −
∑

k∈SE

xkr

= wr −ck′(r+1)−
∑

k∈M\{k′,m}
ckr −

∑

k∈M\{k′}
xkr +

∑

k∈(M\{k′})\SE

(
xkr −(

ck(r+1) − ckr
))

≤ wr − ck′(r+1) −
∑

k∈M\{k′,m}
ckr −

∑

k∈M\{k′}
xkr

≤ max

⎧
⎨

⎩
0, wr − ck′(r+1) −

∑

k∈M\{k′,m}
ckr

⎫
⎬

⎭
−

∑

k∈M\{k′}
xkr

= aE M\{k′} −
∑

k∈M\{k′}
xkr = eωA (E M\{k′}, x),

where the second equality follows from the assumption aE SE > 0, the third equality is
obtained by adding and subtracting

∑
k∈(M\{k′})\SE

(xkr + ckr ) and the first inequality
holds by (15). Therefore (14) indeed holds.

Next consider the following nonempty subset of F N
m−1,

TS =
{

E M\{k}
∣
∣
∣
∣k ∈ M\SE

}

. (16)

From (13) and (14), we have that eωA (E, x) ≤ eωA (F, x) for all F ∈ TS , which
implies that condition (i) of Lemma 1 is satisfied for S = E , taking F = F N . Further,
we prove that condition (ii) of Lemma 1 is also satisfied. First of all observe that

x(E SE ) = 1

|M\SE |
∑

k∈M\SE

x(E SE )

= 1

|M\SE |
∑

k∈M\SE

(
x(E M\{k}) − x(E (M\{k})\SE )

)

= 1

|M\SE |

⎛

⎝
∑

k∈M\SE

x(E M\{k}) −
∑

k∈M\SE

x(E (M\{k})\SE )

⎞

⎠

= 1

|M\SE |
∑

k∈M\SE

x(E M\{k}) −
( |M\SE | − 1

|M\SE |
)

x(E M\SE )

= 1

|M\SE |
∑

k∈M\SE

x(E M\{k}) −
( |M\SE | − 1

|M\SE |
)

(aE M − x(E SE )),
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where the last equality holds since, by (5), x(E SE ) + x(E M\SE ) = x(E M ) = aE M .
Therefore,

x(E SE ) =
∑

k′∈M\SE

x(E M\{k′}) − (|M\SE | − 1) aE M . (17)

and

x(E) =
∑

k∈SE

xkik +
∑

k∈M\SE

xkik =
∑

k∈SE

xkik = x(E SE ) +
∑

k∈SE

tkik

=
∑

k′∈M\SE

x(E M\{k′}) − (|M\SE | − 1) aE M +
∑

k∈SE

tkik , (18)

where the second and third equalities hold by Theorem 1 and the last equality holds
by (17). To conclude, by (18), the excess eωA (E, x) is an affine combination of the
excesses associated to coalitions of TS :

eωA (E, x) = aE − x(E)

= aE −
∑

k∈M\SE

x(E M\{k}) + (|M\SE | − 1) aE M −
∑

k∈SE

tkik

=
∑

k∈M\SE

(
aE M\{k} − x(E M\{k})

)

+aE −
∑

k∈SE

tkik −
∑

k∈M\SE

aE M\{k} + (|M\SE | − 1) aE M

=
∑

k∈M\SE

eωA (E M\{k}, x) + cS, (19)

where the third equality is obtained by adding and subtracting
∑

k∈M\SE
aE M\{k} .

Therefore, whenever eωA (E M\{k}, x) is constant on a subset X of C(ωA) for all
k ∈ M\SE , also eωA (E, x) is constant on X . Then, as we claimed, the two require-
ments of Lemma 1 applied to S = E (under the assumptions of Case 1.1) are satisfied
for all x ∈ C(ωA), taking F = F N and TS as in (16).

Case 1.2: aE SE = 0.
In this case, consider the following nonempty subset of F N

1 ,

TS =
{

E {l}
∣
∣
∣
∣ l ∈ SE

}

. (20)

By (4), we have wA(F) = 0 for all F ∈ TS . Then, for each l ∈ SE ,

eωA (E SE , x) = −
∑

k∈SE

xkr ≤ −xlr = ωA(El) − xlr = eωA (El , x),

and hence
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eωA (E, x) ≤ eωA (E SE , x) ≤ eωA (El , x),

where the first inequality holds by (13). Hence condition (i) of Lemma 1 is satisfied
for S = E , on the assumptions of Case 1.2, taking F = F N and TS as in (20). Further,
condition (ii) of Lemma 1 is also satisfied. Indeed,

eωA (E, x) = aE − x(E) = aE −
∑

l∈SE

xlil −
∑

l∈M\SE

xlil

= aE − x(E SE ) −
∑

l∈SE

tlil

=
∑

l∈SE

eωA (E {l}, x) + aE −
∑

l∈SE

tlil , (21)

where the first equality holds by Theorem 1 and (5), and the last equality holds from
wA(F) = 0 for all F ∈ TS . Thus, whenever eωA (El , x) is constant on a subset X of
C(ωA) for all l ∈ SE , also eωA (E, x) is constant on X . Therefore, the two require-
ments of Lemma 1 applied to S = E (under the assumptions of Case 1.2) are again
satisfied, taking F = F N and TS as in (20).

Case 2: S = {i}.
By (12), we can assume i ∈ Nl , for some l ∈ M and i ≤ r . Let TS be the following

singleton of F N
1 ⊆ F N ,

TS =
{

E {l}} . (22)

By Theorem 1,

eωA ({i}, x) = −xli = −tli − xlr = eωA (E {l}, x) − ωA(E {l}) − tli ,

where the last equality holds by adding and subtracting ωA(E {l}). Therefore properties
(i) and (ii) of Lemma 1 are satisfied for S = {i}, taking F = F N and TS as in (22).

To sum up, the assumptions of Lemma 1 are satisfied for all S ∈ E\F N , hence
ensuring that the F N -lexicographic center coincides with the nucleolus. ��

The result in Theorem 2 simplifies the computation of the nucleolus of a multi-
sided Böhm-Bawerk assignment game. As an application, consider a market situation
with eight sellers each of whom owns one unit of a homogenous good, eight other
sellers each of whom owns one unit of a different homogenous good and ten potential
buyers interested in acquiring a bundle formed exactly by one unit of each of the two
goods. Let the valuations in this three-sided Böhm-Bawerk assignment market, which
translates into a 26-person cooperative game, be

(c1, c2, w) = (5, 5, 7, 8, 10.75, 11, 12, 13;
5, 6, 8, 9, 9.25, 10.5, 13, 13;
30, 28, 26, 24, 22, 21, 20, 18, 17, 15)

(23)
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It is straightforward to check that there are five active agents on each side of the market,
that is r = 5, which is marked in bold.

As a result of Theorem 2, in order to calculate the nucleolus of the corresponding
coalitional game (N , ωA(c;w)) with 226 coalitions we only have to consider coali-
tions in F N = F N

1 ∪ F N
2 , where F N

1 = {(5, 6, 6), (6, 5, 6), (6, 6, 5)} and F N
2 =

{(6, 5, 5), (5, 6, 5), (5, 5, 6)}. However, the number of agents is still high, 26, which
means that we have to solve several linear programs with 26 variables. The proce-
dure can be simplified further by exploiting the connection between the cores of the
multi-sided assignment game and its related sectors game (M, vc;w).

Given the corresponding sectors game (M, vc;w), let us consider the subset of
coalitions of M defined by F M = F M

1 ∪ F M
m−1, where

F M
m−1 = {S ∈ M, |S| = m − 1} , (24)

and

F M
1 = {S ∈ M, |S| = 1} , (25)

and let us see that only coalitions in F M are needed to obtain the nucleolus of the
sectors game.

Theorem 3 Let (c;w)) be an m-sided Böhm-Bawerk assignment market. Then,

(a) η(ωA(c;w)) = tc;w + Rc;w
(
η
(
vc;w

))
.

(b) η
(
vc;w

)
coincides with the F M -lexicographic center of (M, vc;w).

Proof We assume r > 0, since the case r = 0 is trivial. For each x ∈ C(ωA), let
x ∈ C(v) be the unique core allocation of the sectors game such that x = t + R(x).
Let η = η(ωA) be the nucleolus of the multi-sided Böhm-Bawerk assignment game.
We first prove that η = η(v).

Notice that, for each S ⊆ M and all x ∈ C(ωA), we have

ev(S, x) = v(S) − x(S) = aE S − x(E S) = eωA (E S, x), (26)

where the second equality holds by Theorem 1 and the definition of the sectors game.
Let H = {

E S
∣
∣ ∅ = S � M

}
. Then, for each x ∈ C(ωA), x = η, it holds that

λ2N \{∅,N }
ωA

(η) <Lex λ2N \{∅,N }
ωA

(x) ⇔ λH
ωA

(η) <Lex λH
ωA

(x). (27)

The reason is that since F N satisfies the assumptions of Lemma 1 (see the proof of
Theorem 2) and F N ⊆ H ⊆ 2N , also H satisfies the assumptions of Lemma 1 and as
a consequence the H-lexicographic center of (N , ωA) coincides with the nucleolus of
(N , ωA). Moreover, by (26),

λH
ωA

(η) <Lex λH
ωA

(x) ⇔ λ2M \{∅,M}
ωA

(η) <Lex λ2M \{∅,M}
ωA

(x). (28)
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The combination of (27) and (28) leads to

λ2N \{∅,N }
ωA

(η) <Lex λ2N \{∅,N }
ωA

(x) ⇔ λ2M \{∅,M}
v (η) <Lex λ2M \{∅,M}

v (x), (29)

and thus it guarantees that λ
2M \{∅,M}
v (η) <Lex λ

2M \{∅,M}
v (x) for all x ∈ C(v), x = η,

which implies η = η(v) and finishes the proof of statement (a).
To prove statement (b), recall the definitions of F N and F M at (10), (11), (24) and

(25), and let us consider the mapping Ψ that assigns each coalition of F M to a unique
coalition of F N in the following way:

Ψ : F M −→ F N

S −→ E S .

Observe that by the definitions of F N and F M , Ψ is bijective. Also, by (26), for all
S ∈ F M and all x ∈ C(ωA),

ev(S, x) = eωA (E S, x). (30)

Notice then that

λF M

v (η) <Lex λF M

v (x) ⇔ λF N

ωA
(η) <Lex λF N

ωA
(x) ⇔ λ2N \{∅,N }

ωA
(η) <Lex λ2N \{∅,N }

ωA
(x)

⇔ λ2M \{∅,M}
v (η) <Lex λ2M \{∅,M}

v (x),

where the first equivalence holds by (30), the second equivalence holds by Theorem
2 and the third equivalence holds by (29). ��

Consider again the market in the example given in (23) and notice that to obtain the
nucleolus of the three-sided Böhm-Bawerk assignment game (N , ωA) we essentially
have to compute the nucleolus η (v) of the sectors game (M, v), which in this case is
the three-person game given below:

v({1}) = a566 = 0 v({1, 2}) = a556 = 1
v({2}) = a656 = 0.75 v({1, 3}) = a565 = 0.75 v({1, 2, 3}) = a555 = 2.

v({3}) = a665 = 0.5 v({2, 3}) = a655 = 1.75

It can be checked that η (v) = (0.1250, 1.0625, 0.8125). Then, from part (a) of The-
orem 3 we obtain

η(wA) = (5.875, 5.875, 3.875, 2.875, 0.125, 0, 0, 0;
5.3125, 4.3125, 2.3125, 1.3125, 1.0625, 0, 0, 0;
8.8125, 6.8125, 4.8125, 2.8125, 0.8125, 0, 0, 0, 0, 0).

(31)

Finally let us point out that statement (b) in Theorem 3 provides an even better sim-
plification when the sectors game consists of more than three sectors, that is m > 3,
since it guarantees that in the computation of the nucleolus of the sectors game (M, v)
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not all proper coalitions of M have to be considered, but only those of size 1 and
m −1. Thus, Theorem 3 provides a more efficient algorithm to compute the nucleolus
of the sectors game (M, v), since each linear program in the sequence related to the
algorithm of the lexicographic center has many less constraints.

4 The core center

González-Díaz and Sánchez-Rodríguez (2007) study the core-center (or mass center
of the core) of a coalitional game with a nonempty core defined as the mathematical
expectation of the uniform probability distribution over the core. Let U (A) denote the
uniform distribution defined over the set A and E(P) the expectation of the probability
distribution P . Formally, given an arbitrary game (N , v) with a nonempty core, the
core-center is defined as Φ(v) = E[U (C(v))].

The nucleolus of a coalitional game does not necessarily coincide with its mass cen-
ter. However, for two-sided Böhm-Bawerk assignment markets the nucleolus coincides
with the mass center, since it is the midpoint of the core segment. Thus it is natural to
ask whether this property extends to multi-sided Böhm-Bawerk assignment markets.
To this end it is necessary to simplify the computation of the core-center, since our
markets typically have many agents and there are no easy-to-compute formulae that
provide the center of mass of a polytope. With this aim in mind, we prove that, like
the nucleolus, the core-center Φ(ωA(c;w)) of a multi-sided Böhm-Bawerk assignment
game (N , ωA(c;w)) and the core-center Φ(vc;w) of the corresponding sectors game
(M, vc;w) are related by the injective linear mapping tc;w + Rc;w(·). Our result is
proved on the firm basis provided by measure theory (see for instance, Federer 1969).

Theorem 4 Let (c;w) be an m-sided Böhm-Bawerk assignment market. Then,

Φ(ωA(c;w)) = tc;w + Rc;w
(
Φ
(
vc;w

))
.

Proof We assume r > 0, since the case r = 0 is trivial. Let us consider the two
metric spaces (RN 1 ×· · ·×RN m

, d N ) and (RM , d M ), each of them endowed with the
corresponding euclidean distance. The dimension dim(P) of a convex polytope P is
the dimension of the minimal affine variety in which P is contained. From Theorem
1 we know that C(ωA) ⊆ R

N 1 × · · · × RN m
and C(v) ⊆ R

M are convex polytopes
of the same dimension β = dim(C(ωA)) = dim(C(v)) ≤ m − 1.

Given an arbitrary metric space (�, d), the diameter of B ⊆ � is defined by
δ(B) = sup{d(x, y) | x, y ∈ B}. Let δN and δM denote the diameters defined on
the metric spaces (RN 1 × · · · × RN m

, d N ) and (RM , d M ). We first claim that, for all
B ⊆ C(v) ⊆ R

M , we have

√
rδM (B) = δN (

tc;w + Rc;w(B)
)
, (32)
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where r is defined in (6). Indeed, if x, y ∈ C(v) and x, y are the corresponding
elements of C(ωA) by Theorem 1, we have

d N (x, y) =
⎛

⎝
∑

k∈M

∑

i∈N k

(xki − yki )
2

⎞

⎠

1/2

=
⎛

⎝
∑

k∈M

∑

i∈N k ,i≤r

(
xk + tki − yk − tki

)2

⎞

⎠

1/2

=
(
∑

k∈M

r
(
xk − yk

)2

)1/2

= √
rd M (x, y).

Let μN : RN 1 × · · · × R
N m −→ [0,+∞) and μM : RM −→ [0,+∞) be the

Hausdorff outer measures of dimension β that correspond respectively to (RN 1 ×· · ·×
R

N m
, d N ) and (RM , d M ), where we recall that β is the dimension of C(ωA) and C(v).

By definition,

μN (A)= lim
δ→0

(

inf
{Bh}+∞

h=1

{+∞∑

h=1

(
δN (Bh)

)β
∣
∣
∣
∣

Bh ⊆ R
N 1 × · · · × RN m

, A ⊆∪+∞
h=1 Bh

and δN (Bh) < δ for all h ≥1

})

(33)

for any A ⊆ R
N 1 × · · · × RN m

, and

μM (A) = lim
δ→0

(

inf
{Bh}+∞

h=1

{+∞∑

h=1

(
δM (Bh)

)β
∣
∣
∣
∣

Bh ⊆ R
M , A ⊆ ∪+∞

h=1 Bh

and δM (Bh) < δ for all h ≥ 1

})

(34)

for any A ⊆ R
M . By Theorem 1 and (32), and using (33) and (34), for all B ⊆ C(v) ⊆

R
M , we have

rβ/2μM (B) = μN (tc;w + Rc;w(B)). (35)

With some abuse of notation let us also denote by μN and μM the restrictions of μN

and μM to the borel sets of (RN 1 ×· · ·×RN m
, d N ) and (RM , d M ) respectively, which

are measures by the Carathéodory Extension Theorem.
For any H ⊆ R

l , let IH : Rl −→ R be defined by IH (x) = 1 if x ∈ H and
IH (x) = 0 if x /∈ H . By definition of the Lebesgue integral, for every measurable set
B ⊆ C(v) ⊆ R

M ,

rβ/2
∫

IBdμM = rβ/2μM (B) = μN (tc;w + Rc;w(B)) =
∫

Itc;w+Rc;w(B)dμN ,(36)
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where the second equality holds by (35). Moreover, for any simple function s =∑z
l=1 λlIBl : RM → R defined on the measurable sets B1, . . . , Bz ⊆ C(v) ⊆ R

M ,

rβ/2
∫

sdμM = rβ/2
∫ z∑

l=1

λlIBl dμM =
z∑

l=1

λlr
β/2

∫

IBl dμM

=
z∑

l=1

λl

∫

Itc;w+Rc;w(Bl )dμN =
∫ z∑

l=1

λlItc;w+Rc;w(Bl )dμN

=
∫

sdμN , (37)

where s = ∑z
l=1 λlItc;w+Rc;w(Bl ) : RN 1 × · · · ×RN m → R is the corresponding sim-

ple function defined on the measurable sets tc;w +Rc;w(B1), . . . , tc;w +Rc;w(Bz) ⊆
C(ωA) ⊆ R

N 1 ×· · ·×RN m
by the constants λ1,…,λz respectively. For every measur-

able nonnegative-valued function f : RM → R, by the construction of the Lebesgue
integral we obtain

rβ/2
∫

C(v)

f dμM = sup
s:RM →R

s simple

{

rβ/2
∫

IC(v)sdμM
∣
∣
∣
∣ 0 ≤ s ≤ f

}

= sup
s:RM →R

s simple

{∫

Itc;w+Rc;w(C(v))sdμN
∣
∣
∣
∣ 0 ≤ s ≤ f

}

= sup
s:RN1 ×...×R

Nm →R

s simple

{∫

IC(ωA)sdμN
∣
∣
∣
∣ 0 ≤ s ≤ f

}

=
∫

C(ωA)

f dμN , (38)

where the second equality holds by (37), f : RN 1 × · · · × R
N m → R denotes the

measurable function that is zero elsewhere except in C(ωA), where it is defined as
the composition of the inverse of the injective linear mapping tc;w + Rc;w(·) with
f , and the third equality is explained as follows. By Theorem 1, for any simple
function s : RN 1 × · · · × R

N m → R such that 0 ≤ s ≤ f there is a simple func-
tion s : RM → R such that 0 ≤ s ≤ f and s(x) = s(x) for all x ∈ C(v) and
x = tc;w + Rc;w(x) ∈ C(ωA). Indeed, if s = ∑z

l=1 λlIBl for some measurable sets

B1, . . . , Bz ⊆ R
N 1 × · · · × RN m

we can take s = ∑z
l=1 λlIBl

: RM → R, where for

all l ∈ {1, . . . , z} we define Bl = (tc;w + Rc;w)−1(Bl ∩ C(ωA)) ⊆ R
M .

It is known that the β-dimensional Hausdorff measure agrees with the classical
area of an embedded submanifold of Rβ , with β ≤ m. Therefore, except for a con-
stant multiplicative factor that coincides with the area of C(ωA) and C(v), dμN and
dμM are the probability density functions of the uniform distributions over C(ωA) ⊆
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R
N 1 ×· · ·×RN m

and C(v) ⊆ R
M respectively. Hence, by definition of the core-center,

for all k ∈ M and all i ∈ N k such that 1 ≤ i ≤ r ,

tki + Φk (v) = tki +
∫

C(v)
xkdμM

∫
C(v)

dμM
= rβ/2

∫
C(v) (tki + xk) dμM

rβ/2
∫

C(v)
dμM

=
∫

C(ωA)
xki dμN

∫
C(ωA)

dμN

= Φki (ωA(c;w)),

where the second equality holds by linearity of the Lebesgue integral and the third
equality holds by (38), using f (x) = xk + tki . The case i > r is trivial since inactive
agents obtain a null payoff at any core allocation. ��

The above result allows us to compute the core-center of the three-sided Böhm-
Bawerk assignment market (N , ωAc;w) of the example in (23), since we only need
to compute the core-center of the three-player associated sectors game (M, vc;w).
Observe that in order to obtain the core-center of C(vc;w) we need to compute the
area of a bidimensional region embedded in R3. Nevertheless, a well-known result
in Measure Theory is that an invertible affine mapping f : Rq −→ R

q shifts the
Lebesgue measure μ of Rq proportionally to the absolute value of the determinant
of f , i.e. μ( f (A)) = |det ( f )|μ(A) for all measurable set A ⊆ R

q . Hence, for our
purpose of computing the center of mass of C(vc;w) it suffices to calculate the cen-
ter of mass of the projection of C(v) onto the (x1, x2)-plane, since f (x1, x2, x3) =
(x1, x2, 2 − x1 − x2 − x3) is an invertible affine mapping from R

3 to R3 with the

Fig. 1 The (x1, x2) projection
of the core of the sectors game
associated to the three-sided
Böhm-Bawerk assignment game
of the Example in (23)
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image of C(v) contained in the x3 = 0 plane ofR3. Notice that this latter computation
can be easily carried out using the standard tools of integral calculus in R2, and thus
we obtain

Φ (v) = (0.1389, 1.0556, 0.8055).

Figure 1 above depicts the projection of C(v) onto the (x1, x2)-plane, together with
the core-center Φ(v) and the nucleolus η(v) that was obtained at the end of Section 3.

Notice first from Φ(v) = η(v) that in general the core-center of a coalitional
game differs from the nucleolus, even in the case of convex games. Moreover, the
Shapley value (Shapley 1972) of the above sectors game is (0.1667, 1.0417, 0.7917).
Therefore, the Shapley value is in general also different from the core-center for con-
vex games. Finally, as a consequence of Theorems 3 and 4, from Φ(v) = η(v) we
deduce that Φ(ωA) = η(ωA) and thus the nucleolus of a multi-sided Böhm-Bawerk
assignment market does not coincide in general with the mass center of the core.
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5 Appendix

Proof (of Lemma 1) To simplify the notation, let X t , �t , �
t and αt for t ∈

{0, 1, . . . , s, s + 1} be the elements of the algorithm leading to the C-lexicographic
center of (N , v), where s is the last index for which �s = ∅, and X t

F , �F
t , �t

F and
αt

F for t ∈ {0, 1, . . . , sF , sF + 1} be the corresponding elements of the algorithm
leading to the F-lexicographic center of (N , v), where sF is the last index for which
�

sF
F = ∅. We claim that, under the conditions of the lemma, we have s = sF and,

for all t ∈ {0, 1, . . . , s}, αt = αt
F ,X t = X t

F and �t ∩ F = �t
F .

We prove this by induction on t . The case t = 0 is trivial by the definition of
step t = 0 in the algorithm given in (9), together with the fact that F ⊆ C and thus
F ∩ C = F . Hence, assume that αt = αt

F ,X t = X t
F and �t ∩ F = �t

F , for some

t < s. We shall prove that αt+1 = αt+1
F ,X t+1 = X t+1

F and �t+1 ∩ F = �t+1
F .

First we claim that for all S ∈ �t there exists T ∈ �t ∩ F such that, for all
x ∈ X t , ev(S, x) ≤ ev(T, x). Observe that the inequality holds trivially as an equality
if S ∈ F . Hence, assume that S ∈ C\F . By hypothesis of the lemma, there is TS ⊆ F
such that

ev(S, x) ≤ ev(F, x) for all x ∈ C(v) and all F ∈ TS, (39)
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and

for any ∅ = X ⊆ C(v), we have that whenever

ev(F, x) = ev(F, y) for all x, y ∈ X and all F ∈ TS, then

ev(S, x) = ev(S, y) for all x, y ∈ X . (40)

If it is the case that TS ∩ �t = ∅, then from �t ∩ F = �t
F we necessarily have

TS ⊆ �t
F , which by construction of (9) implies that, for each F ∈ TS, ev(F, x) is

constant on X t
F = X t . Hence, by (40), ev(S, x) is also constant on X t , which contra-

dicts S ∈ �t . Once the claim is proved, for all x ∈ X t it holds that maxS∈�t e(S, x) ≤
maxS∈�t ∩F e(S, x) and

�t = ∅ ⇔ �t ∩ F = ∅. (41)

Secondly, for all x ∈ X t ,

max
S∈�t

ev(S, x) ≤ max
S∈�t ∩F

ev(S, x) = max
S∈�t

F
ev(S, x) ≤ max

S∈�t
ev(S, x),

where the equality follows from the induction hypothesis and the last inequality from
�t

F = �t ∩ F ⊆ �t . Hence,

max
S∈�t

ev(S, x) = max
S∈�t

F
ev(S, x). (42)

Thus αt+1 = minx∈X t maxS∈�t ev(S, x) = minx∈X t
F

maxS∈�t
F

ev(S, x) = αt+1
F ,

since X t = X t
F also by induction hypothesis.

Now, by (42) and X t = X t
F we obtain X t+1 = X t+1

F . Therefore �t+1 ∩F = �F
t+1

and hence �t+1 ∩ F = �t+1
F .

Finally, by (41) we have s = sF . Thus, since the C-lexicographic center of (N , v)

coincides with the nucleolus and X s+1 = X sF+1
F , we have that also the F-lexico-

graphic center of (N , v) coincides with the nucleolus. ��
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