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The Nucleolus and the Four Ribonucleoproteins of Translation

 

Thoru Pederson and Joan C. Politz

 

Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester,
Massachussetts 01605

 

The classical view of the nucleolus as solely committed to
ribosome biosynthesis has been modified by recent studies
pointing to additional roles for this nuclear domain. These
newly recognized features include the nucleolar presence
of several nonribosomal RNAs transcribed by RNA poly-
merase III, as well as nucleolar roles in gene silencing, cell
cycle progression, and cellular senescence. The signal rec-

 

ognition particle (SRP)

 

1

 

 RNA, and several protein compo-
nents of the SRP also recently have been detected in the
nucleolus. Thus, the large and small ribosomal subunits,
the 5S rRNA–ribonucleoprotein complex, and now the
SRP, are known to be assembled in or pass through the
nucleolus. These findings, together with the recent ob-

 

servations that some transfer RNA precursor molecules
and the pretransfer RNA processing enzyme, RNase P,
are also found in the nucleolus, raise the possibility that
these translational components are congressed in the nu-
cleolus in order to probatively interact with one another,
perhaps as a test of proper conformational fit. We hypoth-
esize that such interactions may be an important check-
point during nucleolar assembly of the translational ma-
chinery at steps ranging from the regulation of nascent
transcript processing to a possible transient preassembly
of the entire translational apparatus. 

 

Introduction

 

The nucleolus is a large and ultrastructurally complex in-
tranuclear structure that typically has the most concen-
trated mass per unit volume of any region in the cell (Vin-
cent, 1955; Goessens, 1984; Hadjiolov, 1985). Nucleoli
arise from the transcriptional activity of the ribosomal
RNA genes and contain a multitude of proteins and small
RNAs that mediate processing and modification of rRNA
and ribonucleoprotein assembly of nascent ribosomal sub-
units (Warner, 1990; Bachellerie et al., 1995; Shaw and
Jordan, 1995; Maden and Hughes, 1997; Scheer and Hock,
1999; Weinstein and Steitz, 1999). Although the central
role of the nucleolus in ribosome biosynthesis remains a

resoundingly confirmed principle of eukaryotic molecular
cell biology, within two years the nucleolus has been impli-
cated in aspects of eukaryotic cell biology beyond rRNA
biosynthesis, i.e., gene silencing, cell cycle progression,
and senescence (Pederson, 1998a; Cockell and Gasser,
1999; Garcia and Pillus, 1999). Moreover, it has been
found that some RNAs unrelated to rRNA biosynthesis,
primarily RNA polymerase III transcripts, also traffic
through the nucleolus (Pederson, 1998b). In this article,
we summarize recent findings that point to an additional
important role for the nucleolus in the assembly, and per-
haps quality control, of the multiple ribonucleoproteins in-
volved in protein synthesis, rather than simply serving as a
site for ribosome synthesis, per se.

The nucleolus was established as the site of ribosomal
RNA synthesis in the 1960’s (Perry, 1962; Birnstiel et al.,
1963; Brown and Gurdon, 1964; Lerman et al., 1964; Ri-
tossa and Spiegelman, 1965) and soon thereafter the pres-
ence of ribosomal proteins and the assembly of nascent ri-
bosomes in the nucleolus was also revealed (Warner and
Soeiro, 1967; Liau and Perry, 1969; Craig and Perry, 1970;
Pederson and Kumar, 1971; Kumar and Warner, 1972). In
addition to the high molecular weight RNAs of the large
and small ribosomal subunits (28S and 18S rRNA, respec-
tively, in vertebrate cells), two smaller ribosomal RNAs
were discovered, 5S rRNA (Elson, 1961; Rosset and Mon-
ier, 1963; Galibert et al., 1965) and 5.8S rRNA (Pene et al.,
1968). The genes for 5S rRNA lie outside the nucleolus in
higher plant and animal cells, but 5.8S rRNA arises from
processing of the pre-rRNA primary transcript and ends
up base-paired with 28S rRNA in the nucleolus (Perry,
1976; Calvet and Pederson, 1981). In higher eukaryotes,
newly synthesized 5S rRNA moves into the nucleolus
from its extranucleolar transcription sites, and a ribonu-
cleoprotein complex containing 5S rRNA and the riboso-

 

mal protein L5 has been implicated in both the 3
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 end pro-
cessing and nucleolar localization of 5S rRNA (Steitz et

 

al., 1988; Michael and Dreyfuss, 1996). A cytoplasmic 5S
rRNA–ribonucleoprotein complex has also been identi-

 

fied (Blobel, 1971). Finally, the SRP, the ribonucleoprotein
machine that facilitates topologically correct protein syn-
thesis into the ER, contains a small RNA and six bound
proteins (Walter and Johnson, 1994). Thus, considered as
ribonucleoproteins, the translational machinery may be
regarded to be comprised of four particles: the large and
small ribosomal subunits, the 5S rRNA–ribonucleoprotein
complex, and the SRP.

 

Address correspondence to Thoru Pederson, Department of Biochemistry
and Molecular Biology, University of Massachusetts Medical School, 377
Plantation Street, Worcester, MA 01605. Tel.: (508) 856-8667. Fax: (508)
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Abbreviations used in this paper:

 

 GFP, green fluorescent protein; SRP,
signal recognition particle. 
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Signal Recognition Particle Components in
the Nucleolus

 

During the course of investigations on the traffic and lo-
calization of various species of RNA within the nucleus of
living mammalian cells (Wang et al., 1991; Jacobson et al.,
1995, 1997; Jacobson and Pederson, 1998a) it was found
that microinjected SRP RNA rapidly became localized in
nucleoli and subsequently appeared to depart from the nu-
cleoli and enter the cytoplasm (Jacobson and Pederson,
1998b). These results were confirmed by in situ hybridiza-
tion experiments (Politz et al., 1998, 2000) and biochemi-
cal fractionation studies (Chen et al., 1998; Mitchell et al.,
1999), which showed that endogenous SRP RNA is also
present in the nucleolus. Additional microinjection experi-
ments showed that the specific domains in the SRP RNA
molecule that were essential for nucleolar localization in-
cluded known SRP protein binding sites (Jacobson and
Pederson, 1998b). Each of the four SRP-specific proteins
(Walter and Johnson, 1994) was tagged with the green
fluorescent protein (GFP) and their intranuclear localiza-
tion investigated after transfection into mammalian cells.
Three of the four proteins, SRP19, SRP68, and SRP72,
displayed nucleolar localization, as well as cytoplasmic lo-
calization as expected (Politz et al., 2000). In contrast, the
fourth SRP-specific protein, SRP54, did not display nucle-
olar localization, nor did a human autoantibody specific
for endogenous SRP54 stain nucleoli, although cytoplas-
mic SRP54 was detected as expected. In vitro SRP assem-
bly studies had revealed that SRP54 does not bind SRP
RNA until SRP19 has first bound (Walter and Johnson,
1994) and thus the in vivo studies suggested that SRP54
may bind to a partially assembled SRP particle outside the
nucleolus. The finding that three SRP proteins and SRP
RNA visit the nucleolus suggests that an essential step in
the overall pathway of SRP assembly may occur there.

 

Genomic Organization of Loci for RNAs of the 
Translational Machinery

 

The extranucleolar transcription of 5S rRNA in higher eu-
karyotes, followed by its traffic to the nucleolus is intrigu-
ing since, at first thought, 5S rRNA could ostensibly be ex-
ported (perhaps as a ribonucleoprotein complex) from its
nonnucleolar transcription sites directly to the cytoplasm
and there join with ribosomes. Indeed, given the crowded
and dynamic molecular landscape of rRNA processing and
its multitude of attendant cofactors in the nucleolus (Bach-
ellerie et al., 1995; Scheer and Hock, 1999; Weinstein and
Steitz, 1999), it might seem more efficient for 5S rRNA to
exit the nucleus and then assemble with finished ribo-
somes in the cytoplasm. Why then does 5S rRNA traffic to
the nucleolus? Interestingly, in contrast to the case in
higher eukaryotes, the 5S rRNA genes of 

 

Dictyostelium

 

and fungi (and 

 

Escherichia coli

 

) are interspersed with the
large and small ribosomal subunit RNA genes (Maizels,
1976; Maxam et al., 1977; Nomura and Post, 1980), sug-
gesting that the earliest nucleoli spatially coproduced and
coassembled the two ribosomal subunits and the 5S ribo-
nucleoprotein particle. It may be, then, that 5S rRNA
moves to the nucleolus in higher eukaryotes not merely to
interact with the nascent 60S ribosomal subunit (which, as

 

mentioned above, could seemingly take place just as well
in the cytoplasm), but in fact to also participate in an oblig-
atory step of the overall rRNA processing and/or assembly
pathway. In support of this idea is the recent observation
that the presence of 

 

Saccharomyces cerevisiae 

 

5S rRNA in
nucleoli is essential for the efficient completion of accu-
rate processing of the large subunit rRNA (Dechampesme
et al., 1999).

In light of the colinear arrangement of 5S rRNA genes
and the large and small rRNA genes in fungi and myceto-
zoa (

 

Dictyostelium

 

), as well as the recent finding that SRP
RNA and SRP proteins traffic through the nucleolus of
mammalian cells, one might ask if, like the 5S rRNA
genes, the SRP RNA gene(s) might also have once core-
sided with the large and small rRNA genes, in a primor-
dial form of today’s nucleolus. In at least two cases, the
answer is yes. In the archaebacteria 

 

Methanobacterium
thermoautotrophicum

 

 and 

 

Methanothermus fervidus

 

 the
single SRP RNA gene resides together with a 5S rRNA
gene and two tRNA genes within one of the organism’s
rRNA operons (Østergaard et al., 1987; Haas et al., 1990).
Parenthetically, it is also interesting to recall that both
tRNA and SRP RNA are associated with retroviral ge-
nomes. Indeed, the association of SRP RNA (then called
7S RNA) with retrovirus genomic RNA was the basis of
its original discovery (Bishop et al., 1970; Walker et al.,
1974). The tRNA molecule is now known to serve as a
primer for reverse transcription of the RNA genome into
proviral DNA, but the role of the SRP RNA bound to the
retroviral genomic RNA remains unknown.

 

The Nucleolus as a Staging Site for Assembly of 
the Translational Ribonucleoproteins

 

These considerations raise the question of whether the
nucleolus may stage some sort of a “preassembly” step
during the production of the translational apparatus. Ac-
cording to this idea, a supramolecular assembly of the
translational machinery would occur in the nucleolus, per-
haps transiently, through the association of 5S rRNA and
SRP with nascent ribosomal subunits. Such preassembly of
the translational apparatus in the nucleolus could allow for
a quality control step during the synthesis and processing
of the various translational components. As mentioned, it
already appears that this may be the case in yeast: the nu-
cleolar presence of 5S rRNA is required for proper pro-
cessing of the large subunit rRNA (Dechampesme et al.,
1999). If a nucleolar preassembly were generally impor-
tant as a checkpoint for potential functionality, other
translation-related factors might also be expected to be
present in the nucleolus to interact with this complex. One
such potential factor is transfer RNA.

When the first radioisotopic studies of RNA biosynthe-
sis in eukaryotic cells were being undertaken there were
numerous indications that some labeled transfer RNA was
present in nucleoli (Birnstiel et al., 1961; Perry, 1962;
Comb and Katz, 1964; Birnstiel et al., 1965; Sirlin et al.,
1966; Halkka and Halkka, 1968; Sirlin and Loening, 1968),
even though the tRNA genes themselves were found to re-
side in the nonnucleolar chromatin (Woods and Zubay,
1965; Ritossa et al., 1966; Wimber and Steffensen, 1970).
The notion that the biosynthesis of tRNA might involve a
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nucleolar stage has recently been reactivated by the detec-
tion of several pre-tRNAs in the nucleolus by in situ hy-
bridization (Bertrand et al., 1998). An apparently comple-
mentary finding is the presence in nucleoli of both the
RNA and protein subunits of RNase P, the ribonucleopro-
tein enzyme that mediates 5

 

9

 

 processing of pre-tRNAs
(Jacobson et al., 1997; Bertrand et al., 1998; Jarrous et al.,
1999). In addition, a 

 

Saccharomyces cerevisiae

 

 tRNA base
modification enzyme has also been localized in nucleoli
(Tolerico et al., 1999). Other potentially relevant observa-
tions are the findings that some tRNA aminoacylation oc-
curs in the nucleus of frog oocytes (Arts et al., 1998; Lund
and Dahlberg, 1998) and an intriguing preliminary report
that an aminoacylated tRNA is found specifically in the
nucleolus (Ko, Y.G., Y.-S. Kang, E.-K. Kim, W. Seol, J.E.
Kim, and S. Kim. 1999. 

 

Mol. Biol. Cell.

 

 10:438a).
Taken together, these various observations add up

rather provocatively. Not only do all four translational
ribonucleoproteins arise in or visit the nucleolus, some
tRNAs, perhaps even aminoacylated tRNAs, are also lo-
calized there. Although this may simply be a chance spa-
tial coincidence, it seems more likely that there is a func-
tional significance to this congression of translational
components. As mentioned above, a plausible explana-
tion is that the four translational ribonucleoproteins inter-
act with one another in some sort of quality control step
during synthesis, processing, and/or assembly. The four ri-
bonucleoproteins might undergo interparticle surface in-
teractions to probatively eliminate misshaped partners
arising from errors in ribonucleoprotein assembly. Such
interactions might or might not be stoichiometric with re-
spect to the four ribonucleoproteins; topological testing
could be confined to transient dimeric heterotypic parti-
cle interactions or, at the other extreme, the entire tetra-
partite ribonucleoprotein translational ensemble might
form, with attendant binding of tRNA and other nucleo-
lus-associated translation factors (e.g., Jiménez-García et
al., 1993). Presumably any tRNA species in the nucleolus,
including the aminoacylated form (vide supra), could
probe the assembled 60S ribosomal subunit’s tRNA entry
site, but it is particularly interesting to note that the first
(albeit preliminary) report of an aminoacylated tRNA in
the nucleolus involves methioninyl tRNA (Ko, Y.G., Y.-S.
Kang, E.-K. Kim, W. Seol, J.E. Kim, and S. Kim. 1999.

 

Mol. Biol. Cell.

 

 10:438a).
Although one might even expect mRNA to be involved

in such a quality control step, there are few reports show-
ing the presence of mRNA in the nucleolus (although, see
Bond and Wold, 1993). However, detection of specific
mRNAs in the nucleolus by in situ hybridization would be
expected to be difficult, so the absence of such reports
does not rule out the presence of some nucleolar mRNA.
In this regard, it should be mentioned that, although con-
siderable doubt has long existed as to whether protein syn-
thesis occurs in isolated nuclei (Goldstein, 1970; Pederson,
1976), there does exist rather convincing evidence for
amino acid incorporation into isolated nucleoli (Birnstiel
and Hyde, 1963; Birnstiel and Flamm, 1964; Maggio,
1966). Whatever the level of possible cytoplasmic contam-
ination of the initial nuclear preparations in these studies,
what is now understood of the cell fractionation protocols
employed would suggest that cytoplasmic contaminants of

 

the nuclei would have been significantly reduced in the
subsequent nucleolar fraction (Maggio et al., 1963a,b;
Bhorjee and Pederson, 1973), which nonetheless displayed
a tenfold higher rate of amino acid incorporation than nu-
clei (Maggio, 1966). Although the significance of these ob-
servations is still unclear, they do not allow us to rule out
the (unfashionable) possibility that some peptide bond
formation is catalyzed by a translation preassembly com-
plex in the nucleolus.

A final question is whether the putative interparticle as-
sociations within this preassembly complex persist during
nucleocytoplasmic transport. Does there exist the possibil-
ity of coexport of two or more of the four translational ri-
bonucleoproteins out of the nucleolus (and the nucleus)?
Most of the available evidence suggests that the large and
small ribosomal subunits are typically exported as sepa-
rate particles, although there have been occasional sugges-
tions of nuclear export of intact 76S ribosomes (e.g.,
Khanna-Gupta and Ware, 1989). In either case, it appears
that 5S rRNA typically exits minimally as part of the 60S
ribosomal subunit in somatic cells.

 

 

 

At present, nothing is
known about the nucleolar exit of SRP as regards piggy-
backing on ribosomal particles. As we have pointed out
(Jacobson and Pederson, 1998b; Politz et al., 2000),

 

 

 

it is
conceivable that SRP is coexported with the large riboso-
mal subunit, since there is a known affinity of the SRP for
nontranslating ribosomes (Ogg and Walter, 1995). How-
ever, coexport would not be expected to necessarily be
stoichiometric with respect to SRP because SRP is typi-
cally present in cells at lower concentrations than ribo-
somes (Reddy and Busch, 1988).

 

Conclusion

 

It now appears that the eukaryotic cell stages the assembly
of the two ribosomal subunits, the 5S rRNP and the SRP
in the nucleolus, probably in the presence of other transla-
tional elements, such as tRNA. The biological rationale
for this common intranuclear site of assembly is not clear
at present, and indeed, each of the four translational ribo-
nucleoproteins may simply independently assemble in the
nucleolus. However, there exists the possibility that these
four translational ribonucleoproteins interact with one an-
other while congressed in the nucleolus. Effective interac-
tion between these components could be required as an
essential checkpoint during the production of the transla-
tional apparatus. In this way, the nucleolus may provide a
preassembly site to verify the potential functionality of the
machines of protein synthesis. This idea is a testable hy-
pothesis and hopefully will help to catalyze future work on
the full functional repertoire of the nucleolus.
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