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The nucleotide sequence of the promoter, 16S rRNA and spacer region of
the ribosomal RNA operon of Mycobacterium tuberculosis and comparison
with Mycobacterium leprae precursor rRNA
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Mycobacterium tuberculosis H3TRv has a single rrn (ribosomal RNA) operon. The operon was cloned and a region
of 1536 nucleotides was sequenced, starting 621 bp upstream from the 5’-end of the 16S rRNA coding region and
continuing to the start of the 23S rRNA coding region. The 16S rRNA sequence inferred from the gene sequence
was found to differ in one position from Mycobacterium bovis (nucleotide 1443) and from Mycobacterium microti
(nucleotide 427). A single putative promoter was identified on the basis of similarities with the sequence of rrn
operons of Bacillus subtilis and Escherichia coli. The regions of similarity include a — 35 box, a — 10 box, a
stringent response element, antitermination signals, potential RNAase III processing sites and features of
precursor rRNA secondary structure. Sequences upstream from the 5’-end of Mycobacterium leprae 16S rRNA
were also investigated. Homologous schemes of secondary structure were deduced for precursor rRNA of both
M. tuberculosis and M. leprae; although the principal features are common to both species there are notable

differences.

Introduction

Mpycobacteria are of interest because they include
important pathogens such as Mycobacterium leprae and
Mycobacterium tuberculosis, which have doubling times of
12d and 1d respectively (Shepard, 1960; Winder &
Rooney, 1970). Several other mycobacteria (e.g. Myco-
bacterium africanum, Mycobacterium bovis and Mycobac-
terium microti) are very closely related to M. tuberculosis
and are classified as members of the M. tuberculosis
complex (Wayne, 1982). The members of this complex
have a single rRNA operon and RFLP analysis has
revealed that this operon and its 5- and 3’-flanking
sequences are highly conserved among members of the
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complex (K. E. Kempsell, I. C. E. Estrada-G, M. J.
Colston & R. A. Cox, unpublished work).

This report describes further analysis of the rRNA
gene family of M. tuberculosis H37Rv. The nucleotide
sequence of the promoter region, the 16S rRNA coding
region, the intercistronic region and the 5-end of the 23S
rRNA coding region was established. The promoter
region of M. tuberculosis, which serves as a model for all
members of the M. ruberculosis complex, was investi-
gated because of our interest in the control of rRNA
synthesis in slow-growing mycobacteria and its role in
cell proliferation. The complete 16S rRNA sequence
allows clarification of the relation of M. tuberculosis with
other members of the M. tuberculosis complex and with
other slow-growing mycobacteria.

In addition, we have investigated the nucleotide
sequence of the putative leader sequence of the precursor
rRNA (pre-rRNA) transcript of M. leprae (cf. Sela &
Clark-Curtiss, 1991). The nucleotide sequence of the
M. leprae rRNA operon was recently published (Liesack
etal., 1990, 1991 ; Sela & Clark-Curtiss, 1991). Compari-
sons of the data for M. tuberculosis and M. leprae reveal
interesting similarities and differences. Our results
suggest that the single rrn operon of both species
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Fig. 1. Restriction site map, sub-cloning and sequencing strategy for the M. truberculosis rRNA cistron. Hatched portions represent 16S
and 23S rRNA coding regions and unhatched portions denote flanking sequences. Restriction endonucleases used in cloning were:
A, Alul; Ba, Ball; Bc, Bcll; BH, BamHI; E, EcoR1; P, Pst]; T, Tagl; X, Xhol. No sites were detected for HindI1I or Bg/I1. The regions
specified by the arrows with asterisks were sequenced using the oligonucleotide primer indicated using roman numerals (see Table 1).

~ , bacteriophage 4 EMBL3 sequences.

conforms to the general pattern established for a wide
range of bacteria (for review see King et al., 1986), in
which a single transcript (pre-rRNA) is processed to
yield mature 16S rRNA and 23S rRNA.

Methods

Materials. All chemicals and enzymes were obtained from suppliers
described previously (Cox et al., 1991). T7 sequencing kit was supplied
by Pharmacia. DH5aF’ competent cells were supplied by Gibco/BRL.
M13/pUC # 1212-sequencing and # 1233-reverse-sequencing primers
were obtained from New England Biolabs.

Strain and culture. Strains of Escherichia coli K12 used in library
propagation and DNA cloning were LE392 and DHS5aF’. Bacterial
cells were grown on LB medium (Maniatis et al., 1982) at 37 °C.
Bacteriophage A EMBL3 and derivatives were propagated using strain
LE392 grown in LB medium plus 10 mM-MgSO, at 37 °C for all
manipulations. Competent cells of strain DHS«F" were used for
transformations with the recombinant plasmids pUC8 and pUCI18.

Cloning of the 16S rRNA of M. tuberculosis H37Rv. A Sau3A partial
library of M. tuberculosis H37Rv genomic DNA cloned into the BamHI1
site of bacteriophage 4 EMBL3 was provided by Dr E. Davies,
Laboratory for Leprosy and Mycobacterial Research, NIMR, London.
Bacteriophage plaques were transferred in duplicate onto Hybond-N
nylon membranes according to the manufacturer’s instructions.
Duplicate filters were then individually hybridized with either probe A
[32P-labelled oligonucleotide gl (see Table 1)] or with probe B [32P-
fabelled oligonucleotide cg6 (see Table 1)], which recognize respect-

ively sequences near to the 5'- and 3’-ends of a bacterial 16S RN A (Cox
et al., 1991). Six recombinants hybridized with both probes. DNA was
isolated from each of them using the ‘maxi-preparative’ method as
described in Maniatis et al. (1982). All six clones were found to contain
an insert which spanned an identical 11-6 kbp fragment of the rRNA
operon characterized by the restriction map shown in Fig. 1. A
representative recombinant, bacteriophage A EMBL3-TBI, was select-
ed for sequence analysis.

Cloned M. leprae cDNA. Clones of the M. leprae rRN A operon were
isolated from a cosmid Lawrist 4 library (Cox et al., 1991). The putative
leader sequence of precursor rRNA and part of the coding sequence
was found in a 901 bp Sau3A/Pst1 fragment, which was sequenced by
standard methods.

Sequencing methods. A 1:2kbp Pstl fragment containing 5-16S
rRNA gene sequences and upstream sequences was cloned into the
Pst] site of plasmid pUCS. A 11 kbp BamHI fragment containing
3’-16S rRNA sequences, the spacer region and the 5'-end of 23S rRNA
was cloned into plasmid pUC18. Appropriate Aful and Tagl fragments
of each of these recombinants were subcloned into pUC18 for sequence
determination by the subcloning routine shown in Fig. 1. The 184 bp
region located between the 3-end of the Pszl and the 5-end of the
BamHI fragment was synthesized by the PCR reaction using primers
g3 and cg5 (see Table 1) and the product was isolated using Geneclean.
The same product was obtained when either genomic DNA or phage A
EMBL3-TB1 DNA was used as substrate. All nucleotide sequences
were determined by the dideoxy chain-termination method (Sanger ez
al., 1977). PCR amplified fragments were sequenced in triplicate on
both strands using a modified Sequenase protocol (Winship, 1989).

Double-strand plasmid template was made single-stranded for
sequencing by the NaOH-precipitation method (Murphy & Ward,
1989). Single strand template was then sequenced in triplicate using
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Table 1. Deoxyribonucleotide primers

(i)-(vi), These primers, identified by roman numerals, were used in sequencing.
A, B, These primers were radiolabelled at the 5’-end with 32P and used to screen the M.

tuberculosis H37TRv/EMBL3 library.

Nucleotide position in
M. tuberculosis 16S rRNA

Primer Sequence gene sequence®
tbpl (i) S{GGTGAGTCTCGGTGCCGAGATCG)3 312-334
tbp2 (ii) 5(GCCAGTCTAATACAAATCCGGCT)¥ 405427
g3 (iii) 5(GTGCCAGCAGCCGCGGTAATACG)3 1126-1148
cg5t (iv) 5(CGCTTGTGCGGGCCCCCGTCAATT)3 1531-1554
v9 (v) S(ACTCGTGAGAGACTGCCGGGGTCA)Y 1758-1781
v11 (vi) S(GAGTTGACGTCGTCCCCGCCTTCCTC)3 1787-1813
gl (A) S(TTGGAGAGTTTGATCCTGGCTCO)¥ 627-648
cgb6 (B) 5(GGTACGGCTACCTTGTTACGACTT)¥ 2105-2128

* See Fig. 2.

t ¢ indicates that the nucleotide sequence is complementary to the RNA-like strand.

M13/pUC specific # 1212-sequencing and # 1233-sequencing primers
and either Sequenase or T7 (Pharmacia) sequencing kits according to
the manufacturer’s instructions. When necessary, sequence-specific
primers (tbpl-v11) were used (see Table 1 and Fig. 1).

Results

The recombinant phage 4 EMBL3-TBI has the same
map of restriction endonuclease sites (see Fig. 1) as that
established previously for the rRNA operon by analysis
of genomic DNA (K. E. Kempsell, I. C. E. Estrada-G,
M. J. Colston & R. A. Cox, unpublished work). The
cloning strategy shown in Fig. 1 was used to establish the
nucleotide sequence 621 bp upstream from the 5™-end of
the 16S rRNA cistron (1536 bp), through the spacer
region (276 bp) to the 5'-end of the 23S rRNA cistron (the
first 105 bp), as shown in Fig. 2.

M. tuberculosis 16S rRNA coding region

The 16S rRNA sequence, inferred from the gene
sequence, comprises 1536 bp. Previously Rogall et al.
(1990) used PCR amplification of a 5-portion of the
M. tuberculosis H37Rv 16S rRNA gene to obtain
sequence data from the coding region, namely nucleo-
tides 117-261 (nucleotides 738-882, Fig. 2), and nucleo-
tides 429-498 (nucleotides 1040-1119, Fig. 2). Identical
sequences were obtained for M. bovis, M. bovis BCG and
M. africanum (Rogall et al., 1990). The partial sequence
data of Rogall et al. (1990) and the sequence presented in
Fig. 2 are in agreement. Also, sequences near to the
3’-end (nucleotides 1295-1480) were obtained previously
directly from 16S rRNA by the use of reverse transcrip-
tase (Estrada-G er al., 1989). Apart from several
unidentified nucleotides the sequence determined using

reverse transcriptase is very similar to the data shown in
Fig. 2. The primary sequence can be folded into a
secondary structure which is typical of eubacteria (see
Fig. 3).

Comparison of the complete 16S rRNA gene sequence
of M. tuberculosis with that of M. bovis (Suzuki et al.,
1988 a) revealed one difference, the insertion/deletion of
a C residue located in the hairpin loop region of helix 47
[nucleotides 2022-2104, Fig. 2; nucleotides 1401-1483 in
the inferred 16S rRNA sequence (Fig. 3)]. The sequence
for the hairpin loop is 5CUCG3 in M. tuberculosis (see
also Estrada-G et al., 1989) compared with 5CUG?3’ for
M. bovis, as reported previously (Suzuki ef al., 1988a).

The sequence of nucleotides 46—470 of the coding
region of 16S rRNA gene of M. microti was obtained
earlier (EMBL Data Bank accession number X58889;
K. E. Kempsell, I. C. E. Estrada-G, M. J. Colston &
R. A. Cox, unpublished work). Compared with M. tuber-
culosis, the M. microti sequence is identical except for the
deletion of a T residue located at position 427 which
leads to the loss of an A-T basepair in helix 17 (Fig. 3).

The anti-Shine-Dalgarno sequence (Shine &
Dalgarno, 1974) comprises a tract of ten pyrimidines
located at the 3’-end of 16S rRNA (see Figs 2 and 3). At
least nine mMRNA species of members of the
M. tuberculosis complex have been sequenced (for review
see Dale & Patki, 1990). The putative Shine-Dalgarno
sequence in each of the mRNAs is located six to twelve
nucleotides upstream from the AUG or GUG start
codon, and has the potential of forming five to eight
basepairs with the 3’-end of 16S rRNA (see Table 2). E.
coli has a shorter anti-Shine-Dalgarno sequence (seven
nucleotides), and the Shine-Dalgarno sequence is closer
(4-7 nucleotides) to the AUG start codon. The functional
significance of these differences is not clear.
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Fig. 3. Schematic secondary structure of M. tuberculosis 16S IRNA. The sequence was inferred from the gene (see Fig. 2). The scheme is
based on that of Noller (1984) for E. coli and is annotated as described by Dams et al. (1988). The boxed nucleotides are highly conserved
among eubacteria. V1, V2 etc. are variable regions. The M. bovis sequence (Suzuki et al., 1988a) is identical except for the deletion of a C
residue (position 1443) in the hairpin loop region of helix 47.
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Table 2. Shine—Dalgarno and anti-Shine-Dalgarno sequences of the M. tuberculosis
complex

Sequences are aligned to maximize G-C basepair formation between Shine-Dalgarno and

anti-Shine-Dalgarno sequences.

N, ranges from four to seven nucleotides in E. coli mRNA.
Guanine residues participating in ‘wobble’ (G-U) basepairing are denoted by use of a lower-

case letter ‘g’.

Gene

Sequence

E. coli

16S rRNA (anti-Shine-Dalgarno)*
mRNA (hypothetical Shine-Dalgarno)

M. tuberculosis compléx

16S rRNA (anti-Shine-Dalgarno)t
mRNA (hypothetical Shine-Dalgarno)

M. tuberculosis mRNA (Shine-Dalgarno)t
dnaJ analogue
10-12 kDa antigen
19-22 kDa antigen
32 kDa antigen
38 kDa antigen
65 kDa antigen
M. bovis BCG mRNA (Shine-Dalgarno)}
o antigen
18 kDa antigen
23 kDa antigen

3y
5

YuEEuees

SAAGGAGG---NX--éUG
vevpyeeuce 5
AGAAAGGAGG --Nx--gUG

-AgAGGgGG - -N, - -GUG

----- GGAGGG-N, - -GUG
- -AAAGGAG--- N, - -GUG
--gAgGGA---- N, - -AUG
AGAAAGG - - - - - N, - -GUG
----- GGAGGAA -N,,- - AUG
- -AAAGGgG ---N, - -AUG
--gAAGGAG - - -N, - - AUG
----- GGAGGAA -N, - -GUG

* Shine & Dalgarno (1974).

+ See Fig. 3 and Suzuki et al. (1988a).
1 For a compilation of mRNA sequences see Dale & Patki (1990).

Transcription of the M. tuberculosis rrn operon and
processing of the transcript

Sequence elements implicated in the control of transcrip-
tion of the rrn operon and in processing the pre-rRNA
transcript to form mature 16S and 23S rRNA (see Fig. 2)
were identified by comparison with elements of known
function first established for Bacillus subtilis (Loughney
etal.,1983; Ogasawara et al., 1983 ; Stewart & Bott, 1983)
and E. coli (Young & Steitz, 1978; Berg et al., 1989;
Gourse et al., 1989; Li et al., 1984). These elements have
since been recognized in a wide range of bacteria (for
review see King et al., 1986).

In total, 11 putative elements were identified, namely
—35 box, —10 box, the 5-end of precursor rRNA (or
start of transcription), a stem structure formed between
the leader region of the transcript and the intergenic
(spacer) sequences separating mature 16S rRNA and 23S
rRNA, RNAase III processing sites within this stem,
and also a second potential processing site in the spacer
region, the antitermination signals Box A, Box B, Box C
in the leader region and Box A and Box B but no Box Cin
the spacer region, as discussed below.

Consensus sequences established for rrn operons of
B. subtilis include the —35 box [STTGAC(T/A)3],

— 10 box [S"TA(T/CXT/A)T/A)T3’] and the site for the
start of transcription (see below). The corresponding
sequences for the rrn operon of M. tuberculosis (see
Fig. 2) are —35 box (5-TTGACT3) and —10 box
(TAGACT?).

The start site for transcription of the rrn operon is
implicated in the growth-rate regulation and stringent
control of transcription. Transcription of tRNA genes is
regulated in a similar way (Duester ez al., 1982). The
5’-end of transcripts from tRNA and rRNA genes have
features which distinguish them from transcription of
genes coding for proteins (Ogasawara et al., 1983). The
established sequences include YGTGGTAG3' for E. coli
tRNA!e" (Duester et al., 1982); SGCCGGCGJ’ for the
E. coli rrnG operon (Li et al., 1984); GTTGTTA3Y for
B. subtilis tRNA (Ogasawara et al., 1983); and
S'G(T/CYT/C)G(C/T)TT3’ for B. subtilis rrn operons
(Ogasawara et al., 1983). The corresponding sequence for
M. tuberculosis (see Fig. 2) is SGTTGCCC3, which
conforms to the general pattern.

Antitermination signals which influence the response
of RNA polymerase to pause sites and terminator sites
have been found in both the leader and spacer regions of
the rrn operons of E. coli (Berg et al., 1989 ; Gourse et al.,
1989; Li et al., 1984). The E. coli rrn antitermination
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motif appears to be widespread (Berg et al., 1989 ; King et
al., 1986). The elements Box A, Box B and Box C, which
were first identified in bacteriophage A, were sub-
sequently found in rrn operons of E. coli, but in the order
Box B, Box A and Box C in the leader region and Box B
and Box A (but no Box C) in the spacer region (see, for
example, Berg et al., 1989). The three motifs (Box B, Box
A and Box C) are found within approximately 70 bp
immediately following the E. coli rrnG P2 promoter (Li et
al., 1984). These motifs have their homologues within

65 bp downstream from the putative start of transcrip-
tion of the rrn operon of M. tuberculosis (see Fig. 2).

Box B is a region of hyphenated dyad symmetry with
the potential for the RNA-like strand to form a hair-
pin loop. The sequence 432-446 (S GCCCGAAGCGG-
GC3’; Fig. 2) is very similar to the Box B element
(GCCCTGAAGAAGGGCT) of the nutL gene of
bacteriophage 1 (Friedman & Gottesman, 1983). The
Box B element tentatively identified in the spacer region
(2366-2375) has a different sequence.
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Fig. 4. Scheme for the secondary structure of precursor rRNA of M. tuberculosis H37Rv and M. leprae. (a) M. tuberculosis precursor
rRNA. The region of the stem which is similar to B. subtilis pre-rRNA (Ogasawara et al., 1983) is boxed. The arrows indicate possible
RNAase III cleavage sites. Box A, Box B and Box C indicate putative antitermination signals (Li ez al., 1984). Residues 2287-2390

implicated in the processing of 23S rRNA are framed. € —————-

» denotes an imperfect 12 bp palindrome; mismatched cytosine

residues are marked by an asterisk. Nucleotides are numbered as in Fig. 2. () Comparison of the calculated secondary structures of
M. tuberculosis and M. leprae precursor rRNAs. The boxes indicate regions of identical sequence: regions I1, 12 and I3, enclosed by a
broken line, are sequences not present in M. tuberculosis; D1 B> D2 B> and D3 B> indicate where a number of extra nucleotides (number
indicated in the triangle) are present in the M. tuberculosis sequence. These sequences specific for M. tuberculosis are shown in (c).
Nucleotides are numbered from the 5’-end of the 16S rRNA coding region. The minus sign denotes upstream sequences. The sequence
of the spacer region was reported by Liesack et al. (1991). (c) Comparison of the nucleotide sequences of M. tuberculosis and M. leprae in
(i) the leader, and (ii) the spacer regions of pre-rRNA which are believed to interact through basepairing to form a stem structure, as
shown in () and (b). * EMBL Data Library accession number X58891; t Liesack et al. (1991).

The Box A motif has a more conserved sequence
which is 5(C/T)GCTCTT(T)A3 in bacteriophage A
(Friedman & Gottesman, 1983), STGCTCTTTAY in
the rrnG operon of E. coli (Li et al, 1984) and
SAGTTCTTTG3 in the rrnO operon of B. subtilis
(Ogasawaraetal., 1983). Homologoussequences are found
in positions 463-471 (S TGTTGTTTG3') and 2398-2406
(5TGTTCTTTGY) of Fig. 2.

The Box C element has the consensus sequence
5GG(T/C)GT(G/A)T/C)G3 in bacteriophage 4
(Friedman & Gottesman, 1983) and STGTGTGGG3’
in the rrnG operon of E. coli (L1 et al., 1984); the M. tuber-
culosis homologue appears to be SAGTGTGTTTY
(positions 483-498, Fig. 2).

The putative elements described above are in accord
with the notion that the leader sequence of pre-TRNA of
M. tuberculosis comprises 191 nucleotides, compared
with 110-175 nucleotides noted for the leader region of
rrm operons of B. subtilis (Ogasawara et al., 1983). A
potential secondary structure was derived for the
transcript by the method of Staden (1984), including the
putative stem structure formed by basepairing between
leader and spacer sequences (see Fig. 4a), described by
Young & Steitz (1978) for E. coli and by Ogasawara et al.
(1983) for B. subtilis. The stem region (Fig. 4a) has 82%

homology with its B. subtilis counterpart. The B. subtilis
sequence (Ogasawara et al., 1983) is GUUCUUUGA-
AAA|CU|AAA3 (the arrows indicate RNAase III
cleavage sites) compared with the M. tuberculosis
sequence YGUUGUUUGAGAA [ CU;CAA3 (the
broken arrows indicate possible RNAase III cleavage
sites). Part of the leader region (positions 464-478) is
largely repeated in the spacer region (positions
2396-2416), namely S GCGUGUUGUUUGUGCAA-
UAC3Y (see Figs 2 and 4a). This repeat sequence is a
candidate for one strand of a second stem structure
(including an RNAase III processing site) formed by
interaction with sequences downstream from the 3’-end
of 23S rRNA (cf. B. subtilis; Ogasawara et al., 1983). In
the rrn operons of B. subtilis (Stewart & Bott, 1983),
Mycoplasma (Taschke & Herrman, 1986) and Strepto-
myces (Pernodet et al., 1989), the Box A motif is located
within the stem structure close to the RNAase III
processing site, as we have found for M. tuberculosis (see
Fig. 4a).

The spacer region (Fig. 2) comprises 276 bp, which is
the same length as the M. bovis BCG spacer (Suzuki et
al., 1988a) but which is 6 bp shorter than the M. leprae
spacer (Liesack et al., 1991). We did not detect tRNA
genes in the spacer region (see Fig. 2). In this respect,
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M. tuberculosis resembles M. bovis BCG (Suzuki et al.,
1988a), M. leprae (Liesack et al., 1991), both operons of
Mpycoplasma capricolum (Sawada et al., 1984), the single
operon of Mycoplasma hyopneumoniae (Taschke &
Herrmann, 1986), Streptomyces ambofaciens (Pernodet et
al., 1989), Streptomyces coelicolor (Bayliss & Bibb, 1988),
Streptomyces lividans TK21 (Suzuki et al., 19885), and
eight out of ten of the B. subtilis rrn operons (Loughney et
al., 1982). However, tRNA genes have been located
downstream of the rrn operon of M. tuberculosis
(Bhargava et al., 1990).

M. leprae precursor rRNA

The nucleotide sequence of the Sau3A/Pst]I fragment of
the M. leprae rrn operon was established and was
combined with published data for the spacer region
separating the 16S rRNA and 23S rRNA genes (Liesack
etal., 1991) to generate a possible secondary structure for
the putative precursor rRNA (see Fig. 45). Comparison
of Figs 4(a) and 4(b) reveals that the same overall scheme
of secondary structure may apply to both M. tuberculosis
and M. leprae, although there are appreciable differences
in detail. For example, the putative stringent response
and antitermination signals, and RN Aase I1I processing
sites are very similar; however, the leader sequence is
longer in M. leprae (208 nucleotides) than in
M. tuberculosis (191 nucleotides).

The leader sequence presented in Fig. 4(b) differs from
the published sequence (Sela & Clark-Curtiss, 1991) by
the presence of two additional C residues in the putative
Box B antitermination signal forming a run of four
consecutive C residues.

The differences in the secondary structure of precursor
rRNA of M. leprae and M. tuberculosis are attributable to
insertions and deletions in the M. leprae leader and
spacer regions compared with M. tuberculosis (see Fig.
4c). The bihelical stem region formed between part of the
leader sequence and part of the spacer region provides
evidence for compensating changes; for example,
deletion D1 [Fig. 4¢(i)] in the leader sequence is matched
by deletion D3 in the spacer region [Fig. 4¢(ii)]. The high
degree of homology (see Fig. 4b) between the secondary
structures proposed for M. leprae and M. tuberculosis,
together with the evidence for compensating changes,
lends support to the schemes proposed in Fig. 4.

Discussion

Members of the M. tuberculosis family have a single rrn
operon (K. E. Kempsell, I. C. E. Estrada-G, M. J.
Colson & R. A. Cox, unpublished work). They also have
fewer ribosomes than many other bacteria. However,
their complement of ribosomes varies according to the

growth rate (Winder & Rooney, 1970). More than 809, of
the RNA fraction of a bacterium is rRNA, so that the
ribosome complement is reflected in the RNA:DNA
ratio. In the mid-exponential phase this ratio is 2:1 for
M. tuberculosis, 4:1 for Mycobacterium smegmatis and
20:1 for E. coli (Winder & Rooney, 1970), that is the
complement of ribosomes are in the proportions 1:2:10.
M. tuberculosis has a single rrn operon, M. smegmatis has
two (Bercovier et al., 1986) and E. coli has seven (Kiss et
al., 1977). The single operon of M. tuberculosis provides
about 70%, of the number of ribosomes synthesized by
one operon of E. coli, on the basis of the assumption that
the seven operons are equivalent. The evidence that
M. tuberculosis maintains growth-rate-dependent control
of ribosome biosynthesis rests on the observation that the
RNA :DNA ratio varies according to growth conditions
whereas the ratio RNA :protein remains unchanged
(Winder & Rooney, 1970). The sequence data presented
above for M. tuberculosis has similarities with elements
of the promoter and leader regions of the rrn operons of
B. subtilis and E. coli, suggesting that they have similar
mechanisms for the control of rRNA synthesis.

On the basis of its similarity with M. tuberculosis
precursor TRNA, the single rrn operon of M. leprae
appears functional (see also Sela & Clark-Curtiss, 1991).
Indeed, the RNA :DNA ratio of M. leprae indicates that
each cell contains at least 2000 ribosomes (Estrada-G et
al., 1988). Thus it is unlikely that the exceptionally slow
growth rate of M. leprae arises from a defect in its
capacity for ribosome biosynthesis. A more likely
explanation is that, for other reasons, M. leprae is
incapable of independent growth and survives as an
obligate parasite (for review see Wheeler, 1990).

The sequence of the rrn operon of M. bovis extending
from 100 bp upstream from the start of the 165 rRNA
coding region through the spacer region to the start of the
23S rRNA coding region (2007 bp) was reported
previously (Suzuki et al., 1988a). There are four
differences compared with the equivalent M. tuberculosis
sequence. The single difference in the 16S rRNA coding
region was discussed above; the three other differences
are found in the spacer region [positions 2169(G/C),
2170(C/G) and 2261(A/C)] as shown in Fig. 2. These four
differences in 2007 bp result in 99-8%, similarity in
sequence. Members of the M. tuberculosis complex are
also very closely related (989 similarity in 16S rRNA
sequences) to other slow-growing mycobacteria (Rogall
et al., 1990; Stahl & Urbance, 1990; Cox et al., 1991).
This high degree of similarity in sequence suggests that
the principal features of the leader region of the
M. tuberculosis rrn operon are present not only in other
members of the M. tuberculosis complex but also in other
slow-growing mycobacteria. We have presented support-
ing evidence to show that this inference is true in the case
of M. leprae.
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