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livery of new agents to this region. The NAc is a fascinating 

and potentially rich target for stereotactic neurosurgical in-

tervention, and analysis of existing information regarding 

all aspects of this structure should help potentiate thera-

peutic advances and reduce complications from future 

studies of neurosurgical intervention in this region for a va-

riety of disorders.  © 2015 S. Karger AG, Basel 

 Introduction 

 The nucleus accumbens (NAc) is a major component 
of the ventral striatum and has long been thought to be a 
key structure involved in mediating motivational and 
emotional processes, the limbic-motor interface, and the 
effects of certain psychoactive drugs. The NAc has been 
implicated in numerous neurological and psychiatric 
disorders, including depression, obsessive-compulsive 
disorder, bipolar disorder, anxiety disorders, Parkin-
son’s disease, Alzheimer’s disease, Huntington’s disease, 
obesity, and in drug abuse and addiction. As a result, 
there has been a great deal of interest in stereotaxic tar-
geting of the NAc for delivery of potentially therapeutic 
devices or agents. Furthermore, neurosurgical interven-
tion into the NAc has led to encouraging outcomes in 
pilot studies for a range of disorders, including addiction, 
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 Abstract 

 There is increasing interest among functional neurosur-

geons in the potential for novel therapies to impact upon 

diseases beyond movement disorders and pain. A target of 

increasing interest is the nucleus accumbens (NAc), which 

has long been studied as a key brain region mediating a va-

riety of behaviors, including reward and satisfaction. As 

such, focal modulation of the biology of the NAc with deep 

brain stimulation or novel biological therapies such as gene 

therapy or cell transplantation could have a major impact 

upon disorders such as depression and drug addiction. In 

order to both develop appropriate therapies and then de-

liver them in an effective fashion, a thorough understand-

ing of the biology, physiology, and anatomy of the NAc is 

critical. Here, we review the existing literature regarding 

several areas critical to the development of new therapies, 

including the known pharmacology, physiology, and con-

nectivity of the NAc, as well as evidence supporting the po-

tential for various NAc surgical therapies in animal models. 

We then review the relevant anatomy of the NAc, with par-

ticular attention to the surgical anatomy, imaging, and tar-

geting necessary to facilitate a proper localization and de-

 Received: March 8, 2014 

 Accepted after revision: September 10, 2014 

 Published online: February 18, 2015 

 Michael G. Kaplitt, MD, PhD 
 Department of Neurological Surgery 
 Weill Cornell Medical College 
 525 East 68th Street, New York, NY 10028 (USA) 
 E-Mail mik2002   @   med.cornell.edu 

 © 2015 S. Karger AG, Basel
1011–6125/15/0932–0075$39.50/0 

 www.karger.com/sfn 

http://dx.doi.org/10.1159%2F000368279


 Salgado/Kaplitt    Stereotact Funct Neurosurg  2015;93:75–93
DOI: 10.1159/000368279

76

Tourette’s syndrome, depression, and obsessive-com-
pulsive disorder. Given the increasing interest in this 
brain region, a comprehensive understanding of the 
structural, biological, and clinical features of the NAc is 
critical. In the present report, we review the anatomical, 
pharmacological, and physiological attributes of the 
NAc, with an emphasis on those features most relevant 
to surgeons who may consider the NAc as a target for 
future therapeutic studies.

  History 

 The first use of the term ‘nucleus accumbens’ is accred-
ited to Ziehen  [1]  (1904) more than 100 years ago, al-
though it has been reported  [2, 3]  that the area was first 
described by a number of different authors prior to this, 
with perhaps the earliest description emerging in 1872. 
The NAc was initially an extension of the caudate nucle-
us, distinguishable from the rest of the striatum because 
of its topographic relationship with the septum, leading it 
to be dubbed ‘nucleus accumbens septi’ (‘nucleus leaning 
against the septum’) by Kappers and Theunissen  [4]  
(1908). This terminology was rejected a few years later by 
Johnston  [5]  (1913) who, after suggesting that the struc-
ture was instead a part of the olfactory center, concluded 
that it should be classified as part of the septum and pro-
posed a new name (‘nucleus lateralis parolfactorius’). 
Johnston eventually recanted and once again called the 
area the ‘nucleus accumbens septi’, but still emphasized 
that this area must be recognized as an olfactory center 
separate from the rest of the striatum  [6] . This notion 
originated from the hypothesis that the accumbens was 
predominantly related to the medial forebrain bundle (an 
area considered to consist largely of fibers of the olfactory 
system) and was furthered by Herrick  [7]  (1926), who 
dubbed the area the ‘olfacto-striatum’.

  However, studies from the latter half of the century 
found reason to challenge this terminology. While there 
had been evidence of olfactory input to the NAc in ro-
dents, a dearth of afferents from the olfactory bulb or sec-
ondary olfactory regions in monkeys or cats led Heimer 
et al.  [8]  (1982) to conclude that the term ‘olfactory-stri-
atum’ was misleading. Coupled with new data that found 
similarities between the afferent and efferent connections 
of the NAc and those of other striatal tissues (see Nauta 
et al.  [9] ), Heimer et al.  [8]  suggested that considering the 
NAc part of the ventral striatum was more appropriate. 
While the striatal nature of the NAc was still contested, 
evidence was accumulating to show that the NAc was 

similar to the striatum in terms of enzyme histochemistry 
 [10] , opiate receptors distribution  [11–13] , acetylcholine 
levels  [14, 15] , dopamine (DA) levels  [16] , neural connec-
tions  [9, 17] , and ontogeny  [17, 18] . While differences 
between the NAc and the rest of the striatum have been 
documented, it is now the general consensus that the ac-
cumbens is an integral, but specialized, part of the striatal 
complex, closely related the caudate-putamen (striatum) 
and separate in function and composition from the 
 septum  [19] .

  Embryology 

 During development, the prosencephalon becomes 
subdivided into the diencephalon and telencephalon, 
which continue to expand both dorsally and along the 
rostrocaudal axis. The basolateral aspects of the telence-
phalic walls eventually develop into ventricular ridges 
(also called ganglionic eminences). The rostral portion of 
these ventricular ridges  [18, 20]  – specifically, an inner 
layer of cells related to olfactory invagination  [21]  – de-
velop into the NAc and the olfactory tubercle. [ 3 H]Thy-
midine-based analysis of primate neurogenesis suggests 
that the accumbens develops similarly to the neostriatum. 
Accumbal neurons are generated over a 50-day period 
beginning around embryonic day 36  [22] , with rodent 
studies noting that neurogenesis briefly continues post-
natally  [23–25] , a notion that may apply to humans as 
well  [21] . Interestingly, [ 3 H]thymidine-based analysis in 
primates found no spatio-temporal gradients in the neu-
ronal positioning during development  [22] , whereas sim-
ilar analyses in rodents have had mixed findings, with 
studies identifying ventral-dorsal gradients  [25] , lateral-
medial gradients  [25] , as well as rostrocaudal gradients 
 [18] . This difficultly in determining a universal spatio-
temporal gradient may be partially explained by the hy-
pothesis that the accumbens arises from two distinct ger-
minal zones along the inferior horn of the lateral ventri-
cle, the neuroepithelium and the subependymal zone 
 [25] .

  The primary neurons of the NAc are medium spiny 
neurons, the development of which can be influenced by 
environmental factors. For instance, studies have demon-
strated that both prenatal and postnatal stress in animals 
heightens the complexity of dendritic morphology of the 
accumbens, altering the branching, length, and spine 
density of the medium spiny neurons  [26–28] . Function-
ally, in humans, the NAc appears to have adult-like re-
sponse patterns in adolescence, whereas differences can 
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still be observed in the prefrontal cortex and the dorsal 
striatum  [29, 30] . This difference in development has led 
to the suggestion that the activation of the subcortical sys-
tem is disproportionately weighted during development, 
which may lead to a focus on immediate over long-term 
gains during adolescence  [30] .

  Anatomy 

 A round, but dorsally flattened structure, the NAc is 
located anterior to the posterior border of the anterior 
commissure (AC) and lies parallel to the midline. An ear-
ly 20th century anatomical study found the NAc indistin-
guishable from the surrounding tissue, with the only 
clearly defined boundary being the zona limitans, which 
separates the medial NAc from the septum  [5] . While 
subsequent anatomical studies allowed for further defini-
tion, certain boundaries appeared so diffuse and transi-
tional to merit controversy; for instance, whether the ros-
tral pole was a distinct area  [19]  or an extension of the 
shell of the accumbens  [31]  (see Zahm  [32] , 1999). How-
ever, more modern anatomical analyses have suggested 
that the boundaries of the NAc are as follows: (1) poste-
rior limit: the posterior border of the AC  [33, 34] ; (2) an-
terior limit: where the rostral limit of the internal capsule 
starts separating the caudate from the putamen  [34] ; (3) 
medial limit: the sagittal plane passing by the inferior bor-
der of the lateral ventricle; (4) lateral limit: a line extend-
ing downwards and laterally to the rostral edge of the in-
ternal capsule; (5) dorsal limit: the horizontal plane pass-

ing under the caudate nucleus head from the inferior 
border of the lateral ventricle to the inferior limit of the 
internal capsule, and (6) ventral limit: the external cap-
sule (lateral side) and Broca’s diagonal band (medial side) 
anteriorly, the anterior hypothalamic nucleus posteriorly 
 [34] .

  The NAc extends dorsolaterally into the putamen and 
dorsomedially into the caudate nucleus but lacks any 
sharp demarcation between the two areas  [34] . Anatomi-
cal studies have suggested that the morphology of the 
NAc is such that the nucleus is longest on the anterior-
posterior axis and shortest along the dorsal-ventral axis, 
suggesting that the NAc is more visible in coronal than 
sagittal and in sagittal than transverse magnetic reso-
nance imaging (MRI) slices  [35]  ( fig. 1 ). Previously, the 
NAc was thought to be less well-defined by MRI than by 
anatomical techniques due to a lack of a distinct signal 
intensity  [34] , but a more recent study has suggested that 
discerning the NAc limits with the caudate nucleus and 
putamen is easier by T2-weighted MRIs due to the more 
intense signaling that the NAc presents compared with 
the caudate nucleus and putamen  [35] .

  Unique to the rest of the striatum, the accumbens can 
be divided into a central core surrounded medially, ven-
trally, and laterally by a shell  [36] . This division between 
core and shell can only be distinguished in the caudal 
parts of the accumbens, which has led to the more rostral 
part to be referred to as the ‘rostral pole’ of the accumbens 
 [37] . The differences between the shell and the core are 
defined by various histochemical, electrophysiological, 
connectional, and cellular criteria  [38]  but are difficult to 
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  Fig. 1.  Schematic representation of major afferent ( a ) and efferent ( b ) connections of the NAc. SNc = Substantia nigra pars compacta; 
BNST = bed nucleus of the stria terminalis; GPi = globus pallidus internus; SNr = substantia nigra pars reticulata; ctx = cortex. 
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discern in gross anatomical studies  [34, 35] , except per-
haps at the midrostrocaudal level of the ventral striatum 
 [39] . The AC is surrounded by the core, which in turn is 
surrounded, on its medial, ventral, and ventrolateral 
sides, by the shell  [19] .

  Morphometric studies examining dimorphisms based 
on location and sex have been controversial, with studies 
indicating the NAc is larger on the left  [40] , the right  [34] , 
in males  [40] , and with  [41]  or without  [35, 42]  sexual or 
hemispheric differences. The presence of an age-based di-
morphism is also contested, with some studies suggesting 
a decrease in volume with age  [35, 41, 42] , while others 
maintain that the NAc does not suffer any age-related 
 atrophy  [34] .

  Organization 

 While historically, there has been disagreement wheth-
er the NAc belongs to the septal system or the basal gan-
glia, decades of research utilizing a variety of tract-trac-
ing, immunohistochemical, and receptor-binding meth-
ods have suggested that the accumbens is a specialized 
part of the striatal complex  [19, 8] , similar, but not ex-
actly parallel, to other striatal structures such as the cau-
date-putamen  [37, 43] . The NAc has typically been di-
vided by two different sets of criteria: (1) the mosaic ar-
rangement of the patch-matrix organization as well as (2) 
anatomical and morphological compartmentalization of 
the core and shell. However, it should be noted that stud-
ies have also demonstrated additional levels of NAc orga-
nization, separate from the well-documented patch-ma-
trix and core-shell differences. These include gradients of 
rostrocaudal differentiation in terms both of structure 
and function of the NAc  [44–47]  as well as organization-
al structures based upon differences in immunostaining 
and signaling molecules in the ventral and medial areas 
 [48, 49] .

  The Patch Matrix 
 Similar to other striatal tissue, the NAc is characterized 

by a ‘striosomal’ or a ‘patch-matrix’ organization, which 
is a mosaic arrangement consisting of two distinct com-
partments  [48, 50–52] . The patches are characterized by 
dense μ-opiate receptor-binding sites  [37, 53–55] , while 
the matrix consists of weaker opiate receptor binding, 
high acetylcholinesterase activity, strong calcium-bind-
ing protein immunoreactivity, and a rich plexus of soma-
tostatin fibers  [37, 56–58] . This striosomal organization 
can also be recognized on the basis of the immunohisto-

chemical distribution of several markers, including en-
kephalin, substance P, DA, and calcium-binding protein 
 [48, 59, 60] .

  The Accumbal Core and Shell 
 Unlike the rest of the striatal complex, the NAc can be 

divided into two distinct areas: a central core surrounded 
by an outer shell, each of which have unique features 
(some studies also consider the rostral pole, which lacks 
an apparent boundary separating it from the caudate-pu-
tamen and olfactory tubercle  [61]  and consists of uneven 
histochemical and immunostaining for a number of sub-
stances  [37] , to be a third division of the accumbens). 
While throughout the accumbens, the cell bodies are 
small to medium in size, in humans, the core region has 
been found to contain a low density of impregnated neu-
rons consisting predominantly of pyramidal-like neurons 
with spines on secondary branches, and to a rarer extent, 
some multipolar neurons  [62] . In contrast, the shell re-
gion has a high cell density  [62, 63]  consisting primarily 
of groups of well-arborized fusiform and multipolar neu-
rons, all of which are rich in spines on secondary and ter-
tiary dendritic branches  [62] . Interestingly, morphologi-
cal studies in rats have reached the seemly opposite con-
clusion, determining that the shell contains smaller cells 
with fewer dendrites and dendritic spines than those 
found in the core  [64, 65] .

  On a molecular level, studies have noted core-shell dif-
ferences in the distribution of a number of neuroactive 
substances and receptors, including substance P  [39] , cal-
retinin  [39] , DA  [66] , serotonin  [66] , and serotonin recep-
tors  [67] , with a tendency for these substances to be pref-
erentially located in the shell than the core. Substances 
that are preferentially located in the core include calbin-
din  [39, 48, 68] , enkephalin  [45, 47, 63] , GABA A  receptors 
 [69] , and limbic associated membrane protein  [39] . Fur-
thermore, there are core-shell differences in mRNA ex-
pression  [47, 70, 71] , with differences in Fos-like immu-
noreactivity leading to the notion that the shell of the ac-
cumbens may be a site of antipsychotic drug action  [72] .

  Some histological and tract tracing studies have sug-
gested that the shell of the NAc not only harbors charac-
teristics similar to those of striatal tissue, but also contains 
features analogous to the extended amygdala. These in-
clude immunohistochemical similarities, such as the 
presence of areas rich in neurotensin, cholecystokinin, 
and opioid peptides, as well as connectional similarities, 
including efferents to the lateral hypothalamus and affer-
ents from the basolateral complex of the amygdala (see 
 [19, 73, 74] ). This has led to the notion that the shell area 
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of the accumbens could be conceived as a transitional 
zone between the striatum and the extended amygdala 
 [75] . These similarities have even raised the question of 
whether the NAc shell would be more appropriately clas-
sified as part of the extended amygdala, but sufficient net-
work differences exist such that the two should most use-
fully be regarded as separate, interacting functional-ana-
tomical entities  [76] .

  Afferents 

 There is evidence to suggest that the NAc is the main 
input nucleus of the basal ganglia  [77] , as it receives both 
indirect input via the mesolimbic dopaminergic projec-
tions from the ventral tegmental area (VTA) and substan-
tia nigra  [78–80]  as well as direct input in the form of 
glutamatergic projections from the subiculum and amyg-
dala  [80–83] , hippocampus  [84–88] , thalamus  [63, 80, 
89] , prelimbic  [90]  and prefrontal cortex  [80, 91–96] . An-
imal studies have further elucidated that the accumbens, 
similar to the caudate-putamen and olfactory tubercle, 
receives input from the allocortical and periallocortical 
areas as well as from the medial and lateral proisocortical 
areas  [73, 89]  ( fig. 1 a).

  There is also evidence that the patch and matrix re-
ceive different afferents from the cortex and midbrain, 
with animal tracing studies determining that the patches 
receive innervations from the prelimbic cortex and the 
substantial nigra, while the matrix is innervated by the 
prefrontal, motor, and sensory cortical areas  [57] . The 
prelimbic area has also been found to project mainly to 
the rostral half of the NAc, whereas only the lateral region 
of the caudal half receives frontal cortical fibers  [97] . Af-
ferents from the entorhinal and perirhinal cortices reach 
the NAc by way of the external capsule and terminate 
mainly in a ventral zone of the NAc. Those from the en-
torhinal area are distributed to the entire accumbens, 
whereas the termination field of the perirhinal afferents 
is largely restricted to the lateral part of the NAc  [97] . Fur-
thermore, the matrix is innervated by cortical laminae 
from the midline and intralaminar thalamic nuclei, which 
avoid the patches  [11] .

  Additionally, there appear to be differences between 
the cortical origin of afferents entering the core of the 
NAc versus the medial shell, with the dorsal peduncular, 
infralimbic (the rodent equivalent of human Brodmann 
area 25), and posterior piriform cortices projecting to the 
medial shell, while the dorsal prelimbic, anterior agranu-
lar insular, anterior cingulate, and perirhinal cortices 

project to the core  [89] . The ventral medial prefrontal 
cortex, in particular, sends gutamatergic projections to 
the shell  [98, 99]  and is thought to play a role in the rein-
statement of drug-seeking behavior  [100, 101] . The affer-
ents from the VTA also appear to extensively innervate 
the shell compartment of the NAc  [102] , whereas the sub-
stantia nigra predominantly innervates the core  [103] . 
The caudal dorsomedial extremity of the shell (the ‘septal 
pole’ of the NAc) has been observed to be innervated by 
a variety of structures in the ventral forebrain, including 
lateral hypothalamus, deep temporal lobe, and brainstem 
 [89] . The area between the septal pole and the most ven-
tral ‘temporal pole’ contains afferents from the subiculum 
 [97] , but these terminations are inhomogeneously dis-
tributed  [104] . Afferents from the dorsal agranular insu-
lar area and the intermediodorsal thalamic nucleus ap-
pear to avoid the shell of the lateral NAc, which instead 
receives inputs from the magnocellular basal amygdala 
 [38] .

  Efferents 

 The main output neurons from the NAc are medium 
spiny neurons that project to various areas of the mesen-
cephalon and basal ganglia. Similar to other striatal tissue, 
many of the efferent fibers terminate in the diencephalon 
or the pallidal complex, with projections reaching the 
stria terminalis, preoptic region, nucleus parataenialis, 
nucleus mediodorsalis thalami, lateral habenular nucleus, 
substantia nigra-ventral tegmental area, the lateral hypo-
thalamus, cingulum, thalamus, globus pallidus, and sub-
pallidal region  [9, 17, 75, 105–109] . There also appear to 
be projections to the amygdala  [110, 111]  and septum  [9, 
112–114] , although this is not a universal finding  [19]  
( fig. 1 b).

  Evidence suggests differences in efferent projections 
from the patches versus the matrix as well as from the core 
versus the shell. The patches project to the substantia nig-
ra pars compacta, while the matrix projects to the substan-
tia nigra pars reticulata. While both the core and shell 
project to the entopeduncular nucleus (the rodent equiv-
alent of the human globus pallidus internus), only the 
shell appears to project diffusely throughout the rostro-
caudal extent of the lateral hypothalamus and to the ex-
tended amygdala  [19, 115] . Both areas also innervate pal-
lidal areas, but the precise locations of the projections vary 
depending on shell or core origin. The core projects to the 
dorsolateral compartment of the ventral pallidum, which 
lacks an appreciable amount of neurotensin, whereas the 
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neurotensin-rich ventromedial ventral pallidum is inner-
vated predominantly by the shell  [19, 36, 68] .

  The rostral pole of the accumbens appears to share ef-
ferents with both the core and the shell. The lateral rostral 
pole gives rise to core-like projections (to the rostroven-
tral globus pallidus, subcommissural ventral pallidum, 
entopeduncular nucleus and an adjacent part of the lat-
eral hypothalamus, lateral VTA, dorsal pars compacta, 
and structures in the lateral mesencephalic tegmentum 
and central grey), while the medial part of the rostral pole 
is more shell-like in its innervations (projecting to the 
subcommissural ventral pallidum, lateral preoptic re-
gion, lateral hypothalamus, VTA, dorsalmost pars com-
pacta, retrorubral field, lateral midbrain tegmentum, and 
central grey)  [61] .

  Furthermore, there appear to be differences in the ef-
ferents from the lateral and medial accumbens. The lat-
eral accumbens has been found to project to the ventral 
pallidum, the subcommissural part of the globus pallidus, 
the entopeduncular nucleus, the substantia nigra, and the 
retrorubral nucleus  [113] . The medial NAc has been 
found to project to a multitude of areas, including the 
ventral pallidum, the rostral part of the lateral hypothala-
mus, the lateral septum, the bed nucleus of the stria ter-
minalis, the medial preoptic and hypothalamic areas, the 
VTA, the retrorubral nucleus, the central superior nucle-
us, the nucleus tegmenti pedunculopontinus, and the 
central gray  [113] . However, other studies  [19, 116]  have 
been unable to replicate similar results, especially the pro-
jections to several medial hypothalamic areas, leading to 
the suggestion that since the medial accumbens largely 
contains the shell region, some of the reported connec-
tional differences may be due to the differences between 
core and shell projections rather than medial-lateral dif-
ferences.

  Circuitry 

 Previous work has noted a pattern of connectivity be-
tween the patch and matrix compartments of the basal 
ganglia and NAc. The afferents, efferents, and dendritic 
processes of the neurons are compartmentally segregated 
and are restricted  [11, 57, 58, 117, 118]  suggesting that the 
patch and matrix compose segregated, parallel systems 
 [57] . Furthermore, it has been demonstrated that regions 
of the cortex that project to the NAc receive input from 
midline thalamic and basal amygdaloid nuclei, which also 
project to the same part of the NAc as their cortical target 
 [38, 68] .

  Also of interest are the differences between the core 
and shell projections. The core connectivity eventually 
leads to premotor and supplemental motor areas of the 
cortex, while the shell connects to the prefrontal cortical 
areas as well as a range of subcortical motor areas, includ-
ing the extended amygdala and lateral hypothalamus  [37, 
119, 120] . Further examination reveals the presence of 
two distinct dopaminergic circuits based on the topogra-
phy of the NAc  [19, 66] . The NAc core projects to the 
dorsolateral ventral pallidum, which in turn projects to 
the subthalamic nucleus and substantia nigra, the origin 
of dopaminergic innervation of the striatum. On the oth-
er hand, the NAc shell projects through the ventromedial 
ventral pallidum to the mediodorsal nucleus, which con-
tains a reciprocal connection with the prefrontal cortex, 
and the VTA, which sends dopaminergic projections to 
mesocortical sites  [19, 61, 68, 121–123] . The similarity 
between these projections and those of the amygdala sup-
ports the notion that the shell may represent a transition-
al zone between the striatum and amygdala.

  These projections have been found to form networked 
connections within the neuronal framework, leading to 
the concept that the functional architecture of the basal 
ganglia is parallel in nature, innervating a number of 
structures, but following the general pattern of a cortico-
striato-pallido-thalamo-cortical loop  [124, 125]  (for ex-
ample, the prefrontal cortex projects to the NAc which, 
in turn, innervates the ventral pallidum; the ventral pal-
lidum, via the mediodorsal nucleus of the thalamus, then 
sends afferent fibers back to the prefrontal cortex, com-
pleting the circuit) via a number of re-entrant pathways 
 [125, 126] . There are currently five major circuits recog-
nized, with the NAc playing a major role in the anterior 
cingulate circuit  [125, 126] , among other, smaller loops. 
The cortical circuits that link these systems may play a key 
role in feeding behavior  [127] , motivated behavior  [128] , 
and addiction  [129] .

  Function 

 While immunohistochemistry and histology com-
manded much of the attention in the early history of the 
NAc research, more recent functional studies have illu-
minated the role of the NAc in behavior, which as a result 
has opened the NAc as a therapeutic target. Due to its 
input from the limbic system as well as output and cyto-
chemical similarity to the motor nuclei of the basal gan-
glia, the accumbens has been said to be the functional 
interface between the limbic and motor systems  [78, 130] , 
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suggesting that the accumbens is an important player in 
controlling the biological drives necessary for survival 
and reproduction. Indeed, studies have demonstrated 
that the NAc plays crucial roles in locomotion  [131–135] , 
learning (including both conditioned place preference 
 [136, 137]  and avoidance  [138, 139] ), impulsivity  [140] , 
risk-taking behaviors  [141] , feeding behavior  [127]  (in 
animals  [142–147]  and humans  [148] ), sexual motivation 
(in animals  [149]  and humans  [150] ), as well as incentive 
and reward  [151–154] , especially unpredictable reward 
 [155] .

  There appears to be a point of contention in the litera-
ture whether the NAc is involved in modulating goal-ori-
ented behavior  [156–159] , only motivation  [160, 161] , or 
part of a more complicated circuit connecting multiple 
independent functional systems  [162, 163] . Overall, how-
ever, the NAc appears to be a key structure in the natural 
reward system, which includes modulation of motivation 
and incentivized learning  [154] . Coupled with connec-
tional studies, these findings have led to the suggestion 
that the NAc plays a central role in a positive emotional 
response pathway, counterbalanced by a negative emo-
tional response pathway mediated by the amygdala  [164] , 
although others believe the NAc itself may play a vital role 
in aversive motivation  [165] .

  There also appears to be a division of labor between the 
NAc shell and core. The shell, especially the medial shell, 
is suspected to mediate the reinforcing properties of nov-
elty  [166] , feeding behavior  [167] , rewarding substances 
 [168] , and drug relapse  [169, 170] . The core seems to play 
a crucial role in spatial learning  [171] , conditioned re-
sponses  [172–174] , responses to motivational stimuli 
 [166, 175] , and impulsive choices  [176] , likely operating 
in tandem with the anterior cingulate via a corticostriatal 
circuit  [172] . Even more precise functional segregation of 
the accumbens can also be justified, with studies showing 
behavioral differences in feeding behavior after altera-
tions in neuronal firing in the medial versus lateral shell 
 [177, 178] .

  Pharmacology 

 Dopamine 
 The NAc first became a structure of interest among 

behavioral neuroscientists with the discovery that DA 
 [179, 180]  and DA agonist injections  [181]  into the NAc 
enhanced locomotor activity in rats, suggesting that a 
motor stimulant is partly mediated by D1 receptors. Fur-
ther study of the accumbens has resulted in a strong body 

of evidence demonstrating that DA in the NAc plays a key 
role in the natural reward system of the brain, as well as 
in addiction (see below).

  Dopaminergic neurons from the substantia nigra and 
the VTA project to the matrix, while the patches are in-
nervated mainly by the substantia nigra  [58] . Each nigral 
neuron appears to influence a large number of striatal 
neurons  [182] , and this signal amplification may be a key 
function of the nigrostriatal system in DA-based learning. 
The projections from the VTA, a part of the mesolimbic 
DA pathway, appear to extensively innervate the NAc 
shell  [183] . Together, this has led to the hypothesis that 
dopaminergic innervation of the NAc core is associated 
with the nigrostriatal system, while that of the NAc shell 
is related to the mesolimbic system  [66] . This is further 
supported by 6-OHDA lesioning, which has demonstrat-
ed that the mesostriatal DA cells innervating the patch 
and matrix are distinct  [184] .

  DA turnover is higher in the accumbens than the rest 
of the striatum, but not significantly different between the 
core and shell  [66] . However, there are noticeable core-
shell differences in regard to DA. The shell contains a 
larger number of DA receptors  [71] , but the core has a 
greater DA utilization  [66]  and contains more DA trans-
porters  [185] . There are conflicting reports on whether 
the basal concentration of DA is greater in the shell  [66]  
or core  [186, 187] , but it appears that opiate drugs in-
crease extracellular DA in the shell more than in the core 
 [188, 189] . Drug-induced 5-HT 2  receptor occupancy fa-
vors DA release in the shell (clozapine, amperozide, ris-
peridone, and ritanserin)  [190] , whereas high D2 recep-
tor occupancy favors DA release in the core (haloperidol 
and raclopride)  [66, 190] . Separate from the core-shell 
differences, there also appears to be a rostrocaudal gradi-
ent for D1 and D2 receptors and a lateral-to-medial gra-
dient of D2 receptors  [191] .

  GABA/Glutamate 
 GABAergic neurons are a primary component of the 

major efferent projection from the NAc to the ventral pal-
lidum  [19, 37, 106–108]  and structures such as the globus 
pallidus  [192] . GABAergic projections originating from 
the NAc modulate cortical acetylcholine efflux in the bas-
al forebrain, which has been linked to context-dependent 
arousal  [193]  and may play a role in schizophrenia  [194] . 
Similar to DA administration, GABA A  antagonists  [78, 
195]  increase locomotion, but interestingly, GABA injec-
tion into the NAc produces both hyperactivity (after low 
doses) and hypoactivity (after high doses)  [195, 196] . 
These findings may be partially explained by the notion 
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that GABA antagonists facilitate DA-induced hyperactiv-
ity, while high levels of GABA depress this effect  [197] . 
Furthermore, DA-induced hyperactivity could be blocked 
by preventing GABAergic stimulation of neurons in the 
globus pallidus  [78] , indicating that the DA-mediated ef-
fects on locomotion can be modulated by other neu-
rotransmitter systems.

  Locomotion behavior can also be influenced by altera-
tions in accumbal glutamate neurons, with glutamate ag-
onists (AMPA  [198]  and  N -methyl-aspartate  [199] ) in-
ducing hyperactivity. Administration of glutamate antag-
onists appears to reduce locomotion  [200, 201] , although 
this hypoactivity has not been seen universally  [202] . 
These behavioral findings may be due to an increase in DA 
release after exposure to glutamate agonists  [203–206] , a 
notion that is further supported by the finding that DA 
antagonists mitigate the stimulatory effects of glutamate 
agonists  [207] . However, the finding that AMPA, but not 
amphetamine, induced hyperactivity after 6-OHDA le-
sions or blocked D1/D2 receptors  [208]  suggests a more 
complicated picture, in which the locomotor effects of ac-
cumbal glutamate do not solely depend on DA-mediated 
effects and perhaps act through other mesoaccumbal fi-
bers. This decoupling of the dopaminergic and glutama-
tergic systems in the accumbens has also been suggested 
by animal models of cocaine relapse  [209] . Animal models 
of addiction have also demonstrated the importance of 
accumbal glutamate in response reinforcement learning 
 [210] , which may play a role in nicotine reward  [211] , and 
dissociable differences in drug-seeking behavior mediat-
ed by core and shell glutamate neurons  [212] .

  Acetylcholine  
 There appear to be two main cholinergic pathways that 

influence the reward pathways: (1) a forebrain projection 
from the nucleus basalis magnocellularis to the basolat-
eral amygdala  [213]  that has been linked to drug relapse 
 [214]  and (2) a hindbrain projection from the mesopon-
tine cell groups  [213]  (specifically the pedunculopontine 
tegmental nucleus (Ch5) and laterodorsal tegmental nu-
cleus (Ch6)  [215] ) to the VTA and substantia nigra that 
modulates accumbal DA neurons  [216, 217]  and has been 
linked to psychosis and schizophrenia  [218] .

  High levels of acetylcholine and choline acetyltransfer-
ase are found in the NAc, especially in the patch compart-
ments  [64]  and the medial accumbens  [219] . Cholinergic 
neurons in the striatum appear critical for long-term po-
tentiation  [220, 221]  and conditioning  [222] . Accumbal 
cholinergic activity has been linked to cessation of feeding 
and satiety  [143–145] , with more acetylcholine being re-

leased after normal feeding and less release after a feed-
purge regimen  [143]  (DA release, in contrast, seems to be 
independent of purging and instead based on taste). Cho-
linergic interneurons may be particularly important 
modulators of overall NAc functioning. Optogenetic in-
hibition of ChAT neuronal activity reduces addictive be-
havior in rodents  [223] . Furthermore, mice lacking the 
gene for the small receptor-binding protein p11 exhibit 
depression-like behaviors, and relative inhibition of p11 
using gene therapy only in NAc ChAT neurons yields 
similar depression-like behaviors, while a very small per-
centage of NAc neurons, cholinergic interneurons, clear-
ly play a major role in NAc-regulated behaviors.

  Pathology 

 Role in Addiction 
 Evidence (see above) has suggested that the NAc mod-

ulates the brain’s natural reward system, likely through 
changes in accumbal DA. Naturally rewarding stimuli – 
food, for instance – increase DA release in the accum-
bens, but importantly, the DA response wanes with re-
peated access  [146, 147, 224] . However, it appears that the 
functioning of this reward system can be overwhelmed by 
drugs of abuse, which do not exhibit the same waning DA 
release with repeated exposure  [225, 226] . Furthermore, 
studies have demonstrated that a number of substances 
can influence the accumbens, including cocaine  [227–
231] , opiates  [232]  (for review, see  [233, 234] ), ethanol 
 [235] , nicotine  [236, 237] , THC  [238] , heroin  [238] , and 
PCP  [239, 240] . Given the role of NAc DA in conditioned 
behavioral activation and discrimination of behavioral 
responses  [241] , it has been proposed that a DA transmis-
sion in the NAc regulates the effort expended to achieve 
a goal  [242] ; hence, alterations in accumbal DA may play 
a central role in abuse and addiction. This notion has led 
to the hypothesis that the mesolimbic DA system is hypo-
functional in the addicted brain, resulting in a decreased 
interest in non-drug-related stimuli and increased sensi-
tivity to the drug of choice  [243] .

  The role of DA in drug use has been hypothesized for 
quite some time  [244] , and while the relationship between 
DA and reward has been extensively reviewed  [245–249] , 
a few points warrant highlighting. Drugs of abuse tend to 
increase DA in the accumbens  [250]  or change synaptic 
plasticity  [251, 252] , whereas nonabused drugs generally 
do not affect accumbal DA  [250]  or plasticity  [251, 252] . 
After an addictive behavior is learned, groups of DA neu-
rons in the accumbens fire to differing degrees (in pro-
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portion to the time between drug infusions  [253] ) and at 
various times  [227] , including before drug exposure (an-
ticipatory response), during drug exposure, and in re-
sponse to paired sensory stimuli (cue-induced drug seek-
ing). However, human neuroimaging studies have made 
the link between cue-induced reinforcement and the ac-
cumbens more obscure, with some studies finding ‘cues’ 
such as paraphernalia and images leading to increased ac-
cumbal activation in heroin  [254] , cocaine  [255, 256] , and 
alcohol abusers  [257] , smokers  [258] , and even video 
game addicts  [259] , while others have been unable to rep-
licate similar results (for smoking  [260]  and cocaine  [261, 
262] ). However, it has been noted that this discrepancy 
may be due to technical difficulties isolating the NAc with 
current technology  [260, 263] .

  Interestingly, addictive behavior may persist even after 
subsequent lesions of DA neurons  [264, 265]  suggesting 
the involvement of other neurotransmitter systems in 
learned behavior and reward. While a number of the oth-
er neurotransmitters, including norepinephrine  [266] , 
serotonin  [267, 268] , and GABA  [269] , are likely involved, 
the role of glutamate is perhaps the most well studied 
 [251, 252, 270–276] . On a molecular level, these changes 
are likely mediated by a host of transcription factors, but 
three in particular – the cyclic-AMP response element-
binding protein (CREB)  [277–281] , ΔFosBand  [282–
287] , and CaMKII  [288–292]  – have often been impli-
cated in addiction (for review, see  [293, 294] ).

  Role in Mood Disorders 
 Patients with mood disorders have been found to have 

a reduced accumbal activation on functional imaging 
 [295]  and reduced volume on structural imaging  [296] , 
and a number of studies have found alterations in the 
VTA-NAc pathway in animal models of depression (for 
review, see  [297] ). On a molecular level, a number of fac-
tors have been linked with depression. CREB-mediated 
transcription in the VTA-NAc pathway may be partly re-
sponsible for changes in mood, with studies suggesting 
that elevations of CREB within the NAc produce anhedo-
nia, lowered affect, and decrease the rewarding effects of 
drugs of abuse  [298–300] . Knocking out p11, a regulator 
of the cell surface localization of specific serotonin recep-
tor subtypes, has been shown to induce depressive-like 
behaviors  [301] , which are reversed by p11 gene therapy 
in the accumbens  [302] . Together, these findings suggest 
an accumbal role in mood disorders and depression, a no-
tion bolstered by the positive outcomes of treatment-re-
sistant depression in pilot studies of accumbal deep brain 
stimulation (DBS)  [303, 304] .

  Surgery 

 Surgical Anatomy 
 While some studies have used the AC posterior bor-

der  [305, 306] , the posterior commissure (PC)  [307] , or 
the mid-commissural point  [308, 309]  as a reference 
point for determining DBS coordinates, the most often 
reported reference point is the anterior border of the AC 
at the midline  [303, 304, 310–314] , which has been rec-
ognized as the most reliable reference point because it is 
less affected by ventricular anatomy or the AC-PC dis-
tance  [35]  (see Mavridis and Anagnostopoulou  [315] ). A 
comprehensive anatomical examination has been done 
comparing both gross anatomical specimens and T2-
weighted MR images in order to localize the NAc within 
the ventral striatum  [41] . Pathological analysis of 32 ce-
rebral hemispheres localized the NAc to a fairly variable 
area based upon hemisphere. However, in coronal sec-
tions 2 mm anterior to the AC, the NAc was found 
6–9  mm anterior to the rostral border of the AC and 
1–2 mm inferior to the AC regardless of hemisphere. A 
similar localization of the NAc was found in sagittal sec-
tions 7 mm lateral to the midline, with the NAc found to 
be 2–4 mm anterior to the rostral border of the AC. Ra-
diologic study of T2-weighted MR images found the lo-
cation of the NAc to vary depending on sex, age, and 
hemisphere, but it was determined that in transverse sec-
tions 4 mm ventral to the AC-PC plane (an often report-
ed target point for NAc DBS), the NAc was always lo-
cated between 1.8 and 3.6 mm anterior to the AC, regard-
less of age, sex, or gender. Coronal examination at 
sections 2 mm rostral to the border of the AC determined 
that the NAc was located 3.8–10.7 mm anterior to the 
rostral border of the AC and 0.8–3.7 mm inferior to the 
AC, while sagittal sections 8 mm lateral to the midline 
defined an area –3.8 to 7.0 anterior to the rostral border 
of the AC and 1.5–3.7 mm inferior to the AC, regardless 
of sex, age, and hemisphere examined.

  Combining both MRI and gross anatomical findings, 
it was determined that in a coronal slice 2 mm anterior to 
the rostral border of the AC (another often cited target 
coordinate for NAc DBS), the area within 6–8 mm lateral 
to the midline and 0.8–2.0 mm inferior to the AC con-
tained the NAc in every gross specimen and radiologic 
image analyzed. This finding, by identifying a reliable, 
standard localization of the NAc, presents an ideal target 
for the positioning of electrodes for DBS of the NAc 
( fig. 2 ). These suggested coordinates can be compared to 
the target coordinates used in previous NAc DBS surger-
ies ( table 1 ).
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  From a practical standpoint, there appears to be a dis-
crepancy whether the target coordinates refer to the final 
location of the electrode tip or the center of the deepest 
contact. Malone et al.  [305]  and Denys et al.  [316]  placed 
the tip of the electrode at the target coordinate, whereas 
Mantione et al.  [313] , Bewernick et al.  [303] , and Voges et 
al.  [317]  placed the center of the deepest contact at the tar-
get coordinates. This inconsistency highlights the need for 
a uniform surgical procedure to produce comparable re-
sults. However, based on the reported targeted coordinates 
presented in  table  1 , coupled with the NAc localization 
work presented by Mavridis et al.  [41] , placing the tip of the 
electrode at these coordinates, rather than the center of the 
deepest contact, would likely result in a more accurate 

placement in the NAc. The trajectory in most cases passes 
through the anterior limb of the internal capsule, entering 
just anterior to the coronal suture and slightly lateral to the 
mid-pupillary line ( fig. 3 ), although the exact trajectory can 
be influenced by the width of the lateral ventricle.

  Ablation Studies 
 Bilateral ablation of the NAc has been attempted for 

the treatment of opiate  [309, 318]  and alcohol  [319]  ad-
diction with evidence of efficacy, although following sur-
gery, changes in personality characteristics, short-term 
memory, and attention have been noted  [308] . Long-
term follow-up notes continued effectiveness  [318] , but a 
lack of extensive long-term data has halted the use of ab-

a b c

  Fig. 2.  Radiological localization of the NAc. Coronal ( a ), axial ( b ), and sagittal ( c ) representation of the NAc ( * ) 
on reconstructed, thin-cut spoiled gradient recalled (SPGR) sequences. 1 = Caudate; 2 = putamen; 3 = internal 
capsule. 

 Table 1.  Coordinates used for NAc DBS surgery

Study Electrode
(Medtronic model No.)

Lateral from
midline, mm

Rostral to anterior
AC, mm

Inferior to
AC-PC, mm

Contact(s) activated 
for therapy 

Mantione et al. [313] 3389 7 3 4 2 and 3
Denys et al. [316] 3389 7 3 4 2 and 3
Heinze et al. [326] 3389 6–8 2 3–4 0, 1, 2, and 3
Huff et al. [310] 3387 6.8–7.7 –2.1 to 2.3 2.2–6.5 0 and 1
Malone et al. [305] 3387 6–7 1–2 (measured from 

postborder of the AC)
3–4 0 and/or 1

Kuhn et al. [311] 3387 6.5 2.5 4.5 0, 1, 2, and 3
Kuhn et al. [312] 3387 7 1 4 1 and 2
Bewernick et al. [303] 3387 7.5 1.5 4 0 and 1
Müller et al. [328] 3387 6.5 2.7 4.5 0 and 1
Schlaepfer et al. [304] 3387 7–8 1.5 4 0 and 1
Voges et al. [317] 3387 6–8 2 3–4 0 and 1

 The coordinates indicate the center of the deepest contact (contact 0). To date, the published studies cited above have all used 
Medtronic electrodes, although electrodes from other manufacturers are being tested currently. The distances between contacts in the 
Medtronic 3389 and 3387 electrodes are 0.5 and 1.5 mm, respectively.
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lative treatments, especially in light of the ethical con-
cerns of intentionally causing irreversible damage to 
brain structures with as many cognitive and behavioral 
functions as the NAc.

  Deep Brain Stimulation 
 DBS represents an adjustable and reversible method 

for the modulation of neural pathway activity. The success 
of DBS in improving motor function in dystonia, essential 
tremor, and Parkinson’s disease  [320, 321] , with better 
stability and fewer adverse effects compared with lesion-

  Fig. 3.  Representative trajectory for stereotactic neurosurgical ac-
cess to the NAc. A reconstructed coronal view through the axis of 
a plane that traverses a cortical gyrus, the corona radiata, and the 
anterior limb of the internal capsule and finally ends in the NAc.         

ing, has opened the door for trials evaluating its efficacy 
in treating a host of neurologic and psychiatric disorders. 
There have been a number of studies evaluating DBS of 
the NAc for the treatment of obsessive-compulsive disor-
der  [310, 316, 322] , Tourette syndrome  [311, 323–325] , 
depression  [303–305] , addiction to certain drugs of abuse, 
including alcohol  [312, 326–329] , heroin  [330] , and nico-
tine  [313] , and central pain syndrome  [331, 332] . Given 
the known connections outlined above, it is not surprising 
that a recent large animal study supported the influence of 
NAc DBS on a variety of brain structures which could in-
fluence these and other psychiatric disorders  [333] . Al-
though the clinical studies are mostly preliminary and 
have used small numbers of patients, with some being ob-
servations of efficacy following DBS for a different indica-
tion, the relative safety and encouraging efficacy will like-
ly promote more extensive clinical trials of human NAc 
DBS for various neuropsychiatric disorders.

  Summary 

 The NAc is a complex and fascinating structure that 
has great influence over a variety of human behaviors. 
Clinical applications to date of focal surgical interven-
tions into the NAc have been intriguing but likely repre-
sent only the beginning of what may become a very im-
portant area of clinical exploration for stereotactic neuro-
surgeons. A great deal of both animal and human data has 
provided a very detailed picture of the anatomy and phys-
iology of the human NAc, but that knowledge is not ex-
haustive. Ongoing research into the role of this region in 
both normal and abnormal brain function should help 
facilitate further development of promising therapies tar-
geted at this important region. 
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