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One theory for how humans control movement is that muscles are activated in weighted

groups or synergies. Studies have shown that electromyography (EMG) from a variety of

tasks can be described by a low-dimensional space thought to reflect synergies. These

studies use algorithms, such as nonnegative matrix factorization, to identify synergies

from EMG. Due to experimental constraints, EMG can rarely be taken from all muscles

involved in a task. However, it is unclear if the choice of muscles included in the analysis

impacts estimated synergies. The aim of our study was to evaluate the impact of the

number and choice of muscles on synergy analyses. We used a musculoskeletal model

to calculate muscle activations required to perform an isometric upper-extremity task.

Synergies calculated from the activations from the musculoskeletal model were similar
to a prior experimental study. To evaluate the impact of the number of muscles included in

the analysis, we randomly selected subsets of between 5 and 29 muscles and compared

the similarity of the synergies calculated from each subset to a master set of synergies

calculated from all muscles. We determined that the structure of synergies is dependent

upon the number and choice of muscles included in the analysis. When five muscles

were included in the analysis, the similarity of the synergies to the master set was only

0.57 ± 0.54; however, the similarity improved to over 0.8 with more than ten muscles.

We identified two methods, selecting dominant muscles from the master set or selecting

muscles with the largest maximum isometric force, which significantly improved similarity

to the master set and can help guide future experimental design. Analyses that included

a small subset of muscles also over-estimated the variance accounted for (VAF) by the

synergies compared to an analysis with all muscles. Thus, researchers should use caution

using VAF to evaluate synergies when EMG is measured from a small subset of muscles.

Keywords: muscle synergy, electromyography, simulation, nonnegative matrix factorization, musculoskeletal

model

INTRODUCTION

The human musculoskeletal system is complex, providing a

robust and flexible system for executing tasks of daily life. A pri-

mary challenge for researchers, clinicians, and others seeking to
evaluate human movement is to understand how we control this

complex system. The musculoskeletal system is highly redundant,

with more muscles than degrees of freedom. Thus, there are many
different ways that muscles can be recruited to execute a given

task. Understanding the control strategies used during move-

ment can provide insight into pathologic conditions, optimize
performance, and inspire the design of novel robotics.

One theory of the control of human movement suggests that

muscles are activated in groups, commonly referred to as syn-
ergies or modes (Lee, 1984; Tresch et al., 1999; Krishnamoorthy

et al., 2003; Ting and Macpherson, 2005; Ivanenko et al., 2006).

Activating multiple muscles with a single control signal is the-
orized to provide a simplified system compared to controlling

each muscle individually. Previous studies have shown that mus-

cle activity during a variety of tasks in humans (Ting and

Macpherson, 2005; Ivanenko et al., 2007; Cheung et al., 2012)

and animals (Tresch et al., 2002; d’Avella and Bizzi, 2005) can be
described by a low-dimensional space thought to reflect synergies.

In these experiments, electromyography (EMG) is measured dur-

ing a variety of tasks and matrix factorization algorithms, such as
nonnegative matrix factorization (NNMF), are used to determine

a subset of vectors, or synergies, which describe the EMG signals.

For postural control, gait, and upper-extremity tasks in humans,
a lower dimensional space of four to six synergies have consis-

tently been shown to describe muscle activity (Ivanenko et al.,

2006; Torres-Oviedo et al., 2006; Roh et al., 2012).
Using NNMF or other algorithms to identify synergies relies

upon measuring EMG from the muscles used to execute a task.

However, due to constraints on time, resources, and subject com-
fort, EMG can usually only be measured for a subset of the

muscles involved in the task. For example, in the human arm,

there are over twenty muscles that may contribute to move-
ment and force generation. Previous studies of synergies in the

human arm typically only measure EMG from eight to nineteen
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muscles (d’Avella et al., 2006; Cheung et al., 2009; Roh et al.,
2012). Researchers typically try to include as many muscles as

possible within the constraints of their experimental set-up and

often choose larger muscles thought to contribute to the task
and from which it is easier to record surface EMGs. However, no

rigorous analysis has been performed to determine how the num-

ber and choice of muscles included affects the results of synergy
analyses.

A few studies have been able to measure EMG from all mus-

cles involved in a task such as Valero-Cuevas et al. (2009) who
evaluated human index finger force generation. This study deter-

mined that when EMG was measured from all muscles involved

in the task, more synergies were required to describe the vari-
ance in EMG activity and a lower percentage of variance in EMG

activity was explained by the synergies compared to prior stud-

ies that included EMG for a subset of muscles. Furthermore,
studies that have tried to use synergies to drive musculoskeletal

simulations have found that the synergies identified from EMG

are often inadequate for controlling motion. For example, an
experimental analysis of synergies during gait did not include

EMG of the iliopsoas, a deep muscle that is difficult to measure

with EMG. Simulations indicated that a synergy that included
the iliopsoas was required to control gait (Neptune et al., 2009).

However, even from this analysis it was not possible to determine

if the number of synergies was incorrect (i.e., an extra synergy
for the iliopsoas was required) or the structure of the synergies

was incorrect (i.e., the iliopsoas should have been included in

one of the original synergies). These results suggest that syner-
gies identified from a subset of muscles involved in a task may be

inaccurate or incomplete. Understanding the sensitivity of syn-

ergy analyses to the number and choice of muscles will enable
researchers to understand the limitations of these methods,

design experimental protocols, and critically analyze the results of

these analyses.
The aim of this study was to evaluate how the number and

choice of muscles included in synergy analyses impact syner-
gies calculated from EMG. We created a musculoskeletal model

of an isometric force task in the upper-extremity and evaluated

the effect of using different combinations of muscles to calculate
synergies. By comparing the similarity of synergies from differ-

ent combinations of muscles, we determined that synergies were

affected by the number and choice of muscles included in the
analysis. We also were able to identify methods, such as select-

ing the largest muscles, which can be used to design experimental

protocols and decrease the sensitivity of synergy analyses to the
number and choice of muscles.

MATERIALS AND METHODS

MUSCULOSKELETAL MODEL

A previously developed model of the upper-extremity (Holzbaur

et al., 2005) with 30 muscles (Table 1) was used to recre-

ate an upper-extremity isometric force task that has previously
been used to evaluate synergies (Roh et al., 2012). The upper-

extremity model included seven degrees of freedom including

three degrees of freedom at the shoulder (flexion/extension,
abduction/adduction, and internal/external rotation), wrist flex-

ion/extension, forearm supination/pronation, and two degrees of

Table 1 | Musculotendon actuators included in model.

Muscle Description Fmax (N)*

DELT1 Anterior deltoid 1142.6

DELT2 Medial deltoid 1142.6

DELT3 Posterior deltoid 259.9

SUPSP Supraspinatus 487.8

INFSP Infraspinatus 1210.8

SUBSC Subscapularis 1377.8

TMIN Teres minor 354.3

TMAJ Teres major 425.4

PT Pronator teres 566.2

PECM1 Pectoralis major clavicular 364.4

PECM2 Pectoralis major medial 515.4

PECM3 Pectoralis major inferior 390.5

LAT1 Latissimus dorsi superior 389.1

LAT2 Latissimus dorsi medial 389.1

LAT3 Latissimus dorsi inferior 281.7

CORB Coracobrachialis 242.5

TRIlong Triceps long head 798.5

TRIlat Triceps lateral head 624.3

TRImed Triceps medial head 624.3

ANC Anconeus 350.0

SUP Supinator 476.0

BIClong Biceps long head 624.3

BICshort Biceps short head 435.6

BRA Brachialis 987.3

BRD Brachioradialis 261.3

ECRL Extensor carpi radialis longus 304.9

ECRB Extensor carpi radialis brevis 100.5

ECU Extensor carpi ulnaris 93.2

FCR Flexor carpi radialis 74.0

FCU Flexor carpi ulnaris 128.9

*Maximum isometric force (Holzbaur et al., 2005)

freedom at the wrist (flexion/extension and radial/ulnar devia-
tion). The model was positioned according to the experimental

protocol of Roh et al. (2012) with the hand at half an arms-

length in front of the shoulder, the shoulder and elbow flexed,
and the forearm and wrist in neutral positions. Muscle activations

required to generate isometric forces in various directions at the

hand were estimated by minimizing the sum of squared activa-
tions. Similar to the experimental protocol, the muscle activations

to hold the force were examined and the periods ramping up or

down from each force target were not included in the analysis.
In the experimental protocol, the subjects generated forces in 54

or 210 directions evenly distributed in a sphere around the hand.
Since, with a musculoskeletal model, we did not have the con-

straints of time, attention, or fatigue of the subject, we included

1000 force directions randomly distributed in a sphere around
the hand. For each force direction, we solved for the muscle

activations required to generate a ten newton force. The muscu-

loskeletal model and analysis were executed using OpenSim, an
open source software platform for musculoskeletal modeling and

simulation (Delp et al., 2007).

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 105 | 2

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Steele et al. Number of muscles impacts synergies

SYNERGY ANALYSIS

The muscle activations estimated from the musculoskeletal model
during the upper-extremity isometric force task were used to cal-

culate synergies. The muscle activations from all force directions

were combined into an m × t matrix, V, where m was the num-
ber of muscles (i.e., 30) and t was the number of force directions

(i.e., 1000). The activations for each muscle were normalized to

unit-variance to ensure that the synergies were not biased toward
high-variance muscles (Roh et al., 2012). NNMF was used to cal-

culate synergies (Lee and Seung, 1999; Tresch et al., 1999, 2006)

such that V = W∗C where W is the m × n matrix with n syner-
gies and C is the n × t matrix of synergy activation coefficients.

Thus, each column of W represents the weights of each muscle for

one synergy, and each row of C represents how much the corre-
sponding synergy was activated or used to generate force in each

direction. The number of synergies, n, was set at four to com-

pare to the prior experimental study. The NNMF algorithm was
implemented within an iterative optimization which tested ran-

dom initial estimates of W and C and selected the muscle weights

and activation timings that minimized the sum of squared error
between V and the muscle activations.

To demonstrate that our simulation was consistent with exper-

imental observation, we first compared the synergies estimated
from the musculoskeletal model to the synergies from the experi-

mental protocol reported by Roh et al. (2012). The experimental

protocol included EMG from eight muscles: the brachioradialis,
biceps brachii, triceps brachii (long and lateral heads), deltoid

(anterior, medial, and posterior fibers), and pectoralis major

(clavicular fibers). Thus, for this comparison, we used the acti-
vations from the musculoskeletal model for the eight muscles

with EMG to calculate synergies using NNMF. We compared
the synergies from the musculoskeletal model to the experimen-

tal synergies from eight unimpaired subjects. We calculated the

similarity of the synergies as the average correlation coefficient.
To evaluate if the synergies from the simulation were within

the inter-subject variability, we compared the synergies from the
musculoskeletal model to the experimental synergies of each sub-

ject. We calculated the similarity of the experimental synergies

from each subject to one another to evaluate the inter-subject
variability. Each subject’s synergies were then compared to the

simulated synergies to evaluate the similarity between the experi-

mental and simulated synergies. We used an equivalence test to
determine if the similarity of the experimental and simulated

synergies were within the inter-subject similarity with a signif-

icance level of 0.05. For both the inter-subject similarity and
similarity between experimental and simulated, we report the

95% confidence intervals.

IMPACT OF NUMBER OF MUSCLES ON SYNERGIES

To evaluate the impact of the number of muscles included in the
analysis on the resultant synergies, we compared the synergies cal-

culated from random subsets of muscles to the “master set” of

synergies (Figure 1). The master set of synergies was determined
from the activations of all 30 muscles and 1000 force directions

using NNMF. We then calculated synergies from the muscle acti-

vations of random subsets of muscles. We evaluated subsets that
included odd numbers of muscles between 5 and 29. For each

number of muscles (e.g., five muscles), we selected 1000 ran-

dom combinations, or as many combinations possible given 30
muscles, and calculated synergies from the activations of these

muscles using NNMF. The synergies from each subset were then

compared to the same subset of muscles isolated from the mas-
ter set. For each combination, the synergies were normalized to

unit length and similarity was evaluated as the average correlation

coefficient between the subset of the master set and the syner-
gies calculated from the subset of muscle activations. The average

correlation coefficient was determined by matching the pairs of

synergies from the master set and subset that had the greatest
similarity and averaging the correlation coefficients across the

pairs. The correlation coefficient was normalized from zero to one

FIGURE 1 | Synergies calculated from a subset of muscles were compared

to the master set of synergies calculated from all 30 muscles. The master

set of synergies was calculated using NNMF from the activations of all 30

muscles required to perform the isometric upper-extremity force task. Random

subsets of muscles (varying between 5 and 29 muscles) were then selected

and four synergies were calculated from the subset of muscle activations. The

same subset of muscles was isolated from the master set and the similarity

of the synergies was compared as the average correlation coefficient.

Frontiers in Computational Neuroscience www.frontiersin.org August 2013 | Volume 7 | Article 105 | 3

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Steele et al. Number of muscles impacts synergies

where zero is the similarity expected by chance and one is perfect
similarity (Tresch et al., 2006). The similarity expected by chance

was calculated as the average correlation coefficient comparing

each set of synergies to 25 randomly generated sets of synergies of
the same size (i.e., same number of muscles and force directions).

Across all analyses, four synergies were calculated from NNMF.

To evaluate the impact of changes in synergy weights, W, on
the recruitment of synergies, C, we compared the directional tun-

ing of synergies. The directional tuning was calculated as the dot

product of the activation level of each synergy and each force
direction. The resulting direction indicates the force direction for

which a given synergy was highly recruited. The impact of the

number of muscles on synergy recruitment was evaluated as the
average angle between the directional tuning of the synergies from

each subset of muscles and the master set.

Experimental EMG is commonly a noisy signal. To evaluate
the impact of noise on synergies we repeated the analysis for each

number of muscles between 5 and 29 with varying levels of noise.

Noise was added to the estimated activations as a random nor-
mal distribution with a signal-to-noise ratio (SNR) between 0 and

20 dB, adjusted for the level of activity in each muscle. The simi-

larity of the estimated synergies with noise was compared to the
master set, as described above.

IMPACT OF THE CHOICE OF MUSCLES ON SYNERGIES

To improve the similarity of synergies estimated from a subset
of muscles to the master set, we evaluated different methods for

choosing which muscles to include in the analysis. We evaluated

two protocols for choosing muscles and compared the proto-
cols to randomly selected subsets of muscles. We first evaluated

the impact of selecting random sets of muscles from the domi-

nant muscles of the master set of synergies. Dominant muscles
were defined as muscles whose weight was within twenty per-

cent of the maximum weight for each synergy, of which 22 of

the 30 muscles met this criterion in at least one synergy. We var-
ied the threshold for defining dominant muscles from 5 to 30%

and found similar results for the similarity. To select a subset of

muscles from the group of dominant muscles, an equal num-
ber of muscles were chosen from the dominant muscles of each

synergy. For example, for combinations of five muscles, one dom-

inant muscle was selected from each of the four synergies and
then the final muscle was randomly selected from all the remain-

ing dominant muscles. We compared the similarity of random

combinations of 5–21 muscles selected from the dominant mus-
cles to the similarity of the random combinations of muscles

described above.

Selecting dominant muscles based on a synergy analysis of all
relevant muscles requires that researchers have access to a mus-

culoskeletal model appropriate for simulating their experimental
protocol. For cases when this requirement may not be practi-

cal, we also evaluated the impact of selecting muscles according

to size. We selected the largest muscles, according to maximum
isometric force (Table 1), and determined the similarity to the

master set for subsets that included from 5 to 29 of the largest

muscles. These methods were evaluated to provide guidance for
experimental protocols and to assist researchers in deciding which

muscles to measure EMG from for synergy analyses.

RESULTS

COMPARISON OF EXPERIMENTAL AND MODEL SYNERGIES

Synergies estimated from a musculoskeletal model of an upper-
extremity isometric force task were similar to synergies calcu-

lated from experimental EMG (Figure 2). From the experimental

EMG, the average similarity of synergies between subjects was
0.79 ± 0.10 (95% CI: 0.75–0.82). We also calculated synergies

from the musculoskeletal model using the activations of the eight

muscles that had EMG in the experimental protocol. The aver-
age similarity of the synergies from the musculoskeletal model to

the eight subjects’ experimental EMG was 0.72 ± 0.10 (95% CI:

0.65–0.78). Thus, the similarity of synergies estimated from the
musculoskeletal model to the experimental synergies was slightly

less than the inter-subject similarity of synergies from experi-

mental EMG, but not significantly different. From Figure 2, the
primary difference between the model and experimental syner-

gies was the grouping of the posterior deltoid. In the synergies

from the model, the posterior deltoid (DELT3) was grouped with
the triceps while, in the synergies from the experimental EMG,

the posterior deltoid was grouped with the other compartments

of the deltoid. This may be due to the simplified shoulder (i.e.,
ball and socket) used in the model which does not include the

posterior deltoid’s role in controlling other shoulder degrees of
freedom.

SYNERGIES CALCULATED FROM ALL MUSCLES

The relative weightings and grouping of muscles in the syner-

gies calculated from all 30 muscles differed from the synergies

FIGURE 2 | Comparison of synergies calculated from the

musculoskeletal model (dark gray bars) and experimental EMG (black

outlined bars showing average ± one standard deviation and light

gray bars showing synergies of individual subjects). The similarity of

the synergies from the musculoskeletal model and the experimental EMG

were not significantly different from the inter-subject similarity of synergies.
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calculated from the eight muscles included in the experimental
protocol (Figure 3). When all 30 muscles were included in the

analysis, four synergies described 88% of the total variance in

muscle activity. Similar to the analysis with eight muscles, one
synergy was dominated by the biceps (Figure 3, see Synergy 1)

and another synergy was dominated by the triceps (see Synergy

2); however, the dominant muscles of the other synergies included
muscles that were not included in the experimental analysis such

as the latissimus muscles (see Synergy 3) and shoulder rotator

cuff muscles and forearm muscles (see Synergy 4). Additionally,
the grouping and relative weights of muscles differed with thirty

versus eight muscles. For example, in the analysis with eight mus-

cles, the deltoids dominated Synergy 4 and were also coupled with
the pectoralis major clavicular (PECM1) in Synergy 3. However,

FIGURE 3 | Synergies calculated from all 30 muscles included in the

model during an upper-extremity isometric force task. The dominant

muscles of each synergy (defined as within 20% of the maximum value

of each synergy) are shown in dark gray and on the musculoskeletal

models.

when all 30 muscles were included in the analysis, the deltoids did
not dominate one of the synergies and were no longer coupled

with PECM1, suggesting fundamental differences in the grouping

of muscles. The changes in the synergy weights, W, also altered
the synergy activations in the C matrix. The directional tunings

of synergies calculated from all 30 muscles were different from

synergies calculated from the subset of eight muscles used experi-
mentally, with differences in direction ranging from 12.2◦ to 74.5◦

(Figure 4).

If 5 synergies were included in the analysis, the variance
accounted for increased to 92% and included four synergies with

the same dominant muscles as the analysis with four synergies.

The dominant muscles of the fifth synergy included the posterior
deltoid and supraspinatus. To maintain consistency with the prior

experimental analysis, four synergies were used for all subsequent

analyses.

THE IMPACT OF NUMBER OF MUSCLES ON SYNERGIES

The number of muscles included in the synergy analysis impacted
the results from the NNMF algorithm (Figure 5). We compared

the similarity of the synergies calculated from random subsets

that included between 5 and 29 muscles to the synergies calcu-
lated from all 30 muscles (the master set). The average similarity

of the random subsets to the master set was greater than 0.8 for

all subsets that included between 5 and 29 muscles (Figure 5A).
However, the similarity expected by chance increased when fewer

muscles were included in the analysis. When only five muscles

were included in the analysis, the similarity expected by chance
was 0.63 (see dark bars, Figure 5A). Thus, the average normal-

ized similarity (with 0 equal to similarity expected by chance)
was only 0.57 ± 0.54 with five muscles (Figure 5B) and remained

below 0.8 when less than 11 muscles were included in the analysis.

When a small number of muscles were included in the analysis,
the variance in similarity was also greater between subsets. For

example, with five muscles, the average normalized similarity was

0.57 but some combinations of muscles approached perfect simi-
larity while the similarity of other combinations was not different

from similarity expected by chance. The set of five muscles with

the greatest normalized similarity (0.999) included the triceps lat-
eral head, teres major, supinator, latissimus dorsi inferior, and

FIGURE 4 | Directional tuning of the four synergies calculated from all 30 muscles and the subset of eight muscles included in the experimental

analysis. The direction for each synergy was calculated from the activation level of each synergy across all force directions and normalized to unit length.
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FIGURE 5 | (A) Non-normalized similarity calculated as the average

correlation coefficients of synergies calculated from random subsets that

included between 5 and 29 muscles to the synergies calculated from all

30 muscles (light gray bars − average ± 1 standard deviation). The dark

gray bars show the similarity expected by chance for each number of

muscles included in the analysis. (B) Average similarity of synergies from

random subsets to synergies calculated from all 30 muscles normalized

by similarity expected by chance. (C) Average total variance accounted

for by synergies from random subsets. As the number of muscles in the

analysis increased, the total variance accounted for approached the

variance accounted for when all 30 muscles were included in the

analysis (dotted line).

brachioradialis. The normalized similarity of the subset of eight

muscles used in the experimental protocol to the master set of

synergies was 0.52.
The difference in directional tunings of the synergy activa-

tions (C matrix) between subsets of muscles and the master

set decreased as more muscles were included in the analysis.
The average difference in directional tuning compared to the

master set of synergies was 26.2◦ (±15.3◦) when only five mus-

cles were included; however, the difference in directional tuning
decreased to 12.7◦ (±11.0) when 15 muscles were included and

approached zero degrees as the number of muscles increased.

Differences in directional tuning would indicate errors in inter-
preting how synergies are recruited to produce force in various

directions.

Total variance accounted for is often used to determine the
number of synergies to include in an analysis and to evaluate

how well a set of synergies reproduces muscle activity. The aver-

age total variance accounted for decreased with the number of
muscles included in the analysis (Figure 5C). Thus, the average

total variance accounted for was 0.98 ± 0.03 when only five mus-

cles were included in the analysis and decreased to approach the
total variance accounted for by the master set of synergies, 0.88

(see dotted line, Figure 5C) as more muscles were included in
the analysis. Four synergies could more easily describe the vari-

ability in muscle activity when fewer muscles were included in

the analysis. These results demonstrate that experimental analyses
that include fewer muscles may over-estimate the total variance

accounted for compared to an analysis that included all muscles

involved in a task.
The task simulated in this analysis included 1000 force direc-

tions; however, the experimental protocol included either 54 or

210 force directions. We evaluated the impact of the number of
force directions on the normalized similarity and total variance

accounted for. The total variance accounted for was not sensitive

to the number of force directions; however, the normalized sim-

ilarity was reduced when fewer than 100 force directions were

included. Additionally, there was greater variability in the nor-
malized similarity between trials when fewer force directions were

included depending upon the choice and dispersion of the force

directions.

THE IMPACT OF NOISE ON SYNERGIES

Surface EMG is an inherently noisy signal; however, the acti-

vations from a musculoskeletal model estimate muscle activity
without noise. Thus, we sought to determine the impact of

noise on the similarity of synergies to the master set of syner-

gies. Increasing noise decreased the average normalized similarity
(Figure 6), especially for combinations that included less than

15 muscles. Noise with an SNR greater than 10 dB had mini-

mal effect on combinations of muscles that included more than
15 muscles. These results emphasize the importance of maintain-

ing high SNR, especially when fewer muscles are included in the

analysis.

PROTOCOLS TO IMPROVE SIMILARITY OF SYNERGIES

To aid researchers in selecting muscles to include in an experi-

mental protocol for synergy analyses, we evaluated several meth-
ods that could minimize the impact of measuring EMG from a

subset of muscles. The most successful method involved select-

ing a subset of muscles evenly distributed across the domi-
nant muscles from the master set of synergies (Figure 7). The

dominant muscles were defined as muscles that were within

20% of the maximum for each synergy; however, the effec-
tiveness of this method remained similar if the cut-off for

defining dominant muscles was varied between 5 and 30%.

This protocol resulted in a normalized similarity to the mas-
ter set greater than 0.95 for subsets including between 5 and 29

muscles.
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FIGURE 6 | Average normalized similarity vs. number of muscles

included in the synergy analysis for varying levels of noise. Noise was

specified according to a signal-to-noise ratio between 0 and 20 dB.

FIGURE 7 | Average normalized similarity of subsets of muscles

chosen randomly (dotted black line), muscles chosen from subsets of

dominant muscles from the master set (dark gray line), and muscles

selected by size starting with the largest muscles (light gray line).

We also evaluated a method in which the subset of mus-

cles was selected based on muscle size, using the maximal

isometric force of each muscle. Such a method might be use-
ful for the general situation where a musculoskeletal model is

not available but overall muscle sizes might be. Selecting the

largest muscles significantly improved the similarity to the mas-
ter set. The normalized similarity of synergies calculated from

the five largest muscles was 0.75 and all combinations with more

than seven muscles had an average normalized similarity greater
than 0.9.

DISCUSSION

In this study we sought to determine if the number and choice of

muscles with EMG in an experimental protocol will impact the

synergies identified using matrix factorization algorithms, such
as NNMF. We found that the number and choice of muscles does

impact the structure of synergies and the amount of variance in

muscle activity accounted for by a given set of synergies. However,

we were also able to identify several strategies that can be used
to minimize the impact of using a subset of muscles. We also

compared our results from the musculoskeletal model to experi-

mental results and found similar synergies, suggesting that results
from musculoskeletal modeling were comparable to experimen-

tal conditions and can provide a platform for investigating muscle

synergies.
The average similarity of synergies to the master set dropped

below 0.8 when fewer than eleven muscles were included in the

analysis. Prior studies of synergies during upper-extremity tasks
have included between 8 and 19 muscles and thus may be sig-

nificantly impacted by the choice of muscles. For example, our

comparison to synergies from eight muscles used in the exper-
imental protocol by Roh et al. (2012) had a low normalized

similarity to the master set of only 0.52. Although the struc-

ture of two of the four synergies, dominated by the biceps and
triceps, were similar, the other two synergies identified from

the master set were dominated by muscles not included in the

experimental protocol. Furthermore, the relative weighting and
grouping of muscles also changed significantly when all 30 mus-

cles were included in the analysis. Although synergies identified

from a subset of muscles may be able to describe the variance
in EMG activity, they may not correctly reflect how muscles are

recruited or activated together which can impact the functional

interpretations of synergies. Previous studies of similar tasks have
also identified synergies with different structures and dominant

muscles which may be due to the different muscles included

in the experimental protocols (e.g., Cheung et al., 2012; Roh
et al., 2013). Evaluating muscle synergies from a subset of mus-

cles may still be valuable for comparing populations, such as

unimpaired individuals and individuals after stroke, if the same
subset of muscles is used for all groups. However, the limita-

tions of using a subset of muscles involved in a task should be

considered in analyzing the results of synergy analyses and in
generalizing results to the over-arching neuromuscular control

strategy.
Variance accounted for is also commonly used as a mea-

sure to evaluate the results of muscle synergy analyses and

to determine the number of synergies used in a given task.
However, the results of this study highlight that when fewer

muscles are included in the analysis, the variance accounted for

is over-estimated. Using variance accounted for to determine
the number of synergies may result in fewer muscle synergies

being selected than if all muscles were included in the analy-

sis. The impact of the number of muscles included on variance
accounted for suggests that complementary methods, such as

using the ability of synergies to discriminate between tasks (Delis

et al., 2013), should be used to determine the number of syn-
ergies in experimental protocols that include a small subset of

muscles.

To assist with future experimental design, we identified sev-
eral strategies to select muscles which can improve similarity

when only a subset of muscles is included due to experimental

constraints. Selecting from the dominant muscles of the syn-
ergies identified from musculoskeletal simulation was the most

successful method. By selecting an equal number of dominant

muscles from each synergy in the master set, the average similarity
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increased to over 0.95, even for cases with only five muscles.
This approach worked well because it identified important mus-

cles from each synergy of the master set which translated to

similar synergies identified from NNMF. However, since muscu-
loskeletal simulation may not always be available for analysis, we

determined that selecting the largest muscles, as determined by

maximum isometric force, also improved similarity. The largest
muscles have the greatest contribution to movement and force

generation and overlap with the dominant muscles identified with

musculoskeletal simulation. These strategies for choosing which
muscles to include in an experimental protocol are important

for decreasing the sensitivity of synergies to experimental con-

straints and improving our understanding of the generalizability
of synergy analyses.

The synergies calculated from the musculoskeletal model were

similar to the experimental synergies; however, it is impor-
tant to note that the muscle activations from the model were

determined without reference to synergies. Similar to previ-

ous studies, we determined the muscle activations required to
perform the task by minimizing the sum of squared activa-

tions. Thus, no synergies or other coupling between muscles was

incorporated into the musculoskeletal model. Previous studies
have suggested that the lower-dimensional subspace determined

from matrix factorization algorithms may be more reflective

of biomechanical or task constraints rather than the underly-
ing neuromuscular control strategy (Valero-Cuevas et al., 2009;

Kutch and Valero-Cuevas, 2012; Burkholder and Van Antwerp,

2013). The similarity between the synergies calculated from
the model and experiment in this study further reinforce this

theory since we could recover similar synergies as the exper-

imental task in the absence of a control strategy based upon
synergies.

This study also demonstrated how musculoskeletal simula-

tion can be used to complement and optimize experimental
design for muscle synergy analyses. Based upon the posture,

kinematics, and external forces for an experimental protocol,
musculoskeletal simulation can be used to estimate expected

muscle forces and test a priori the impact of experimen-

tal constraints such as the number of muscles with EMG.
Musculoskeletal simulation can also be used to predict the

functional impacts of altered synergies or test if synergies

identified from matrix factorization algorithms can control
movement (Neptune et al., 2009; Allen and Neptune, 2012). Free

musculoskeletal simulation platforms such as OpenSim (Delp

et al., 2007) provide a variety of human and animal models
as well as the simulation algorithms that can be used for these

analyses.

Matrix factorization algorithms provide a valuable tool for
evaluating neuromuscular control of movement through the

framework of synergies. Synergy analyses can provide insight

into lower-dimensional subspaces that describe muscle activity
during a variety of tasks and may reflect the underlying strate-

gies for controlling the complexities of the neuromuscular and

musculoskeletal systems. Muscle synergy analyses are increasingly
being used to evaluate altered neuromuscular control in clin-

ical populations, such as individuals after stroke (Clark et al.,

2010; Cheung et al., 2012; Roh et al., 2013). As the applica-
tions of muscle synergy analysis reach the clinical realm, it is

even more important to understand the limitations and gener-

alizability of these methods. Understanding if the structure of
synergies is altered in clinical populations because of different

control strategies, altered biomechanics, or other factors will be

critical for using synergy analyses to improve treatment and will
require careful experimental design. This study has demonstrated

that, although synergies estimated from NNMF are sensitive to

the number and choice of muscles, there are multiple strate-
gies that can be employed to improve experimental design and

decrease the sensitivity of these analyses to experimental con-

straints. Researchers should especially note the increased risk of
over-estimating the variance accounted for by synergies when

fewer muscles are used in an experimental analysis. Combining

simulation and experimental studies provides a complementary
platform to address these challenges and continue to refine our

knowledge of how humans control movement and interact with

the world.
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