
low weight NFS—Oliver Schirokauer version 20060318

The number field sieve for integers of low weight

Oliver Schirokauer

Department of Mathematics

Oberlin College

Oberlin, OH 44074

Abstract. We define the weight of an integer N to be the smallest w such that N can be represented as
∑w

i=1
ǫi2

ci , with ǫ1,...,ǫw∈{1,−1}. Since arithmetic modulo a prime of low weight is particularly efficient, it is

tempting to use such primes in cryptographic protocols. In this paper we consider the difficulty of the discrete

logarithm problem modulo a prime N of low weight, as well as the difficulty of factoring an integer N of low

weight. We describe a version of the number field sieve which handles both problems. Our analysis leads to

the conjecture that, for N→∞ with w fixed, the worst-case running time of the method is bounded above by

exp((c+o(1))(log N)1/3(log log N)2/3) with c<((32/9)(2w−3)/(w−1))1/3 and below by the same expression with

c=(32/9)1/3((
√

2w−2
√

2+1)/(w−1))2/3. It also reveals that on average the method performs significantly better

than it does in the worst case. We consider all the examples given in a recent paper of Koblitz and Menezes and

demonstrate that in every case but one, our algorithm runs faster than the standard versions of the number field

sieve.

Mathematics subject classification (2000): Primary: 11Y16 Secondary: 11T71, 11Y05, 11Y40

Keywords: discrete logarithm, integer factorization, number field sieve

Acknowledgement. The author wishes to thank Neil Koblitz and Alfred Menezes for inquiring about a low-

weight version of the number field sieve and for their subsequent comments on this paper.

1

1. Introduction.

We define the weight of an integer N to be the smallest w with the property that there

exists a representation of N as the sum

w
∑

i=1

ǫi2
ci ,

with ǫ1, . . . , ǫw ∈ {1,−1}. In 1999, Solinas observed that arithmetic modulo a prime can be

made more efficient if the prime is chosen to be of small weight [15]. More recently, Koblitz

and Menezes, in their investigation of the impact of high security levels on cryptosystems

which are based on the Weil and Tate pairings on elliptic curves over finite fields, have

asked whether there is a downside to using a field in this context whose characteristic has

small weight ([7]). In particular, they raise the concern that discrete logarithms modulo

a prime N might be easier to compute with the number field sieve (NFS) when N is of

low weight than they are in general. The increase in vulnerability may then offset any

efficiency advantages gained by implementing the protocol with a low weight prime.

The concern about primes of low weight is well founded. Indeed, if N is a prime of

the form brc +s, where b, r, and s are all small, then the special number field sieve (SNFS)

can be used to compute discrete logarithms mod N . For b, r, and s bounded and c → ∞,

this algorithm has a conjectural running time of

LN [1/3; (32/9)1/3 + o(1)],

where

LN [s; c] = ec(log N)s(log log N)1−s

.

By comparison, the general NFS has a conjectural running time of

LN [1/3; (64/9)1/3 + o(1)],

for N → ∞. The suggestion, which is supported by the running time analyses of the

methods, is that asymptotically the time it takes to compute a discrete logarithm modulo

a general prime N is about the time required for a special prime of size N2.

The primes under consideration in the present paper are not necessarily of the form

usually handled by the SNFS. However, their low weight does mean that an extension of

the SNFS can be used, which in some cases will be faster than the general NFS. In the

2

next section, we describe this algorithm. Because our results are applicable to the problem

of factoring as well as to the discrete logarithm problem, and in order to avoid discussion

about the existence of primes of fixed weight, we formulate our algorithm as a general

method which takes an arbitrary odd integer N as input and which can be incorporated

either into a method to factor N when N is composite or a method to compute discrete

logarithms mod N when N is prime.

In §3, we analyze the algorithm of the previous section and conjecture that if the

weight of N is a fixed value w, then the running time of the algorithm is bounded above

by LN [1/3; c+ o(1)], where

c <
(32

9

)1/3(2w − 3

w − 1

)1/3

and the o(1) is for N → ∞. Thus, for fixed w, our algorithm is asymptotically faster than

the general NFS. We also exhibit an infinite set of integers N for which the algorithm has

a conjectural running time of

LN [1/3; (32τ2/9)1/3 + o(1)],

where

τ =

√
2w − 2

√
2 + 1

w − 1
.

The reader can consult Figure 3.17 to see that the values of τ2 and (2w − 3)/(w − 1) are

very close. Though the algorithm we present is designed for low-weight inputs, it turns out

that the weight of the input is only a weak indicator of the running time of the method.

Thus the worst-case running times that we conjecture are of limited value. To partially

remedy the situation, we also consider in §3 what happens on average when we restrict to

inputs of a fixed weight.

In the fourth and final section of the paper, we turn to practical considerations. To

get a better sense of the speed-up afforded by small weight inputs, we compare the size

of the numbers that are tested for smoothnes in our algorithm with those arising in other

versions of the NFS. The discrete logarithm problems we use for this investigation are the

seven examples appearing in [7]. Of these, four involve a finite field of degree two over its

prime field. In all but one of the seven examples, the method we describe in §2 is superior

to other versions of the NFS, and in many of these cases, dramatically so.

3

2. The algorithm.

Whether it is being used to factor an integer or to compute discrete logarithms in a prime

field, the number field sieve (NFS) is comprised of two major components. One is an

extensive search, by means of a sieve, for a large number of smooth elements. The other

is a massive linear algebra computation. These steps are preceded by the construction

of a polynomial f with integer coefficients, which determines among other things what

numbers are to be candidates for smoothness in the sieving step. Our purpose in this

section is to describe and analyze a method for choosing f which is particularly well-suited

to the case that the integer to be factored or the characteristic of the field in which discrete

logarithms are to be computed, is of low weight. For the sake of completeness, and in order

to understand the impact of the choice of polynomial, we provide a brief summary of the

NFS in its entirety. We begin with the piece of the algorithm that is common to its

application to both the factoring and discrete logarithm problems.

Algorithm 2.1. This algorithm takes as input

(i) an odd integer N of weight w, represented as the sum

w
∑

i=1

ǫi2
ci ,

with cw > cw−1 > . . . > c1 = 0 and ǫ1, . . . , ǫw ∈ {1,−1}, and

(ii) parameters e, k,B,M ≥ 2, with e integral.

Its purpose is to produce a matrix A which can be used, as described subsequently, for

factoring N or computing discrete logarithms mod N .

Step 1. For i = 1, . . . , w, let c̄i be the least non-negative residue of ci mod e. In addition,

let c̄w+1 = e. Assume that σ is a permutation on the set {1, . . . , w, w + 1} which fixes

w + 1 and has the property that the sequence

c̄σ(1), c̄σ(2), . . . , c̄σ(w), c̄σ(w+1) (2.2)

is non-decreasing, and let J be the largest number such that c̄σ(J+1)− c̄σ(J) is greater than

or equal to the difference between any other pair of consecutive terms in (2.2). Finally,

write µ for the quantity e− c̄σ(J+1), and let

f =
w

∑

i=1

ǫi2
aixbi ,

4

where

ai = c̄i + µ and bi = ⌊ci/e⌋, if σ−1(i) ≤ J,

and

ai = c̄i − c̄σ(J+1) and bi = ⌊ci/e⌋ + 1, if σ−1(i) ≥ J + 1.

It is a straightforward matter to verify that

max |ai| = c̄σ(J) + µ = e− (c̄σ(J+1) − c̄σ(J))

and that

f(2e) = 2µN.

In the case that N is prime, it follows from a result in [5], that f is irreducible. In the

case that N is composite and f factors into a product g1 . . . gm of non-constant irreducible

polynomials, we either obtaining a splitting of N by plugging 2e into the gi or we find

that gi(2
e) is a multiple of N for some i. In the former case, our problem is solved and in

the latter, replacing f by gi only improves the algorithm that follows. For this reason, we

assume from this point onwards that f is irreducible.

Let α ∈ C be a root of f , let η = 2awα, and let O be the ring of integers of Q(α).

Note that η is a root of the monic polynomial g =
∑w

i=1 2ai+aw(bw−bi−1)xbi ∈ Z[x] and

hence η ∈ O. Let ∆ be the discriminant of f , and let T be the set of first degree prime

ideals in O which lie over a rational prime which is prime to ∆ and at most B. Finally,

let d be the degree of f .

Step 2. Recall that an integer is said to be B-smooth if each of its prime factors is at

most B. The goal of this step is to find all pairs (a, b) of relatively prime integers satisfying

|a| ≤M and 0 < b ≤M such that

(a− b2e)f(a/b)bd (2.3)

is B-smooth and prime to ∆. This can be accomplished by means of a sieve (see [2]). Call

the set of such pairs U . If |U | < π(B) + |T | + k, then the algorithm is not successful and

terminates.

Step 3. For each (a, b) ∈ U and each prime ideal q in T , compute vq(2
awa− bη) where vq

is the valuation corresponding to q. Note that in the case that q lies above an odd rational

prime q, the valuation of 2awa− bη is equal to the order of q at bdf(a/b) if η is congruent

5

to 2awa/b mod q and is 0 otherwise. See §12 of [2] for a discussion of how to handle the

case that q|(2). Compute also the valuations vq(2
aw(a − b2e)) where q runs through the

rational primes at most B. Let v(a, b) be the vector with components vq(2
awa − bη) for

q ∈ T and vq(2
aw(a− b2e)) for q ≤ B, and let A be the matrix whose rows are the vectors

v(a, b). This completes the description of Algorithm 2.1.

The matrix A produced by Algorithm 2.1 can be incorporated into a factoring algo-

rithm or a discrete logarithm algorithm. We briefly describe both of these applications.

The many details that are omitted can be found in the references given. In what follows,

we let φ : Z[η] → Z/NZ be the ring homomorphism which sends η to 2aw2e.

Factoring with A. (See [2], [16].) To factor the integer N , we reduce the matrix A mod

2 and augment it with quadratic character columns. Each of these columns is associated

to a degree one prime ideal q of O whose norm is greater than B and is formed by placing

a 0 in the row corresponding to a pair (a, b) if 2awa − bη is a square mod q and placing

a 1 otherwise. It is shown in [2] that if the quadratic characters being used are suitably

independent, which we expect them to be, then the number of columns needed is bounded

by c log N , for some constant c. We also add to A a column containing a 0 in each row

for which the corresponding (a, b) satisfies a− b2e > 0 and containing a 1 in the remaining

rows. Proceeding under the assumption that k is chosen to be at least c log N + 2, we

see that there should exist a linear dependency mod 2 among the rows of our modified

matrix. We find such a dependency using, for instance, the algorithm of [16]. Those rows

appearing in the relation correspond to a subset U ′ of U having the property that the

products
∏

(a,b)∈U ′

2awa− bη (2.4)

and
∏

(a,b)∈U ′

2aw(a− b2e) (2.5)

are squares in O and Z respectively. Let g′ denote the derivative of g. We next multiply

(2.4) by g′(η)2 in order to ensure that the resulting square, call it µ, has a squareroot in

Z[η]. We also multiply (2.5) by g′(2aw2e)2 and call the resulting square ν. By construction

φ(µ) = φ(ν). We now compute a squareroot σ of µ, a squareroot t of ν, and finally

gcd(s − t,N), where s ∈ Z satisfies φ(s) = φ(σ). Since N |(s2 − t2), we expect with

probability at least 1/2 that this gcd will be a non-trivial divisor of N .

6

Computing discrete logarithms with A. (See [13], [14].) Assume that N is prime.

Let τ be an element in Z[η] which factors over T and whose image under φ, call it t, is

primitive. To compute base-t discrete logarithms in Z/NZ with A, we first negate the

values in the columns corresponding to the rational primes q. Next we add a row to A,

containing the values vq(τ) for q ∈ T and 0’s in the components corresponding to the

rational primes q. Finally, we reduce the matrix and augment it with new columns, as

we did in the case of factoring. This time, however, the reduction is modulo a prime

divisor l of N − 1, and the augmentation is with columns containing the values in Z/lZ of

character maps defined on the set of elements of O prime to l (see [11], [14]). The number

of characters required is equal to the unit rank r of O. We would like the modified matrix

that we obtain, call it A′, to be of full rank. Thus, k should be chosen sufficiently large to

make it likely that this condition is met. Assuming that it is satisfied, we solve the matrix

equation A′x ≡ v mod l, where v is the vector with a 1 in the component corresponding

to the row of A′ containing the valuations of τ , and with 0’s elsewhere. The linear algebra

can again be performed by the method in [16].

We claim that the computation is likely to produce, for all rational primes q ≤ B, the

residue mod l of log t(φ(q)). Indeed, as explained in [14], under certain assumptions which

are likely to hold, there exist integers lq, for q ∈ T , and integers x1, . . . , xr such that for

all pairs (a, b),

∑

q∈T

vq(2
awa− bη)lt(q) +

r
∑

i=1

λi(2
awa− bη)xi ≡

∑

q≤B

vq(2
aw(a− b2e))log t(φ(q)) mod l,

where the λi are the character maps mentioned earlier. Additionally, the same values

satisfy the congruence

∑

q∈T

vq(τ)lt(q) +
r

∑

i=1

λi(τ)xi ≡ 1 mod l.

Thus, the system A′x ≡ v mod l has a solution. Since A′ is of full rank, our computation

finds this, and only this, solution, and we obtain the residue mod l of log t(φ(q)) for all

q ≤ B. We now can determine the residue mod l of φ(u) for any B-smooth integer u since

such an integer is, by definition, a product of primes at most B.

The restriction to a prime divisor l of N − 1 is necessitated by the character maps λi

([11]). However, the method just described can be extended to the case of a prime power

7

divisor of N − 1. With the aid of the Chinese remainder theorem, we can then compute

the logarithm of φ(u) for any B-smooth integer u. In fact, it is possible to use the values

lq for q ∈ T to compute the logarithm of φ(u) for any u which factors over T ([14]). For

a discussion of how to reduce the general discrete logarithm problem to the cases just

described, see [4] and [12].

3. Running time.

In this section we provide a worst-case running time analysis of Algorithm 2.1 for inputs

of a fixed weight. Because the algorithm runs in widely varying times for different inputs

of the same weight, we also consider the performance of the method on average for inputs

of a fixed weight.

Our starting point is the special number field sieve (SNFS) described, for instance, in

[10]. This is an algorithm which was originally designed to factor integers N of the form

brc + s, with b, r and s small, and which has been adapted to the computation of discrete

logarithms mod N for primes N of the same form. Its conjectural running time is

LN [1/3; (32/9)1/3 + o(1)] (3.1)

for bounded b, r and s and c → ∞. This is a significant improvement over the running

time of the general number field sieve which runs conjecturally in time

LN [1/3; (64/9)1/3 + o(1)] (3.2)

for N → ∞.

In the case that w = 2, the method for finding f in Algorithm 2.1 is essentially the same

technique as used in the SNFS. Indeed, Algorithm 2.1 can be viewed as a generalization of

the SNFS to larger values of w. As w grows, we expect the algorithm’s running time to span

the distance between the values in (3.1) and (3.2). Our first task is to determine precisely

how this occurs. The conjecture that follows is closely modeled after those appearing in

§11 of [2].

Conjecture 3.3. Fix w, let θ = (2w−3)/(w−1), and assume k = O(log N). It is possible

to pick e,B, and M satisfying

e = (2θ/3 + o(1))(log N)2/3(log log N1/3),

B = M = LN [1/3; (4θ/9)1/3 + o(1)]
(3.4)

8

for N → ∞, such that on input of an integer N of weight w, and parameters e, k,B, and

M , Algorithm 2.1 succeeds in producing a matrix A in time at most

LN [1/3; (32θ/9)1/3 + o(1)] (3.5)

for N → ∞.

Let N be represented as in Algorithm 2.1. That is, N =
∑w

1 ǫi2
ci , with cw > cw−1 >

c1 = 0 and ǫi ∈ {1,−1}. The running time of Conjecture 3.3 is obtained by choosing e so

that the least non-negative residue of cw modulo e is close to 0 or e. The obvious way to

accomplish this is to select d first and then choose e close to cw/d. For our purposes, we

choose d satisfying

d =
((3θ + o(1))log N

2log log N

)1/3

, (3.6)

and let e = ⌊cw/d⌋. Then e satisfies the condition in (3.4). Moreover, for N sufficiently

large, we have d(d + 1) ≤ cw, from which it follows that the degree of the polynomial f

formed in Step 1 of Algorithm 2.1 is d. Since the least positive residue of cw mod e is less

than d and since for N sufficiently large, d− 1 < e/w, we conclude that for N sufficiently

large, the largest gap γ in sequence (2.2) is at least

e
(1

w − 1
− ν

)

,

where

ν =
d− 1

e(w − 1)
.

Recall that the coefficients of f are bounded in absolute value by 2e−γ . Thus, for N

sufficiently large, the numbers which are being tested for smoothness in Step 2 of Algorithm

2.1, that is the numbers given in (2.3), are bounded by the quantity

2dMd+1(2e)2−
1

w−1+ν .

Letting θ = (2w − 3)/(w − 1) and using the fact that e = ⌊cw/d⌋, we see that this bound

is at most 2dMd+1(2cw)(θ+ν)/d which is less than or equal to

2dMd+1(2N)
θ+ν

d . (3.7)

The remainder of our argument in support of Conjecture 3.3 is the same as the one given

following Conjecture 11.4 in [2]. For the sake of completeness but with no claim of origi-

nality, we include it here.

9

For any positive real numbers x, y, let ψ(x, y) denote the number of integers at most

x which are y-smooth. It is proven in [3] that for any ǫ > 0,

ψ(x, x1/w)

x
= w−w(1+o(1)) (3.8)

for w → ∞, uniformly for x ≥ ww(1+ǫ). It follows that in the case that

M0 = B0 = LN [1/3; (4θ/9)1/3]

and z0 equals the quantity in (3.7) with M equal to M0, we have

M2
0ψ(z0, B0)

z0
= B

1+o(1)
0 (3.9)

for N → ∞. Note that we have relied here on the fact that d satisfies (3.6) and that

ν = o(1) for N → ∞. Since the number of pairs (a, b) considered in Step 2 of Algorithm

2.1 is approximately 12M2
0 /π

2 when M = M0, we see that if the numbers tested for

smoothness in Algorithm 2.1 behave with respect to the property of being B0-smooth like

random numbers at most z0, then Algorithm 2.1, upon input of parameters e, k,B0 and

M0, produces a set U of size at least B
1+o(1)
0 . Since the threshold π(B) + |T |+ k given in

Step 2 of Algorithm 2.1 is also equal to B
1+o(1)
0 in this case, we might expect that |U | is

sufficiently large, and that the algorithm succeeds, with parameters close to those given.

In fact, they need only be adjusted slightly.

Let ǫ be any positive real number, let

M = B = LN [1/3; (1 + ǫ)(4θ/9)1/3],

let d and e remain unchanged, and let z equal (3.7) for these values. Observe that

log z

log B
≤ log z0

log B0

and that (log z)/log B → ∞ as N → ∞. It follows, then, from (3.8) and (3.9) that

M2ψ(z,B)

z
≥M2ǫ

0 M2
0

(ψ(z0, B0)

z0

)1+o(1)

= M2ǫ
0 B

1+o(1)
0 = B1+o(1)(1+2ǫ)/(1+ǫ).

We now see that no matter how the o(1) tends to 0 in the equation π(B)+|T |+k = B1+o(1),

there exists a constant Cǫ such that

(12/π2)M2ψ(z,B)

z
≥ π(B) + |T | + k (3.10)

10

for N > Cǫ.

We consider what happens as ǫ goes to 0. That is, for each N sufficiently large, we

choose a positive real number ǫ(N) so that N > Cǫ(N) and so that ǫ(N) → 0 as N → ∞.

Then we see that for N sufficiently large, Algorithm 2.1 should produce a large enough set

U upon input of e as above and M = B = LN [1/3; (1 + ǫ(N))(4θ/9)1/3]. Since ǫ(N) → 0

as N → ∞, our choices for M and B satisfy the condition in (3.4). Moreover, it is easily

verifed that for M and B as such, the time required for Steps 2 and 3 of the algorithm

is equal to M2+o(1). This quantity is equal to (3.5) and our argument in support of

Conjecture 3.3 is complete.

The running time given in Conjecture 3.3 is best possible in the following sense. Let

z again denote the quantity in (3.7). Then it is possible to show rigorously that if (3.10)

holds and if k is chosen sufficiently small so that π(B) + |T | + k = B1+o(1), then M is at

least LN [1/3; (4θ/9)1/3 + o(1)]. See §10 of [2] for details.

Conjecture 3.3, however, does not give the right answer. It turns out that it is not

possible to find an infinite set of integers for which the bound in (3.7) is attained. Indeed,

one might expect that for fixed w, Algorithm 2.1 would run in time (3.5) for N of the form

2c +
w−2
∑

i=0

2

(

i
w−1

)

γ
= 2c +

1 − 2γ

1 − 2γ/(w−1)
,

where γ is the floor of
c

⌊

(

3θlog 2c

2log log 2c

)1/3
⌋ .

Certainly, for these numbers, if d is chosen to be the denominator of the above expression

and e is set equal to γ, then the bound (3.7) is the right one to use and the algorithm

runs in time (3.5). However, choosing d to be slightly smaller, and again letting e = ⌊c/d⌋,
improves the asymptotic running time by forcing the largest gap in sequence (2.2) to be a

little bigger than e/(w − 1).

More generally, we have the following strategy. Assume we are given as input an

integer N of weight w, represented as usual as
∑w

i=1 ǫi2
ci , with ǫi ∈ {1,−1} and cw

maximal. We choose d divisible by w, and proceed by producing two polynomials according

to the method described in Step 1 of Algorithm 2.1, one with e equal to e1 = ⌊cw/d⌋ and

the other with e set equal to e2 = e1w/(w − 1). We then continue the algorithm with

the polynomial which produces the smaller smoothness candidates. The rationale for this

11

approach is the following observation. If in the case that e = e1, the largest gap in (2.2)

is close to e1/(w − 1) then the least non-negative residue mod e1 of each ci is necessarily

close to a multiple of e1/(w − 1). It follows that in the case that e = e2, the largest

gap is close to 2e1/(w − 1). Note that because w|d, we are assured that in this case the

least non-negative residue of cw is again less than d. We find then that when e1 is not

a good choice, the gap in (2.2) corresponding to e2 is significantly better than the worst

case. When we optimize this method, we obtain for all w, a running time which is slightly

better than that of Conjecture 3.3. We leave the details to the interested reader and offer

instead the following result which shows that the room for improvement over Conjecture

3.3 is quite small.

Conjecture 3.11. Fix w, and let

τ =

√
2w − 2

√
2 + 1

w − 1
.

Then there exists an infinite set S of integers of weight w with the property that the time

required by Algorithm 2.1 to produce a matrix A is at least

LN

[1

3
;
(32τ2

9

)1/3

+ o(1)] (3.12)

for N in S tending to ∞.

We argue in support of Conjecture 3.11 by exhibiting a set S with the stated property.

Fix w and a positive real number ρ, and for any integer c ≥ 2, let

h = h(c) = ρ
(log 2c

log log 2c

)1/3

.

In the case that c ≥ (w − 1)(h+ 1), let

Nc,ρ = 2c +
w−2
∑

i=0

2i·
⌊

c
(w−1)(h+1)

⌋

. (3.13)

Finally, let

ζ =

√
2 + 1

2(2
3τ)

1/3
.

Our set S then is the set of numbers Nc,ζ . To determine what happens when they are input

into Algorithm 2.1, we consider various possibilities for the degree d of the polynomial f

12

produced in Step 1. Critical to our approach is the observation that, as a consequence of

the way in which f is formed, the parameter e and the degree d satisfy

c

d+ 1
≤ e ≤ c

d− 1
.

Until otherwise indicated, we assume that N is of the form given in (3.13) and for i =

1, . . . w − 1, we use the notation ci in place of (i− 1)⌊c/((w − 1)(h+ 1))⌋.
Case 1: Assume that d is chosen so that d ≤ h. Then e ≥ c

d+1 ≥ c
h+1 . It follows that

e− cw−1 ≥ c

h+ 1
− (w − 2)

⌊ c

(w − 1)(h+ 1)

⌋

≥ (w − 1)
⌊ c

(w − 1)(h+ 1)

⌋

− (w − 2)
⌊ c

(w − 1)(h+ 1)

⌋

≥
⌊ c

(w − 1)(h+ 1)

⌋

.

Because of the special form of N , the maximal gap in sequence (2.2) is equal either to

⌊c/((w− 1)(h+ 1))⌋ or to e− cw−1, depending on where the least non-negative residue of

c mod e appears in the sequence. In both cases, this maximal gap is at most e − cw−1,

and we conclude that the maximum absolute value of the smoothness candidates in Step

2 is at least

Md+1(2e − 1)2e−(e−cw−1) = Md+1(2e − 1)2(w−2)
⌊

c
(w−1)(h+1)

⌊

.

This quantity is, in turn, bounded below by

l1M
d+1(2c)

1
d+1+ w−2

(w−1)(h+1) ,

for some constant l1 which does not depend on c.

Case 2: Assume that d is chosen so that

h < d ≤ (w − 1)h.

Then e ≤ c
d−1 <

c
h−1 . If e is in addition less than cw−1 then the largest gap in sequence

(2.2) is at most ⌊c/((w−1)(h+1))⌋. If e is greater than cw−1 then it may be that the largest

gap in (2.2) is equal to e−cw−1 and that this difference is greater than ⌊c/((w−1)(h+1))⌋.
However,

e− cw−1 ≤ c

h− 1
− (w − 2)

⌊ c

(w − 1)(h+ 1)

⌋

≤ c

(w − 1)(h+ 1)
+

2c

h2 − 1
+ w − 2.

13

We conclude that the maximum absolute value of the smoothness candidates in Algorithm

2.1 is at least

Md+1(2e − 1)2
e− c

(w−1)(h+1)
− 2c

h2
−1

−(w−2)
,

which, in turn, is at least

l2M
d+1(2c)

2
d+1− 1

(w−1)(h+1)
− 2

h2
−1 , (3.14)

for some constant l2. Note that the upper bound on d ensures that the exponent on 2c in

(3.14) is at least

1

d+ 1
− 2

h2 − 1
=

1 + o(1)

d+ 1
,

where the o(1) is for c→ ∞.

Case 3: In the case that d+ 1 > (w − 1)h, we draw no conclusions about the coefficients

of the polynomial f and simply observe that the maximum absolute value of the numbers

tested for smoothness in Algorithm 2.1 is at least Md+1(2e − 1). In this case, there exists

a constant l3 such that this quantity is at least

l3M
d+1(2c)

1
d+1 .

We now rely on the proof of Lemma 10.12 in [2]. Let M,B, and z be functions of c

and d with the property that M2ψ(z,B)/z ≥ g(B), where g(B) ≥ 1 and g(B) = B1+o(1)

for B → ∞. Assume that z → ∞ as c→ ∞. Then an optimization theorem which appears

earlier in §10 of [2] implies that

M2 ≥ Lz[1/2;
√

2 + o(1)]

for c → ∞. Let D = {(c, d)
∣

∣ d + 1 < c/2}, and let β be a real-valued function on D. In

addition, assume that

(i) cβ ≥ (log 2)−1 for c sufficiently large and

(ii) d+ log (2cβ) → ∞ as c→ ∞.

In the case that

z = lMd+12cβ ,

where l is a constant, Lemma 10.12 then supplies the necessary manipulations to conclude

that for (c, d) ∈ D,

2log M ≥ (1 + o(1))
(

dlog d+
√

(dlog d)2 + 2log (2cβ)log log (2cβ)
)

, (3.15)

14

where the o(1) here, and for the remainder of this discussion, is for c→ ∞ uniformly in d.

For our purposes, we let l be the minimum of l1, l2, and l3, and let

β =











1
d+1 + w−2

(w−1)(h+1) if d ≤ h
2

d+1 − 1
(w−1)(h+1) − 2

h2−1 if h < d ≤ (w − 1)h
1

d+1 if (w − 1)h < d.

Since β ≥ (1 + o(1))/(d+ 1), conditions (i) and (ii) above are met.

From our investigation of Cases 1-3, we see that when Algorithm 2.1 is run with

input N = Nc,ρ subject to the constraint that the degree of f is some value d, the largest

smoothness candidate that arises is at least z = lMd+12cβ in absolute value. Since we are

interested in a lower bound on the running time, we can assume that all the candidates

are, in fact, bounded by z in absolute value. If we then assume that these numbers behave

with respect to B-smoothness as random numbers bounded by z, we find that any value

of M which is sufficiently large that Algorithm 2.1 succeeds must satisfy

(12/π2)M2ψ(z,B)

z
≥ π(B) + T + k,

where T and k are as in the description of the algorithm. Since π(B) + T + k ≥ B1+o(1),

we obtain (3.15) for the β given, so long as we restrict the domain of β to D. However,

this restriction is of no consequence. The parameters adopted in Conjecture 3.3 lead to

smoothness candidates which are at most LN [2/3; ξ+o(1)] for some constant ξ. Since these

candidates are at least 2d+1 in size, regardless of what polynomial f of degree d is used,

we see that the optimal choice of d must satisfy 2d+1 ≤ LN [2/3; ξ + o(1)]. We conclude

that for c sufficiently large,

2d+1 < N
1
3 < (2c+1)1/3 ≤ 2

c
2 .

Thus for c sufficiently large, the only pairs (c, d) of interest are in D.

It remains to minimize (3.15), a task which is accomplished by having (dlog d)2 be

of the same order as the term accompanying it under the square-root sign. In each of the

three cases appearing in the definition of β, we find as a consequence that d must satisfy

d = (δ + o(1))(log 2c/log log 2c)1/3

for some constant δ. Substituting in for d, we determine that

2 log M ≥ (m+ o(1))(log 2c)1/3(log log 2c)2/3, (3.16)

15

where m is the minimum value of

fρ(δ) =



























δ
3 +

(

δ2

9 + 4
3δ + 4(w−2)

3(w−1)ρ

)
1
2

, if δ ≤ ρ

δ
3 +

(

δ2

9 + 8
3δ − 4

3(w−1)ρ

)
1
2

, if ρ ≤ δ ≤ (w − 1)ρ

δ
3 +

(

δ2

9 + 4
3δ

)
1
2

, if δ ≥ (w − 1)ρ.

We leave it to the reader to verify that in the case that ρ = ζ, this minimum occurs at

δ = (3τ2/2)1/3 or (3τ2/2)1/3/
√

2 and is equal to (32τ2/9)1/3. Since 2c < Nc,ρ < 2c+1, we

can replace the quantity 2c in (3.16) with Nc,ρ. Thus we cannot do better than (3.12) on

the set of numbers Nc,ζ . This completes our argument in support of Conjecture 3.11.

The secondary constant in (3.12) is, of course, bounded by the secondary constant in

the running time proposed in Conjecture 3.3. Figure 3.17 below gives the values of these

constants for small values of w. All entries are rounded off to the nearest thousandth. We

note that in the case that w = 2, our upper and lower bounds equal (32/9)1/3 and that

both constants approach (64/9)1/3 as w → ∞.

λ (32τ2/9)1/3 (32θ/9)1/3

w = 2 1.526 1.526 1.526

w = 3 1.729 1.730 1.747

w = 4 1.781 1.796 1.810

w = 5 1.805 1.828 1.839

w = 6 1.819 1.847 1.857

w = 7 1.828 1.860 1.868

w = 8 1.835 1.869 1.876

w = 9 1.840 1.876 1.882

w = 10 1.843 1.881 1.887

Figure 3.17

Though Conjectures 3.3 and 3.11 give important information about Algorithm 2.1

and are easily juxtaposed with analogous conjectures for the SNFS and the general NFS,

they are deceptive. On the one hand the asymptotic improvement over the general NFS

that they report suggests, overly optimistically, that for a given integer N , Algorithm 2.1

should be the method of choice. However, for a given weight w, this improvement is only

realized if N is sufficiently large. Indeed, in §4 we observe that Algorithm 2.1 gives an

16

improvement over standard NFS methods only if w is at most on the same order of d, that

is on the order of (log N/log log N)1/3.

Conjectures 3.3 and 3.11 are also overly pessimistic. As is clear from our analysis,

for a given input N , the running time of Algorithm 2.1 is not so much determined by the

weight of N but by the the largest gap in the sequence (2.2). As the next result shows, this

gap is significantly greater on average than the value e/(w− 1) used to obtain Conjecture

3.3, especially when w is small.

Proposition 3.18. Let w and e be integers greater than or equal to 2. Let S = S(e, w)

be the set of sequences of length w − 2 of non-negative integers less than e. For s ∈ S,

let g(s) be the largest difference between consecutive terms of the sequence obtained by

ordering the elements of s, together with the numbers 0 and e, from smallest to largest.

Then the average value of g(s) as s ranges over S is

1

ew−2

w−2
∑

k=1

kw−2−k(e!)G(e, k + 2)

(e− k)!
, (3.19)

where

G(e, k) =

e
∑

g=⌈ e
(k−1)

⌉
g

⌊ e
g ⌋

∑

j=1

(−1)j+1
(

k−1
j

)

⌊ e
jg ⌋
∑

l=1

(−1)l+1
(

k−2
l−1

)(

e−1−(j+l−1)g
k−(j+2)

)

(

e
k−2

) . (3.20)

Proof. For a given w, let S0 = S0(e, w) be the set of increasing sequences of length w − 2

of distinct non-negative integers less than e. We first calculate the average value of g(s)

as s varies over S0. We accomplish this by counting, for a given value g, the number of s

such that g(s) = g. The first step is to determine for a given g, how many ways there are

to partition e− g into w− 2 parts, subject to the condition that each summand is at least

1 and at most g, and then to multiply by w− 1 to account for the fact that the maximum

gap g can occur at any one of the w − 1 parts of e. Standard, elementary, combinatorial

techniques yield the answer

(w − 1)

⌊e/g⌋
∑

j=1

(−1)j+1

(

w − 2

j − 1

)(

e− 1 − jg

w − 3

)

.

Of course, this tally is too large since those partitions of e containing more than one g

have been counted more than once. We thus need to subtract off the number of ways to

17

partition e− 2g into w− 3 parts, multiplied by
(

w−1
2

)

, add back in the number of ways to

partition e−3g into w−4 parts, multiplied by
(

w−1
3

)

, and so on. Multiplying the resulting

alternating sum by g, summing over all the possible values of g, and dividing by |S0| yields

the value G(e, w) given in (3.20).

Since G(e, w) is also the average value of g(s) as s ranges over the set of sequences of

length w − 2 of distinct non-negative integers less than e, it only remains to handle those

sequences in S(e, w) with repeated terms. We classify these according to how many distinct

terms each such sequence contains. In particular, we observe that for k = 1, . . . , w − 2,

the number of sequences in S(e, w) containing k distinct terms is kw−2−k|S0(e, k)|. The

average value of g(s) for these sequences is G(e, k+2). We find, therefore, that the average

value of g(s) over S(e, w) is

w−2
∑

k=1

kw−2−k|S0(e, k)|G(e, k + 2)

|S(e, w)| .

This expression is the same as (3.19), and the proof of the proposition is complete.

Proposition 3.18 gives us an idea of what to expect when running Algorithm 2.1 on

a number N of weight w. Let cw be the largest exponent appearing in the weight w

representation of N . Then the quantity in (3.19) represents, roughly speaking, the size

of the gap we can expect in sequence (2.2) when Algorithm 2.1 is run with e chosen so

that the least non-negative residue of cw mod e is negligible. It is easy enough to compare

this value with the worst-case value of e/(w − 1). We can make a comparison, however,

that does not depend on e by noting that (3.19) is asymptoticaly linear in e. That is, as

e → ∞ with w fixed, the ratio of (3.19) to e approaches a constant which we call µ(w) .

In Figure 3.21 below, we give for small w, the value of (3.19) divided by e when e = 200

and when e = 1000, the value of µ(w), and for comparison, the value of 1/(w − 1). All

entries are rounded to the nearest one thousandth. The data reveals clearly that one can

expect in practice to fare much better than the running times given in Conjectures 3.3

and 3.11. Though we opt not to provide an analogue of Proposition 3.18 that addresses

the possibility that cw has a large non-negative residue mod e, the implications of the

proposition apply to Algorithm 2.1 in general. Indeed, in the case that e is unconstrained,

the values in the three middle columns of the following chart can only go down.

18

e = 200 e = 1000 µ(w) 1/(w − 1)

w = 3 .753 .751 .750 .500

w = 4 .604 .610 .611 .333

w = 5 .508 .518 .521 .250

w = 6 .439 .453 .457 .200

w = 7 .386 .404 .408 .167

w = 8 .340 .364 .370 .143

w = 9 .301 .332 .340 .125

w = 10 .268 .305 .314 .111

Figure 3.21

Going one step further, we can replace θ with 2 − µ(w) in (3.7) and modify the

statement of Conjecture 3.3 accordingly. In particular, quantity (3.5) with θ replaced by

2−µ(w) represents a kind of average running time for Algorithm 2.1 to succeed upon input

of an integer of weight w and subject to the restriction that cw is close to a multiple of e.

We leave a precise formulation of this statement to the reader.

We conclude this section by noting that the algorithms sketched in §2 which use A

to factor N or compute discrete logarithms mod N , have running times dominated by

the linear algebra computation appearing in those methods. Because of the sparseness

of A, the method in [16] runs in time B2+o(1). Since M and B are taken to be equal

in our analysis of Algorithm 2.1 and since Algorithm 2.1 runs in time M2+o(1), we find

that the results described in this section apply also to the factoring and discrete logarithm

algorithms which incorporate Algorithm 2.1.

19

4. Examples.

In practice, when confronted with a particular N which one wants to factor or modulo

which, one wants to compute logarithms, asymptotic results are of little interest. One

simply wants to choose the best method for the number at hand. In this section, we

compare the performance of Algorithm 2.1 with that of other variations of the number

field sieve (NFS).

The chief factor in determing how fast the sieving stage of these methods runs for

a given input is the size of the numbers being tested for smoothness. The algorithm to

choose is the one with the smallest smoothness candidates. In the standard version of the

NFS for factoring, these numbers are bounded by

2(d+ 1)Md+1N2/(d+1), (4.1)

where M as usual is the bound on the size of the coefficients of the elements considered

for smoothness and d is the degree of the polynomial f . In the case of discrete logarithms

modulo a prime, the best approach, due to Joux and Lercier, is one in which two polynomi-

als are produced having a shared root mod N ([6]). One then works in the two extensions

of Q obtained by adjoining the roots of these polynomials. The smoothness candidates in

this method are bounded by

(d2

4
+

3d

2
+ 2

)

Md+1N2/(d+2), (4.2)

where d is the sum of the degrees of the two extensions being used.

Comparsion of these bounds with the corresponding bound in Algorithm 2.1 al-

ready provides some information. Indeed, if for the sake of simplicity, we use the bound

of Md+1Nθ/d, where θ = (2w − 3)/(w − 1), for Algorithm 2.1 and compare it with

Md+1N2/(d+2), we see immediately that Algorithm 2.1 should begin to outperform other

NFS methods, whether for factoring or discrete logarithms, when θ/d ≤ 2/(d + 2), or

equivalently when

w ≤ d+ 6

4
.

Since d grows very slowly with respect to N , this inequality represents a severe restriction

on w and suggests that Algorithm 2.1 is only useful for numbers of extremely small weight.

However, we have already observed that weight is not a great predictor of performance for

this method. Indeed, each case must be consider individually. This is precisely what we

20

do in this section with the examples from [7]. The first three are for computing logarithms

in prime fields. The remaining four are for computing logarithms in fields of degree two

and are accompanied by a brief discussion of this case in general.

For each example in the prime case, we compare the bounds given in (4.1) and (4.2)

with the size of the largest smoothness candidates tested when Algorithm 2.1 is used. This

quantity is equal to

2dMd+122e−γ ,

where for a given e, we let γ be the largest gap in sequence (2.2) and for a given d, we

choose e between e/(d+ 1) and e/(d− 1) so as to minimize the exponent 2e− γ. For fixed

d, the three bounds are easily ranked, since the Md+1 term can be ignored. For different

d, however, we encounter a problem, since the bounds now depend on the value of M . We

overcome this difficulty by minimizing for a given d, the value of max{M,B} subject to

the constraint, already seen in §3, that

(12/π2)M2ψ(z,B)

z
≥ π(B) + |T | + k, (4.3)

where T and k are as defined Algorithm 2.1 and z is a bound on the size of the smoothness

candidates. We use the resulting minima for our rankings. Our choice of target function

max{M,B} reflects our desire to take into account the linear algebra step that dominates

the NFS once the sieving is complete. Indeed, at least asymptotically, this is the right

function to minimize since the sieve in the NFS runs in time M2+o(1) and the linear

algebra runs in time B2+o(1). Our choice of target also reflects our desire for simplicity,

since we can now take M = B. Recall that this equality holds when Algorithm 2.1 is

optimized on its own, as well as when the sieving stage of any of the other versions of

the NFS is optimized. We further simplify constraint (4.3) by replacing π(B) + |T | + k

with the estimate (d+ 1)B and by using (3.8) to approximate ψ(z,B)/z. We are left then

with the problem of computing, for a given d and a given expression for the bound z, the

smallest M such that

Mu−u ≥ π2(d+ 1)

12
,

where u = (log z)/log M. By comparing the values of M produced, as we vary d and the

NFS version used, we obtain an optimal value of M for N itself.

We include this information in our examples below, albeit with some hesitation as

these numbers are very rough and are generally higher than those found by means of

21

extrapolation techniques such as those used in [8]. We also use this data, in those cases

that Algorithm 2.1 is the best choice for N , to estimate the size of a general prime on

which the NFS variation of Joux and Lercier runs in time approximately equal to that

required by Algorithm 2.1 to compute logarithms mod N . More specifically, we determine

the bit-length of the smallest general prime having the property that when we estimate

how many smoothness candidates must be tested, using bound (4.2) and the same estimate

for ψ(z,B) as before, we obtain in the best case the optimal value of M associated to N .

This bit-length then measures in some sense the NFS-security of N .

Though we have checked, for each example that follows, all feasible values of d, we

only include data for those d for which we estimate the algorithms run fastest. In each

case, the interval from ⌊(3log N/2log log N)1/3⌋ to ⌈(3log N/log log N)1/3⌉ is contained

in the range of d values presented. All values given in the charts are bit-lengths. Only

powers of 2 were considered when determing the optimal values of M . In those cases that

we give the NFS-security of a prime, we round to the nearest 10.

Example 4.4. We consider the weight 7 prime

23202 − 23121 + 23038 + 22947 − 22865 + 22690 + 1.

In this case, we find that the method of Joux and Lercier beats Algorithm 2.1. The “optimal

M” values given below are for the former method. We note that there are degrees for which

the polynomial obtained using Algorithm 2.1 is superior to the one given by the method

of Joux and Lercier. Indeed, when the bit-length of e is close to 90 or 180, the polynomial

produced by Algorithm 2.1 has very small coefficients. The degree in these cases, however,

is far too large to be practical.

2d22e−γ 2(d+ 1)N2/(d+1) (d2

4 + 3d
2 + 2)N2/(d+2) optimal M

d = 5 975 1071 919 78

d = 6 819 919 805 77

d = 7 751 805 717 77

d = 8 661 716 646 77

d = 9 588 645 588 78

d = 10 547 587 540 79

Example 4.5. Our second example, also of weight 7, is the prime

28376 − 28333 + 28288 − 27991 + 27947 + 27604 + 1.

22

In this case, we find that Algorithm 2.1 is the winner. Moreover, the value of 104 bits in

the “optimal M” column corresponds to the optimal value of M obtained when using the

method of Joux and Lercier on a prime of 7470 bits. Thus the NFS-security of this prime

is only about 7470 bits.

2d22e−γ 2(d+ 1)N2/(d+1) (d2

4 + 3d
2 + 2)N2/(d+2) optimal M

d = 9 1428 1680 1529 110

d = 10 1252 1528 1402 108

d = 11 1157 1401 1295 108

d = 12 1090 1294 1203 109

d = 13 1026 1202 1123 111

Example 4.6. Our final example for discrete logarithms in a prime field is the field of

size

215474 − 214954 + 214432 + 1.

Once again, we find that Algorithm 2.1 is the best method. Based on the optimal M in

the degree 14 case, we estimate the NFS-security of this prime to be approximately 13180

bits.

2d22e−γ 2(d+ 1)N2/(d+1) (d2

4 + 3d
2 + 2)N2/(d+2) optimal M

d = 12 1977 2386 2217 137

d = 13 1785 2216 2070 135

d = 14 1621 2069 1941 135

d = 15 1522 1940 1827 136

d = 16 1461 1826 1726 138

The remaining examples concern the computation of logarithms in fields of degree two

over their prime fields. In the case of characteristic p, we denote the field of degree two by

Fp2 . Computation of logarithms in Fp2 can be accomplished using the NFS in much the

same way as described above. The major difference stems from the fact that Fp2 cannot

be represented as a quotient of Z but instead is represented as the quotient of an order of

a quadratic extension K of Q. The number field employed in the NFS is then produced

by adjoining to K the root of a polynomial with integral coefficients, preferably small,

which has a root mod p, also preferably small ([13]). In the case that p has small weight,

the first step of Algorithm 2.1 can be used to find such a polynomial. The bound on the

23

smoothness candidates that arises when working with Fp2 involves various factors resulting

from the replacement of the base field Q by the quadratic field K. However, if we ignore

these terms, which are relatively small, and if we define M suitably (see [13]), then we

obtain as a bound on the size of the smoothness candidates, the value 4d2Md+122(2e−γ),

where for a given d, both e and γ are as they would be if p were input into Algorithm

2.1. Similarly, for the standard algorithms, we use as a bound on the numbers tested for

smoothness the quantity

4(d+ 1)2Md+1(p2)2/(d+1)

in the case that a polynomial is produced by means of the techniques used for factoring

and
(d2

4
+

3d

2
+ 2

)2

Md+1(p2)2/(d+2)

in the case that the method of Joux and Lercier is used to produce two polynomials with

a shared root mod p and in turn, two extensions of K. Thus, for the examples that follow,

we compute the same bit-lengths as we did before and simply double them. We again

include the value of the optimal M for each finite field considered and the accompanying

estimate of the NFS-security. Because the weights of the primes in these examples are so

low, Algorithm 2.1 registers significant gains.

Example 4.7 Our first example of a degree two field is the one of characteristic

2520 + 2363 − 2360 − 1.

In this case, the optimal M when d = 6 corresponds to what we expect for a degree two

field of approximately 880 bits. Note that the best method in the degree 2 and 5 cases is

that of Joux and Lercier.

4d222(2e−γ) 4(d+ 1)2(p2)2/(d+1) (d2

4 + 3d
2 + 2)2(p2)2/(d+2) optimal M

d = 2 685 699 526 52

d = 3 386 527 423 47

d = 4 327 423 354 46

d = 5 317 354 306 48

d = 6 216 305 269 45

d = 7 180 269 241 46

d = 8 199 240 218 51

24

Example 4.8 Our next example is the degree two field of characteristic

21582 + 21551 − 21326 − 1.

The case that d = 7 yields an NFS-security of approximately 2250 bits, significantly lower

than the 3162 bit size of the field.

4d222(2e−γ) 4(d+ 1)2(p2)2/(d+1) (d2

4 + 3d
2 + 2)2(p2)2/(d+2) optimal M

d = 5 799 1062 912 73

d = 6 594 912 800 67

d = 7 520 800 713 66

d = 8 521 712 643 70

d = 9 521 642 586 73

d = 10 491 585 539 76

Example 4.9 In this example, we consider the prime

24231 − 23907 + 23847 − 1.

We estimate that the NFS-security of the degree two field in this case is 5850 bits, again

far below the size of the field.

4d222(2e−γ) 4(d+ 1)2(p2)2/(d+1) (d2

4 + 3d
2 + 2)2(p2)2/(d+2) optimal M

d = 8 1477 1889 1703 107

d = 9 1243 1702 1549 102

d = 10 1055 1548 1422 99

d = 11 901 1420 1314 97

d = 12 830 1312 1221 98

d = 13 778 1219 1141 100

Example 4.10. Our final example is the weight 3 prime

27746 − 26704 − 1.

Our estimate for the NFS-security for the field in this case is merely 9770 bits.

25

4d222(2e−γ) 4(d+ 1)2(p2)2/(d+1) (d2

4 + 3d
2 + 2)2(p2)2/(d+2) optimal M

d = 9 2093 3107 2827 128

d = 10 2093 2826 2593 132

d = 11 2093 2592 2395 135

d = 12 1802 2393 2225 131

d = 13 1502 2223 2078 126

d = 14 1250 2076 1949 122

d = 15 1062 1947 1836 119

d = 16 1127 1833 1735 126

We conclude with a comment about a recent paper of Barreto and Naehrig ([1]) in

which the authors provide a method to construct pairing-friendly elliptic curves. These

curves are defined over a prime field Fp and depend for their security on the intractibility

of the discrete logarithm problem in Fp12 . The primes proposed for the cardinality of Fp

are of the form 36n4 + 36n3 + 24n2 + 6n + 1 for some integer n. Without discussing the

evident difficulty of implementing the NFS for degree 12 fields, we observe that the special

form of p may reduce the difficulty of computing logarithms in Fp12 . In particular, assume

that Fp12 is represented as a residue field of a field K of degree 12 over Q and that we

want to work in an extension of K obtained by adjoining a root of a polynomial with small

coefficients and a small root mod p. Then the polynomial f(x) = 36x4+36x3+24x2+6x+1

is an obvious choice for this polynomial so long as p is small enough that the small degree

of f is not prohibitive. More interesting, however, from the point of view of this paper, is

the fact that for any size p, if n is a power of a small number like 2, then Algorithm 2.1

should produce a polynomial that is preferable to those produced by other methods.

26

References.

[1] S.L.M. Barreto, M. Naehrig, Pairing-friendly elliptic curves of prime order, Selected

Areas in Cryptography – SAC 2005, Lecture Notes in Computer Science, Springer-Verlag,

to appear

[2] J.P. Buhler, H.W. Lenstra, Jr., C. Pomerance, Factoring integers with the number field

sieve, in [9], pp. 50–94

[3] E.R. Canfield, P. Erdös, C. Pomerance, On a problem of Oppenhiem concerning ”fac-

torisatio numerorum”, J. Number Theory 17 (1983), pp. 1–28

[4] A. Commeine, I. Semaev, An algorithm to solve the discrete logarithm problem with the

number field sieve, preprint

[5] M. Filaseta, A further generalization of an irreducibility theorem of A. Cohn, Canad.

J. Math. 34 (1982), pp. 1390–1395

[6] A. Joux, R. Lercier, Improvements on the general number field sieve for discrete loga-

rithms in prime fields, Math. Comp. 72 (2003), pp. 953–967

[7] N. Koblitz, A. Menezes, Pairing-based cryptography at high security levels, Cryptogra-

phy and Coding: 10th IMA International Conference, Lecture Notes in Computer Science,

3796 (2005), pp. 13-36

[8] A.K. Lenstra, Unbelievable security: matching AES security using public key systems,

in Advances in Cryptology - ASIACRYPT 2001, LNCS 2248, Springer-Verlag (2001), pp.

67–86

[9] A.K. Lenstra, H.W. Lenstra, Jr., (eds.),The development of the number field sieve, LNM

1554, Springer-Verlag, 1993

[10] A.K. Lenstra, H.W. Lenstra, Jr., M.S. Manasse, J.M. Pollard, The number field sieve,

in [9], pp. 11–42

[11] O. Schirokauer, Discrete logs and local units, in Theory and Applications of numbers

without large prime factors, R.C. Vaughan ed., Philos. Trans. Roy. Soc. London, Ser. A,

345, Royal Society, London (1993), pp. 409–424

[12] O. Schirokauer, The special function field sieve, SIAM J. Discrete Math. 16 (2002),

pp. 81–98

[13] O. Schirokauer, The impact of the number field sieve on the discrete logarithm prob-

lem, Proceedings of a conference at the Mathematical Sciences Research Institute, Algo-

27

rithmic Number Theory: Lattices, Number Fields, Curves, and Cryptography, Cambridge

University Press, to appear

[14] O. Schirokauer, Virtual logarithms, J. Algorithms 57 (2005), pp. 140-147

[15] J. Solinas, Generalized Mersenne numbers, Technical Report CORR 99-39, University

of Waterloo, 1999

[16] P. Stevenhagen, The number field sieve, Proceedings of a conference at the Mathemat-

ical Sciences Research Institute, Algorithmic Number Theory: Lattices, Number Fields,

Curves, and Cryptography, Cambridge University Press, to appear

[17] D.H. Weidemann, Solving sparse linear equations over finite fields, IEEE Trans. In-

form. Theory 32 (1986), pp. 54–62

28

