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Abstract

Let kr (n,m) denote the minimum number of r-cliques in graphs with n vertices and m
edges. We give a lower bound on kr (n,m) that approximates kr (n,m) with an error smaller
than nr/

(
n2 − 2m

)
. This essentially solves a sixty year old problem.

The solution is based on a constraint minimization of certain multilinear forms. In our
proof, a combinatorial strategy is coupled with extensive analytical arguments.

Keywords: number of cliques; mulitilinear forms; Turán graph.

1 Introduction

Our graph theoretic notation follows [3]; in particular, an r-clique is a complete subgraph on r
vertices.

What is the minimum number kr (n, m) of r-cliques in graphs with n vertices and m edges? This
problem originated with the famous graph-theoretical theorem of Turán more than sixty years ago,
but despite numerous attempts, never got a satisfactory solution, see [2], [4], [5], [6], [7], and [9] for
some highlights of its long history. Most recently, the problem was discussed in detail in [1].

The best result so far is due to Razborov [9]. Applying tools developed in [8], he achieved a
remarkable progress for r = 3. This method, however, failed for r > 3, and Razborov challenged
the mathematical community to extend his result.

The aim of this paper is to answer this challenge. We introduce a class of multilinear forms and
find their minima subject to certain constraints. As a consequence, we obtain a lower bound on
kr (n, m), approximating kr (n, m) with an error smaller than nr/ (n2 − 2m) .

Our proof is build on combinatorial main strategy, complemented with analytical arguments
using Taylor’s expansion, Lagrange’s multipliers, compactness, continuity, and connectedness. We
believe that such cooperation can be developed further and applied to other problems in extremal
combinatorics.
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2 Main results

Suppose 1 ≤ r ≤ n, let [n] = {1, . . . , n} , and write
(
[n]
r

)
for the set of r-subsets of [n] . For a

symmetric n × n matrix A = (aij) and a vector x = (x1, . . . , xn) , set

Lr (A,x) =
∑

X∈([n]
r )

∏
i,j∈X, i<j

aij

∏
i∈X

xi. (1)

Define the set A (n) of symmetric n × n matrices A = (aij) by

A (n) = {A : aii = 0 and 0 ≤ aij = aji ≤ 1 for all i, j ∈ [n]} .

Our main goal is to find min Lr (A,x) subject to the constraints

A ∈ A (n) , x ≥ 0, L1 (A,x) = b, and L2 (A,x) = c,

where b and c are fixed positive numbers. Since every Ls (A,x) is homogenous of first degree in
each xi, for simplicity we assume that b = 1 and study

min {Lr (A,x) : (A,x) ∈ Sn (c)} , (2)

where Sn (c) is the set of pairs (A,x) defined as

Sn (c) = {(A,x) : A ∈ A (n) , x ≥ 0, L1 (A,x) = 1, and L2 (A,x) = c}.
Note that Sn (c) is compact since the functions Ls (A,x) are continuous; hence (2) is defined when-
ever Sn (c) is nonempty. The following proposition, proved in 2.2.3, describes when Sn (c) 6= ∅.

Proposition 2.1 Sn (c) is nonempty if and only if c < 1/2 and n ≥ ⌈1/ (1 − 2c)⌉ .

Hereafter we assume that 0 < c < 1/2 and set ξ (c) = ⌈1/ (1 − 2c)⌉ .
To find (2), we solve a seemingly more general problem: for all c ∈ (0, 1/2) , n ≥ ξ (c) , and

3 ≤ r ≤ n, find
ϕr (n, c) = min {Lr (A,x) : r ≤ k ≤ n, (A,x) ∈ Sk (c)} .

We obtain the solution of (2) by showing that, in fact, ϕr (n, c) is independent of n.
To state ϕr (n, c) precisely, we need some preparation. Set s = ξ (c) and note that the system

(
s − 1

2

)
x2 + (s − 1)xy = c, (3)

(s − 1) x + y = 1, (4)

x ≥ y

has a unique solution

x =
1

s
+

1

s

√
1 − 2s

s − 1
c, y =

1

s
− s − 1

s

√
1 − 2s

s − 1
c. (5)

Write xc for the s-vector (x, . . . , x, y) and let As ∈ A (s) be the matrix with all off-diagonal entries
equal to 1. Note that equations (3) and (4) give (As,xc) ∈ Ss (c) .

Setting ϕr (c) = Lr (As,xc) , we arrive at the main result in this section.
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Theorem 2.2 If c ∈ (0, 1/2) and 3 ≤ r ≤ ξ (c) ≤ n, then ϕr (n, c) = ϕr (c) .

Note first that the premise r ≤ ξ (c) is not restrictive, for, ϕr (n, c) = 0 whenever r > ξ (c) .
Indeed, assume that r > ξ (c) and write y for the r-vector (x, . . . , x, y, 0, . . . , 0) whose last r − s
entries are zero. Writing B for the r × r matrix with As as a principal submatrix in the first s
rows and with all other entries being zero, we see that (B,y) ∈ Sr (c) and Lr (B,y) = 0; hence
ϕr (n, c) = 0, as claimed.

Next, note an explicit form of ϕr (c) :

ϕr (c) =

(
s − 1

r

)
xr +

(
s − 1

r − 1

)
xr−1y

=

(
s

r

)
1

sr

(
1 − (r − 1)

√
1 − 2s

s − 1
c

)(
1 +

√
1 − 2s

s − 1
c

)r−1

.

Since ϕr (c) is defined via the discontinuous step function ξ (c) , the following properties of ϕr (c)
are worth stating:

- ϕr (c) is continuous for c ∈ (0, 1/2) ;
- ϕr (c) = 0 for c ∈ (0, 1/4] and is increasing for c ∈ (1/4, 1/2) ;
- ϕr (c) is differentiable and concave in any interval ((s − 1) /2s, s/2 (s + 1)) .

2.1 The number of cliques

Write kr (G) for the number of r-cliques of a graph G and let us outline the connection of Theorem
2.2 to kr (G). Let

kr (n, m) = min {kr (G) : G has n vertices and m edges} ,

and suppose that kr (n, m) is attained on a graph G with adjacency matrix A = (aij) . Clearly, for

every X ∈
(
[n]
r

)
,

∏
i,j∈X, i<j

aij =

{
1, if X induces an r-clique in G,
0, otherwise.

.

Hence, letting x = (1/n, . . . , 1/n) , we see that

L1 (A,x) = 1, L2 (A,x) = m/n2, and Lr (A,x) = kr (G) /nr;

thus Theorem 2.2 gives

kr (n, m) ≥ ϕr

(
n, m/n2

)
nr = ϕr

(
m/n2

)
nr.

Setting s = ξ (m/n2) = ⌈1/ (1 − 2m/n2)⌉ , we obtain an explicit form of this inequality

kr (n, m) ≥
(

s

r

)
1

sr

(
n − (r − 1)

√
n2 − 2sm

s − 1

)(
n +

√
n2 − 2sm

s − 1

)r−1

. (6)

Inequality (6) turns out to be rather tight, as stated below and proved in Section 2.3.
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Theorem 2.3

kr (n, m) < ϕr

(m

n2

)
nr +

nr

n2 − 2m
.

Note, in particular, that if m < (1/2 − ε) n2, then

kr (n, m) < ϕr

(
m/n2

)
nr + nr−2/2ε,

so the order of the error is lower than expected.

Known previous results

For n2/4 ≤ m ≤ n2/3 inequality (6) was first proved by Fisher [6]. He showed that

k3 (n, m) ≥ 9nm − 2n3 − 2 (n2 − 3m)
3/2

27
= ϕ3

(
m/n2

)
n3,

but did not discuss how close the two sides of this inequality are.
Recently Razborov [9] showed that for every fixed c ∈ (0, 1/2) ,

k3

(
n,
⌈
cn2
⌉)

= ϕ3 (c) n3 + o
(
n3
)
.

Unfortunately, his approach, based on [8], provides no clues whatsoever how large the o (n3) term
is; in particular, in his approach this term is not uniformly bounded when c approaches 1/2. In [9]
Razborov challenged the mathematical community to prove that kr (n, ⌈cn2⌉) = ϕr (c) nr + o (nr)
for r > 3. Our Theorem 2.2 responds to this challenge.

2.2 Proof of Theorem 2.2

We first show that ϕr (n, c) increases in c whenever ϕr (n, c) > 0.

Proposition 2.4 Let c ∈ (0, 1/2) and 3 ≤ r ≤ ξ (c) ≤ n. If ϕr (n, c) > 0 and 0 < c0 < c, then
ϕr (n, c) > ϕr (n, c0) .

Proof Suppose that

ξ (c) ≤ k ≤ n, (A,x) ∈ Sk (c) , and ϕr (n, c) = Lr (A,x) .

Setting α = c0/c, we see that αA ∈ A (k) and

L2 (αA,x) = αLr (A,x) = c0;

thus (αA,x) ∈ Sk (c0) . Hence we obtain

ϕr (n, c) = Lr (A,x) = α−(r

2)Lr (αA,x) > Lr (αA,x) ≥ ϕr (n, c0) ,

completing the proof of Proposition 2.4. 2
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Proof of Theorem 2.2

Let us first define a set of n-vectors X (n) by

X (n) = {(x1, . . . , xn) : x1 + · · · + xn = 1 and xi ≥ 0, 1 ≤ i ≤ n} .

Now the two conditions x ≥ 0 and L1 (A,x) = 1 can be combined into one: x ∈ X (n) .
Assume for a contradiction that the theorem fails: let

c ∈ (0, 1/2) , 3 ≤ r ≤ ξ (c) ≤ n, A = (aij) , x = (x1, . . . , xn) , and (A,x) ∈ Sn (c) (7)

be such that
ϕr (n, c) = Lr (A,x) < ϕr (c) . (8)

Assume that n is the minimum integer with this property for all c ∈ (0, 1/2). Hereafter we shall refer
to this assumption as the “main assumption”. An immediate consequence of the main assumption
is the following

Claim 2.5 If (A,y) ∈ Sn (c) and ϕr (n, c) = Lr (A,y) , then y > 0. �

We introduce now some notation and conventions simplifying the presentation of analytical
calculations. For short, for every i, j, . . . , k ∈ [n] , set

Ci =
∂L2 (A,x)

∂xi
, Cij =

∂L2 (A,x)

∂xi∂xj
, Dij...k =

∂Lr (A,x)

∂xi∂xj · · ·∂xk
,

and note that

Cij = aij, and
∂Lr (A,x)

∂aij

aij = Dijxixj . (9)

Next we spell out the Taylor’s expansion for the functions L2 (A,x) and Lr (A,x) . Letting
y = (x1 + ∆1, . . . , xn + ∆n) , Taylor’s formula gives

L2 (A,y) − L2 (A,x) =

n∑

i=1

Ci∆i +
∑

1≤i<j≤n

Cij∆i∆j (10)

and

Lr (A,y) − Lr (A,x) =

r∑

s=1

∑

1≤i1<···<is≤n

Di1...is∆i1 · · · ∆is. (11)

We also use extensively Lagrange multipliers. Since x > 0, by Lagrange’s method, there exist λ
and µ such that

Di = λCi + µ (12)

for all i ∈ [n]. Likewise, if 0 < aij < 1, we have

∂Lr (A,x)

∂aij

= λ
∂L2 (A,x)

∂aij

= λxixj ,

and so, in view of (9),
Dij = λaij whenever 0 < aij < 1. (13)

The rest of the proof is presented in a sequence of formal claims. First we show that ϕr (n, c) is
attained on a (0, 1)-matrix A.
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Claim 2.6 Let (A,x) ∈ Sn (c) satisfy (7) and (8), and suppose that A has the smallest number of
entries aij such that 0 < aij < 1. Then A is a (0, 1)-matrix.

Proof Assume for a contradiction that i, j ∈ [n] and 0 < aij < 1. By symmetry we assume that
Ci ≥ Cj.

Let

f (α) =
aijα

2 − (Ci − Cj) α

(xi + α) (xj − α)
, (14)

and suppose that α satisfies

0 < α < xj and 0 ≤ aij + f (α) ≤ 1. (15)

Let yα = (x1 + ∆1, . . . , xn + ∆n) , where

∆i = α, ∆j = −α, and ∆l = 0 for l ∈ [n] \ {i, j} , (16)

and define the n × n matrix Bα = (bij) by

bij = bji = aij + f (α) and bpq = apq for {p, q} 6= {i, j} . (17)

Note that Bα ∈ A (n) , yα ∈ X (n) , and

L2 (Bα,yα) − L2 (A,yα) = f (α)
∂L2 (A,yα)

∂aij
= f (α) (xi + α) (xj − α) .

Hence, Taylor’s expansion (10) and equation (14) give

L2 (Bα,yα) − L2 (A,x) = L2 (A,yα) − L2 (A,x) + f (α) (xi + α) (xj − α)

= (Ci − Cj) α − aijα
2 + f (α) (xi + α) (xj − α) = 0;

thus (Bα,yα) ∈ Sn (c) .
Note also that, in view of (9),

Lr (Bα,yα) − Lr (A,yα) =
∂Lr (A,yα)

∂aij
f (α) = f (α) yiyj

Dij

aij

= f (α) (xi + α) (xj − α)
Dij

aij
.

Hence Taylor’s expansion (11), Lagrange’s conditions (12) and (13), and equation (14) give

Lr (Bα,yα) − Lr (A,x) = Lr (A,yα) − Lr (A,x) + f (α) (xi + α) (xj − α)
Dij

aij

= (Di − Dj)α − Dijα
2 + f (α) (xi + α) (xj − α)

Dij

aij

= λ (Ci − Cj) α − Dijα
2 + f (α) (xi + α) (xj − α)

Dij

aij

=
Dij

aij

(
(Ci − Cj) aijα − aijα

2 + f (α) (xi + α) (xj − α)
)

=
Dij

aij
(Ci − Cj) (aij − 1)α ≤ 0.
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If there exists α ∈ (0, xj) such that either aij + f (α) = 0 or aij + f (α) = 1, we see that the matrix
Bα has fewer entries belonging to (0, 1) than A, contradicting the hypothesis and completing the
proof. Assume therefore that 0 < aij + f (α) < 1 for all α ∈ (0, xj) . This implies that

aijxj = Ci − Cj,

for, otherwise limα→xj
|f (α)| = ∞, and so, either aij + f (α) = 0 or aij + f (α) = 1 for some

α ∈ (0, xj).
Now, extending f (α) continuously for α = xj by

f (xj) = lim
α→xj

f (α) = lim
α→xj

aijα (α − xj)

(xi + α) (xj − α)
= − aijxj

xi + xj
,

and defining yxj
and Bxj

by (16) and (17), we obtain

Lr

(
Bxj

,yxj

)
− ϕr (n, c) = Lr

(
Bxj

,yxj

)
− Lr (A,x) ≤ 0.

contradicting the main assumption since the jth entry of yxj
is zero. This completes the proof of

Claim 2.6. 2

Since A is a (0, 1)-matrix with a zero main diagonal, it is the adjacency matrix of some graph
G with vertex set [n] . Write E (G) for the edge set of G, and let us restate the functions Lr (A,x)
in terms of G. We have

L2 (A,x) =
∑

ij∈E(G)

xixj

and more generally,

Lr (A,x) =
∑

{xi1 · · · xir : the set {i1, . . . , ir} induces an r-clique in G} .

To complete the proof we show that (a) G is a complete graph and (b) Lr (A,x) = ϕr (c) .

2.2.1 Proof that G is a complete graph

For convenience we first outline this part of the proof. Write G for the complement of G and E
(
G
)

for the edge set of G. We prove that G is complete by the following sequence of steps:
- if ij ∈ E

(
G
)
, then Ci 6= Cj - Claim 2.7;

- if ij ∈ E (G) , then Dij ≤ λ - Claims 2.8 and 2.9;
- G is triangle-free - Claim 2.10;
- G contains no vertex of degree 3 or higher - Claims 2.11 and 2.12;
- G consists of isolated vertices - Claims 2.11 and 2.13.

Now let us give the details.

Claim 2.7 If ij ∈ E
(
G
)
, then Ci 6= Cj.

7



Proof Assume for a contradiction that ij ∈ E
(
G
)

and Ci = Cj.
Let y = (x1 + ∆1, . . . , xn + ∆n) , where

∆i = −xi, ∆j = xi, and ∆l = 0 for l ∈ [n] \ {i, j} .

We see that y ∈ X (n) , and Taylor’s expansion (10) gives

L2 (A,y) − L2 (A,x) = Cjxi − Cixi = 0;

thus, (A,y) ∈ Sn (c) .
Also, Taylor’s expansion (11) and Lagrange’s condition (12) give

Lr (A,y) − Lr (A,x) = Djxi − Dixi = µ (xi − xi) + λ (Cj − Ci)xi = 0;

thus Lr (A,y) = ϕr (n, c) . Since the ith entry of y is zero, this equality contradicts Claim 2.5,
completing the proof of Claim 2.7. 2

In the next two claims we prove that if ij ∈ E (G) , then Dij ≤ λ.

Claim 2.8 If ij ∈ E (G) , then either Dij ≤ λ or Di = Dj.

Proof Select an edge ij ∈ E (G) and assume that Di 6= Dj. Then Lagrange’s condition (12) gives

Di − Dj = λ (Ci − Cj) ,

and so, Ci 6= Cj; by symmetry suppose that Ci > Cj.
Suppose that 0 < α < xj and let

f (α) =
α2 − (Ci − Cj) α

(xi + α) (xj − α)
. (18)

Next, let yα = (x1 + ∆1, . . . , xn + ∆n) , where

∆i = α, ∆j = −α, and ∆l = 0 for all l ∈ [n] \ {i, j} ,

and define the n × n matrix Bα = (bij) by

bij = bji = 1 + f (α) , and bpq = apq for {p, q} 6= {i, j} .

Note that for α sufficiently small, −1 < f (α) < 0, and so, Bα ∈ A (n) and yα ∈ X (n) .
Taylor’s expansion (10) and equation (18) give

L2 (Bα,yα) − L2 (A,x) = Ciα − Cjα − α2 + f (α) (xi + α) (xj − α) = 0;

thus, (Bα,yα) ∈ Sn (c) .
Also, Taylor’s expansion (11), Lagrange’s condition (12), and equation (18) give

Lr (Bα,yα) − Lr (A,x) = Diα − Djα − Dijα
2 + Dijf (α) (xi + α) (xj − α)

= λ (Ci − Cj)α − Dij (Ci − Cj)α

= α (Ci − Cj) (λ − Dij) .

Since Lr (Bα,yα) ≥ Lr (A,x) and α (Ci − Cj) > 0, we see that Dij ≤ λ, completing the proof of
Claim 2.8. 2
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Claim 2.9 If ij ∈ E (G) and Di = Dj, then Dij ≤ λ.

Proof Assume for a contradiction that ij ∈ E (G), Di = Dj , and Dij > λ. Firts we show that
G − i − j is a complete graph.

Assume that this not the case and select pq ∈ E
(
G
)

such that p, q ∈ [n] \ {i, j} . Claim 2.7
implies that Cp 6= Cq; by symmetry we suppose that Cp > Cq.

Set
P = Cip − Ciq − Cjp + Cjq,

suppose that α > 0 is sufficiently small, and let

f (α) =
α2

Cp − Cq + Pα
. (19)

Next, let yα = (x1 + ∆1, . . . , xn + ∆n) , where

∆i = α, ∆j = −α, ∆p = f (α) , ∆q = −f (α) , and ∆l = 0 for l ∈ [n] \ {i, j, p, q} .

We see that yα ∈ X (n) .
Taylor’s expansion (10) and equation (19) give

L2 (A,yα) − L2 (A,x) = Ciα − Cjα − α2 + (Cp − Cq) f (α) + (Cip − Ciq − Cjp + Cjq) αf (α)

= (Ci − Cj) α − α2 + ((Cp − Cq) + Pα) f (α) = 0;

thus, (A,yα) ∈ Sn (c) .
Setting

Q = Dip − Diq − Djp + Djq − Dijpα + Dijqα,

Taylor’s expansion (11), Lagrange’s condition (12), and the equation Di = Dj give

Lr (A,yα) − Lr (A,x) = (Di − Dj)α − Dijα
2 + (Dp − Dq) f (α)

+ (Dip − Diq − Djp + Djq − Dijpα + Dijqα)αf (α)

= −Dijα
2 + λ (Cp − Cq) f (α) + Qαf (α) .

Hence, recalling that Lr (A,yα) ≥ Lr (A,x) , we see that

−Dijα
2 + λ (Cp − Cq) f (α) + Qαf (α) ≥ 0,

and so,

λ (Cp − Cq) + Qα ≥ Dij
α2

f (α)
. (20)

From equation (19) we have

lim
α→0

α2

f (α)
= lim

α→0
(Cp − Cq + Pα) = Cp − Cq,

9



and, passing to limits in (20), we obtain

λ (Cp − Cq) ≥ Dij (Cp − Cq) ,

contradicting the hypothesis, in view of Cp > Cq. Hence, G − i − j is a complete graph.
There must be a vertex connected in G to both i and j. Otherwise if we remove the edge ij, the

value of Lr (A,x) will remain the same, while L2 (A,x) will decrease, contradicting Proposition 2.4.
By symmetry we suppose that the vertex n is connected to both i and j, and so, n is connected to
every vertex of G other than itself.

Set y = (x1, . . . , xn−1) and let B be the principal submatrix of A in the first (n − 1) columns.
Since

x1 + · · ·+ xn−1 = 1 − xn, (21)

L2 (B,y) = c − xn (1 − xn) , (22)

and
Lr (A,x) = xnLr−1 (B,y) + Lr (B,y) ,

we see that xnLr−1 (B,y) + Lr (B,y) is minimum subject to (21) and (22). Since B ∈ A (n − 1),
by the main assumption, both Lr−1 (B, z) and Lr (B, z) attain a minimum on a complete graph H
and for the same vector z. Since n is joined to every vertex of H, the minimum ϕr (n, c) is attained
on a complete graph too, a contradiction completing the proof of Claim 2.9. 2

Claim 2.10 The graph G is triangle-free.

Proof Assume for a contradiction that there exist i, j, k ∈ [n] such that ij, ik, jk ∈ E
(
G
)
. Let the

line
(Ci − Ck) x + (Cj − Ck) y = 0 (23)

intersect the triangle formed by the lines

x = −xi, y = −xj , x + y = xk

at some point (α, β) .
Let y = (x1 + ∆1, . . . , xn + ∆n) , where

∆i = α, ∆j = β, ∆k = −α − β, and ∆l = 0 for l ∈ [n] \ {i, j, k} .

We see that y ∈ X (n) , and Taylor’s expansion ((10), together with equation (23), gives

L2 (A,y) − L2 (A,x) = Ciα + Cjβ − Ck (α + β) = 0;

thus (A,y) ∈ Sn (c) .
Also, Taylor’s expansion (11), Lagrange’s condition (12), and equation (23) give

Lr (A,y) − Lr (A,x) = Diα + Djβ − Dk (α + β)

= µ (α + β − α − β) + λ ((Ci − Ck)α + (Cj − Ck)β) = 0;

thus Lr (A,y) = ϕr (n, c) . Since y has a zero entry, this equality contradicts Claim 2.5, completing
the proof of Claim 2.10. 2

The following technical claim is necessary for Claims 2.12 and 2.13
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Claim 2.11 G contains no three distinct vertices i, j, k such that ij ∈ E (G) , ik ∈ E
(
G
)
, jk ∈

E
(
G
)
, and (Ci − Ck) (Cj − Ck) > 0.

Proof Assume for a contradiction that i, j, k are such vertices. By Claim 2.9, (Ci − Ck) 6= 0 and
(Cj − Ck) 6= 0. Consider the hyperbola defined by

(Ci − Ck)x + (Cj − Ck) y = xy, (24)

and write H for its branch that contains the origin. By Jordan’s theorem, H intersects the triangle
formed by the lines

x = −xi, y = −xj , x + y = xk

at some point (α, β) .
Let y = (x1 + ∆1, . . . , xn + ∆n) , where

∆i = α, ∆j = β, ∆k = −α − β, and ∆l = 0 for l ∈ [n] \ {i, j, k} .

We see that y ∈ X (n) , and Taylor’s expansion (10), together with equation (24), gives

L2 (A,y) − L2 (A,x) = Ciα + Cjβ − Ck (α + β) − αβ = 0;

thus (A,y) ∈ Sn (c) .
Also, Taylor’s expansion (11), Lagrange’s condition (12), and equation (24) give

Lr (A,y) − Lr (A,x) = Diα + Djβ − Dk (α + β) − Dijαβ

= λ (Ciα + Cjβ − Ck (α + β)) − Dijαβ

= (λ − Dij) αβ.

If Dij = λ, then Lr (A,y) = Lr (A,x) , contradicting Claim 2.5 since y has a zero entry. Hence,
(λ − Dij) αβ > 0. By Claims 2.8 and 2.9 we know that Dij ≤ λ, and so, αβ > 0. In view of
(Ci − Ck) (Cj − Ck) > 0, if a point (x, y) belongs to H , then xy < 0; hence αβ < 0, a contradiction
completing the proof of Claim 2.11. 2

Claim 2.12 The graph G has no vertex of degree 3 or higher.

Proof Assume for a contradiction that i, j, k, l are distinct vertices such that ij ∈ E
(
G
)
, ik ∈

E
(
G
)
, and il ∈ E

(
G
)
. Since G is triangle-free, we see that jk ∈ E (G) , kl ∈ E (G) , and

lj ∈ E (G). Claim 2.7 implies that the values (Ci − Cj) , (Ci − Ck) , and (Ci − Cl) are nonzero;
since two of them have the same sign, by symmetry we suppose that (Ci − Cj) (Ci − Ck) > 0. We
see that the existence of the vertices i, j, k contradicts Claim 2.11, completing the proof of Claim
2.12. 2

The next claim finishes the proof that G is a complete graph.

Claim 2.13 G consists of isolated vertices.
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Proof Claim 2.12 implies that all components of G are paths, cycles, or isolated vertices. Note
first that no component of G can be an isolated edge in G. Indeed, if ij ∈ E

(
G
)

were such an edge,
then i and j have the same neighbors in G, and so, Ci = Cj , contradicting Claim 2.7.

Next, assume that the path 1, . . . , k is a component of G for some k ≥ 3. In G vertex 1 is
joined to every neighbor of vertex 2, and so, C1 > C2; likewise we find that Ck > Ck−1. Hence
Ci−1 > Ci < Ci+1 for some 1 < i < k. Since (Ci−1 − Ci) (Ci+1 − Ci) > 0, the vertices i − 1, i, i + 1
form a configuration contradicting Claim 2.11.

Finally, assume that a cycle 1, . . . , k is a component of G for some k ≥ 3. Since G is triangle-
free, we see that k ≥ 4 and ij ∈ E (G) whenever |i − j| = 2 mod k. By symmetry we suppose
that C2 = max (C1, . . . , Ck) . Since {1, 2} ∈ E

(
G
)

and {2, 3} ∈ E
(
G
)
, by Claim 2.7, C1 < C2 and

C3 < C2. Thus, (Ci − C2) (C3 − C2) > 0 and the vertices 1, 2, 3 form a configuration contradicting
Claim 2.11 and completing the proof of Claim 2.13. 2

2.2.2 Proof of Lr (A,x) = ϕr (c)

We know now that G is a complete graph. We have to show that n = ξ (c) and (x1, . . . , xn) =
(x, . . . , x, y) , where x and y are given by (5). Our proof is based on the following assertion.

Claim 2.14 Let x3 ≥ x2 ≥ x1 > 0 be real numbers satisfying

x1 + x2 + x3 = a, (25)

x1x2 + x2x3 + x3x1 = b, (26)

and let x1x2x3 be minimum subject to (25) and (26). Then x2 = x3.

Proof First note that the hypothesis implies that

a2/4 < b ≤ a2/3. (27)

Indeed, the second of these inequalities follows from Maclaurin’s inequality; assume for a contra-
diction that the first one fails. Then, selecting a sufficiently small ε > 0 and setting

y1 = ε, y2 =
a − ε −

√
(a + ε)2 − 4 (b + ε2)

2
, y3 =

a − ε +
√

(a + ε)2 − 4 (b + ε2)

2
,

we see that y1, y2, y3 satisfy (25), (26), and

y1y2y3 = ε
(
b − aε + ε2

)
< εb.

Thus, min x1x2x3, subject to (25) and (26), cannot be attained for positive x1, x2, x3, a contradic-
tion, completing the proof of (27).

By Lagrange’s method there exist η and θ such that

x1x2 = η + θ (x1 + x2) = η + θ (a − x3)

x1x3 = η + θ (x1 + x3) = η + θ (a − x2)

x2x3 = η + θ (x2 + x3) = η + θ (a − x1) .
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If θ = 0 we see that x1 = x2 = x3, completing the proof. Suppose θ 6= 0 and assume for a
contradiction that x2 < x3. We find that

x1 (x3 − x2) = θ (x3 − x2) ,

x2 (x3 − x1) = θ (x3 − x1) ,

and so, x1 = x2. Solving the system (25,26) with x1 = x2, we obtain

x3 =
a

3
+

2

3

√
a2 − 3b, x1 = x2 =

a

3
− 1

3

√
a2 − 3b,

implying that

x1x2x3 =

(
a

3
+

2

3

√
a2 − 3b

)(
a

3
− 1

3

√
a2 − 3b

)2

. (28)

If b = a2/3, we see that x1 = x2 = x3, completing the proof, so suppose that b < a2/3. We shall
show that min x1x2x3, subject to (25) and (26), is smaller than the right-hand side of (28). Indeed,
setting

y1 =
a

3
− 2

3

√
a2 − 3b, y2 = y3 =

a

3
+

1

3

√
a2 − 3b,

in view of (27), we see that y1, y2, y3 satisfy (25) and (26). After some algebra we obtain

y1y2y3 − x1x2x3 = − 4

27

(
a2 − 3b

)3/2
< 0.

This contradiction completes the proof of Claim 2.14. 2

Claim 2.14 implies that, out of every three entries of x, the two largest ones are equal; hence all
but the smallest entry of x are equal. Writing y and x for the smallest and largest entries of x, we
see that x and y satisfy

(
n − 1

2

)
x2 + nxy = c,

(n − 1)x + y = 1,

y ≤ x,

and so,

y =
1

n
−
√

1 − 2
n

n − 1
c, x =

1

n
+

1

n

√
1 − 2

n

n − 1
c.

Since the condition 1 − 2nc/ (n − 1) ≥ 0 gives

n ≥ 1

1 − 2c
,

and y > 0 gives

1 − 2c <
1

n
+

1

n2
<

1

n − 1
,

we find that n = ξ (c) , completing the proof of Theorem 2.2. �
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2.2.3 Proof of Proposition 2.1

Suppose that Sn (c) is nonempty and that

A ∈ A (n) , x ≥ 0, L1 (A,x) = 1, and L2 (A,x) = c.

Then

c =
∑

1≤i<j≤n

aijxixj ≤
∑

1≤i<j≤n

xixj =
1

2

(
∑

i

xi

)2

− 1

2

∑

i

x2
i ≤ n − 1

2n
<

1

2
,

and so, c < 1/2 and n ≥ 1/ (1 − 2c) ; thus n ≥ ⌈1/ (1 − 2c)⌉ .
On the other hand, if c < 1/2 and n ≥ ⌈1/ (1 − 2c)⌉ , let A ∈ A (n) be the matrix with all

off-diagonal entries equal to 1, and let x, y satisfy
(

n − 1

2

)
x2 + (n − 1)xy = c,

(n − 1)x + y = 1.

Writing x for the n-vector (x, . . . , x, y) , we see that L1 (A,x) = 1 and L2 (A,x) = c; thus Sn (c) is
nonempty, completing the proof. �

2.3 Upper bounds on kr (n, m)

In this section we prove Theorem 2.3. We start with some facts about Turán graphs.
The s-partite Turán graph Ts (n) is a complete s-partite graph on n vertices with each vertex

class of size ⌊n/s⌋ or ⌈n/s⌉ . Setting ts (n) = e (Ts (n)) , after some algebra we obtain

ts (n) =
s − 1

2s
n2 − t (s − t)

2s
,

where t is the remainder of n mod s; hence,

s − 1

2s
n2 − s

8
≤ ts (n) ≤ s − 1

2s
n2. (29)

It is known that the second one of these inequalities can be extended for all 2 ≤ r ≤ s :

kr (Ts (n)) ≤
(

s

r

)(n

s

)r

. (30)

The Turán graphs play an exceptional role for the function kr (n, m) : indeed, a result of Bollobás
[2] implies that if G is a graph with n vertices and ts (n) edges, then kr (G) ≥ kr (Ts (n)) ; hence,

Fact 2.15 kr (n, ts (n)) = kr (Ts (n)) . �

Thus to simplify our presentation, we assume that n ≥ s ≥ r ≥ 3 are fixed integers and m is an
integer satisfying ts−1 (n) < m ≤ ts (n).

First we define a class of graphs giving upper bounds on kr (n, m) .
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2.3.1 The graphs H (n, m)

We shall construct a graph H (n, m) with n vertices and m edges, where n, s, and m satisfy n ≥ s ≥ 3
and ts−1 (n) < m ≤ ts (n) . Note that the construction of H (n, m) is independent of r.

First we define a sequence of graphs H0, . . . , H⌊n/s⌋ satisfying

ts−1 (n) = e (H0) < e (H1) < · · · < e
(
H⌊n/s⌋

)
= ts (n) , (31)

and then we construct H (n, m) using H0, . . . , H⌊n/s⌋.

The graphs H0, . . . , H⌊n/s⌋

For every 0 ≤ i ≤ ⌊n/s⌋ , let Hi be the complete s-partite graph with vertex classes I, V1, . . . , Vs−1

such that |I| = i and

⌊(n − i) / (s − 1)⌋ = |V1| ≤ · · · ≤ |Vs−1| = ⌈(n − i) / (s − 1)⌉ .

Note that H0 is the (s − 1)-partite Turán graph Ts−1 (n) , but it is convenient to consider it
s-partite with an empty vertex class I. Note also that H⌊n/s⌋ = Ts (n) .

The transition from Hi to Hi+1 can be briefly summarized as follows: select Vj with |Vj| =
⌈(n − i) / (s − 1)⌉ and move a vertex u from Vj to I.

In particular, we see that

e (Hi+1) − e (Hi) = ⌈(n − i) / (s − 1)⌉ − i > 0,

implying in turn (31).

Constructing H (n, m)

Let I, V1, . . . , Vs−1 be the vertex classes of Hi. Select Vj with |Vj | = ⌈(n − i) / (s − 1)⌉, select a
vertex u ∈ |Vj | , let l = ⌈(n − i) / (s − 1)⌉ − 1, and suppose that Vj\ {u} = {v1, . . . , vl} . Do the
following steps:

(a) remove all edges joining u to vertices in I;
(b) move u from Vj to I, keeping all edges incident to u;
(c) for m = e (Hi) + 1, . . . , e (Hi+1) join u to vm−e(Hi) and write H (n, m) for the resulting

graph.
Two observations are in place: first, e (H (n, m)) = m, and second, H (n, e (Hi)) = Hi for every

i = 1, . . . , ⌊n/s⌋ .
Note also that every additional edge in step (c) increases the number of r-cliques by kr−2 (H ′) ,

where H
′

is the fixed graph induced by the set [n] \ (I ∪ Vj) . We thus make the following

Claim 2.16 The function kr (H (n, m)) increases linearly in m for e (Hi−1) ≤ m ≤ e (Hi) .

We need also the following upper bound on kr (Hi) .
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Claim 2.17

kr (Hi) ≤
(

s − 1

r − 1

)(
n − i

s − 1

)r−1

i +

(
s − 1

r

)(
n − i

s − 1

)r

Proof Let I, V1, . . . , Vs−1 be the vertex classes of Hi. Since the sizes of the sets V1, . . . , Vs−1 differ
by at most 1, we see that the set V1 ∪ . . . ∪ Vs−1 induces the Turán graph Ts−1 (n − i) . Hence a
straightforward counting gives

kr (Hi) ≤ kr−1 (Ts−1 (n − i)) i + kr (Ts−1 (n − i)) ,

and the claim follows from inequality (30). 2

2.3.2 Proof of Theorem 2.3

Assume that x is a real number satisfying

s − 2

2 (s − 1)
n2 < x ≤ s − 1

2s
n2.

and define the functions p = p (x) and q = q (x) by

p ≥ q, (32)

(s − 1) p + q = n, (33)
(

s − 1

2

)
p2 + (s − 1) pq = x. (34)

We note that

p (x) =
1

s

(

n +

√
n2 − 2s

s − 1
x

)

, q (x) =
1

s

(

n − (s − 1)

√
n2 − 2s

s − 1
x

)

.

Set

f (x) =

(
s − 1

r

)
pr +

(
s − 1

r − 1

)
pr−1q, (35)

and note that f (x) = ϕr (x/n2) nr; hence, to prove Theorem 2.3, it is enough to show that if

s − 2

2 (s − 1)
n2 < m ≤ s − 1

2s
n2,

then

kr (n, m) ≤ f (m) +
nr

n2 − 2m
. (36)

We first introduce the auxiliary function f̂ (x) , defined for x ∈ [ts−1 (n) , ts (n)] by

f̂ (x) =






f
(
x + s−1

8

)
, if ts−1 (n) < x ≤ s−1

2s
n2 − s−1

8
;

f
(

s−1
2s

n2
)
, if s−1

2s
n2 − s−1

8
< x ≤ ts (n) .
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To finish the proof of Theorem 2.3 we first show that

kr (H (n, m)) ≤ f̂ (m) , (37)

and then derive (36) using Taylor’s expansion and the fact that kr (n, m) ≤ kr (H (n, m)) .

Claim 2.18 If m = e (Hi) , then

kr (Hi) ≤ f

(
m − ts−1 (n − i) +

s − 2

2 (s − 1)
(n − i)2

)
.

Proof Indeed, as mentioned above, the set V1 ∪ · · · ∪ Vs−1 induces a Ts−1 (n − i) ; hence,

i (n − i) + ts−1 (n − i) = m,

and so,

i (n − i) +
s − 1

2s
(n − i)2 = m − ts−1 (n − i) +

s − 1

2s
(n − i)2 .

Set

m′ = m − ts−1 (n − i) +
s − 1

2s
(n − i)2

and note that i = q (m′) . In view of Claim 2.17, we obtain

kr (Hi) ≤
(

s − 1

r − 1

)(
n − i

s − 1

)r−1

i +

(
s − 1

r

)(
n − i

s − 1

)r

= f (m′) ,

completing the proof. 2

Claim 2.19 f
′

(x) =
(

s−2
r−2

)
pr−2.

Proof From (35) we have

f (x) =

(
s − 1

r − 1

)(
s − r

r
pr + pr−1q

)
,

and so,

f ′ (x) =

(
s − 1

r − 1

)(
(s − r) pr−1p′ + (r − 1) pr−2qp′ + pr−1q′

)
.

From (33) and (34) we have
(s − 1) p′ + q′ = 0

and
(s − 1) ((s − 2) pp′ + p′q + pq′) = (s − 1) p′ (q − p) = x′ = 1.

Now the claim follows after simple algebra. 2

We immediately see that f (x) is increasing. Also, since p (x) is decreasing, f
′

(x) is decreasing

too, implying that f (x) is concave. This, in turn, implies that f̂ (x) is concave.
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For every i = 1, . . . , ⌊n/s⌋ , by Claim 2.18, we have

kr (Hi) ≤ f (m′) ≤ f̂ (m) ,

and since, by Claim 2.16, kr (H (n, m)) is linear for m ∈ [e (Hi) , e (Hi+1)] , inequality (37) follows.
To finish the proof of (36), note that by Taylor’s formula, in view of the concavity of f (x) , we

have

f̂ (m) ≤ f

(
m +

s − 1

8

)
≤ f (m) +

s − 1

8
f ′ (m) = f (m) +

s − 1

8

(
s − 2

r − 2

)
pr−2

≤ f (m) +
s − 1

8

(
s − 2

r − 2

)(
n

s − 1

)r−2

< f (m) + snr−2 ≤ f (m) +
nr

n2 − 2m
,

completing the proof of Theorem 2.3. �
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