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Abstract. In 1946 P. Erdrs posed the problem of determining the minimum number 
d(n) of different distances determined by a set of n points in the Euclidean plane. 

Erdrs proved d(n) > 1/z _ cn and conjectured that d(n) > c n / l x / ~  n. If true, this in- 
equality is best possible as is shown by the lattice points in the plane. We show 
d(n) > n'*/S/(log n) c. 

1. Introduction 

In 1946 Erdrs [3] posed the problem of determining the minimum number d(n) 
of different distances determined by a set of n points in the Euclidean plane. Erdrs 
proved d(n) > cn 1/z and conjectured that d(n) > c n / x / ~ g  n. If true, this inequality 
is best possible as is shown by the lattice points in the plane. 

Despite its apparent simplicity, progress on this problem has been slow. In 1952 
Moser [4] proved that d(n) > cn 2/3 and this result stood as the best-known lower 
bound on d(n) for more than 30 years. In 1984 Chung [2] proved d(n) > cn 5/7. 
Subsequently Beck [ t ]  improved this to d(n) > n ~ss/sll-~. 

Using the methods introduced by Szemerrdi and Trotter 16], [7] on incidences 
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between points and lines, and by Spencer, Szemer6di, and Trotter I-5] on unit 
distances, it is relatively straightforward to show that d(n) > cn a/4. However, in 
this article we combine techniques to show that d(n) > n4/5/(log n) ~. 

Throughout this paper we consider finite sets of points in the Euclidean plane. 
We impose a cartesian coordinate system and choose a unit distance. When 
x = (xt, x2) and y = (Yl, Y2) are points in the plane, we let dist(x,y) denote the 
distance between x and y, i.e., dist(x,y) = ~ - -  y l )  2 + ( x  2 - y2) 2. 

When P = {x~, x2 . . . . .  xn) is a set of n distinct points in the plane, we let D(P) 
denote the set of distances determined by the points in P, i.e., D(P) = {dist(x i, xi): 
1 < i < j  < n}. We also let d(P) = ID(P)I so that d(P) counts the r~umber of different 
distances determined by P. Using this notation, the principal goal of this paper 
is to prove the following theorem. 

Theorem 1. There exists an absolute constant c 1 > 0 so that if n >_ 10 and P is 
any set of n distinct points in the Euclidean plane, then the number d(P) of different 
distances determined by P satisfies d(P) > n4/5/(log n) ~'. 

Our proof for Theorem 1 depends in part on the following inequality of 
Szemer6di and Trotter [7]. 

Theorem 2. There exists an absolute constant c 2 ~. 0 so that if 2 < k < x//~ and 
P is a set of n points in the plane, then the number of lines containing at least k 
points of P is less than c2n2/k 3. 

2. Distances--The Bipartite Version 

In order to establish Theorem 1, we first prove a bipartite version from which 
Theorem 1 follows as an immediate corollary. When P and Q are disjoint sets of 
points in the plane, we let D ( P , Q ) =  {dis t (x ,y): .xEP,  y ~ Q }  and d (P ,Q)=  
ID(P, Q)I- 

Theorem 3. There exists an absolute constant c a > 0 so that if n >_ 10, and P and 
Q are disjoint point sets in the Euclidean plane with IPt = IQI = n ,  then d(P, Q) > 
n4/S/(log n) c3. 

Proof. We will show that the desired inequality holds when c = c 3 is sufficiently 
large. Our argument requires that c be suitably large in comparison with the 
absolute constant c2 in Theorem 2. Although it is widely believed that Theorem 
2 holds for some Cz less than 10, the proof given in [71 yields the value Ca = 1018°. 
So in the remainder of the proof, we take c = c3 = 10 z°°, admittedly a generous 
choice. 

Now suppose that the conclusion of the theorem fails for this value of c. Choose 
the least value of n for which this occurs and let P and Q be disjoint n-element 
point sets in the plane for which d(P, Q) < n4/S(log n) c. 
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For  each i = 0, 1, 2 . . . . .  20, let M i = (log n) 1°i and let I-niMbi. Note that n o = n. 
In what follows, we identify subsets of P and Q which will satisfy certain desired 
properties. This is done in a series of (at most 20) steps, and at each step we select 
a subset of the set resulting from the previous step. The sizes of the sets behave 
like the sequence n o, n 1 . . . . .  n2o. The reader may note that the argument only 
requires that n~+ 1 be a small positive fraction of n~, except at one critical step 
where we actually require that n~+ 1 be smaller than n~ by a logarithmic factor. 
However, the presentation of the argument is simplified by using the most  
restrictive requirement at each step. 

Of all the discs which cover at least n~ points of P, choose one, say D 1, so that 
the radius rt of D 1 is as small as possible. We consider points on the circular 
boundary of the disc to be covered by the disc. Also, choose a disc D 2 of minimum 
radius r 2 covering at least n~ points of Q We assume r~ < r2; else reverse the 
roles played by P and Q in the remainder of the argument. Let u o denote the 
center of disc D1, and choose a subset P1 consisting ofn~ points of P covered by D~. 

Claim. There exists  a number r o satisfying r o >_ 101°rt for  which there are at least 
102°nl points o f  Q in the annulus {y~R2:  r 0 <_ dist(uo,y ) < r o + 3rl}. 

Proof  Suppose the claim is false. Set K = [-n/lO4°nl], and define a sequence s o, 
sl . . . . .  s2K- 1 and pairwise disjoint subsets So, $1, $2 . . . . .  S 2 x -  1 of Q as follows. 
First, set So = 101°rl and So = {yE Q: 0 _< dist(uo,y) <_ So}. It is easy to see that 
So can be covered by 1025 circles of radius rl/2, so we can safely say [Sol < 103°hi • 

When i is even, let si+ 1 be the least number exceeding si for which the set 
Si+l = { y ~ Q :  s~ <_ dist(uo,y) <_ si+l} contains at least 102o nl points. Since 
d(P, Q) = d < n~, we can safely say 102°nl _< ISi+xl - 103%1 when i is even. The 
upper bound follows from the fact that it is impossible for any circle centered at 
Uo to contain 2nl points of Q, for this would imply that any point of P not located 
at Uo determines nl different distances with these points. 

When i is odd, we take s~+ 1 = s~ + 3r 1 and 

Si+ l = {Y ~ Q: si < dist(uo,y) < Si+l}. 

By assumption, ISi+xl < 103°nr Now consider the pairwise disjoint subsets 
$1, $3, $5 . . . . .  S2K-1. Each contains more than nl points so that 

d(P1, S2 j -  1) > n'~/S/(log nl) c 

for each j = 1, 2 . . . . .  K. Furthermore,  if x ~ Pt  and y ~ S2j-  t, then 

S 2 j -  2 - -  r I < dist(x,y)  < s2i-1 + rx. 
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If 1 < j  < k ~ K, then s2j_ 1 + 3rl <_ s2k_ 2, SO S2j_ 1 "~- r I < (S2k_ 2 - -  / '1) - -  rl, i.e., 
all distances in D(P~, $2~- 1) are smaller than all distances in D(P 1, S2k- 1). Thus 

a(e, 0) > _ - -  

~> 

> 

Kn~/5 

(log nx) c 

Fn/lO4°nlqn~/5 

(log n) c 

((log n)2 / l O'~°)n */ 5 

(log n) c 

Since n4/S/(log n) c > d(P, Q), it follows that log n _< 10 2°. To obtain a contradic- 
tion and complete the proof of the claim, we employ Erd/Ss' original argument 
[3]. Choose distinct points x, x ' e  P. If there exists a circle C centered at x 

containing a subset Q(C) of at least x/~ points of Q, then d({x'}, Q(C)) > I Q(C)t/2 >- 
v/n/2. Thus n4/5/(log n) c > x/~/2, which fails when (log n) < 1020 which is forced 
by the size of the constant c. However, if no such circle exists, then d(P, Q) > 

d({x}, Q) > x//n, which cannot hold when (log n) < 102°. The contradiction com- 
pletes the proof of the claim. [] 

By the pigeon-hole principle, we can choose two rays emanating from Uo and 
enclosing an angle of 5 ° for which there is a subset Qo of 101°nl points of Q so 
that all points of Qo are in the annulus ( y ~ R 2 :  ro < dist(uo,y) < ro + 3rl} and 
are within the 5 ° angular region formed by the rays (Fig. 1). 

Using rays emanating from Uo, partition the region containing Q0 into 10 s 
regions each covering at least 90nl points from Qo. Denote the subsets by 
Q1, Q2 . . . . .  Qlo 8 and the angles determining them as 01, 02 . . . .  , 0108 .  Let 
0o = min{0~: 1 < i <  10a}. Without loss of generality, there is some io with 
I < i o < 108/2 for which 0 o = 0i0- Relabel Qio as Q~ and Qlo8 as Q~. Note that 
the angle 0 in Fig. 2 is at least 10700 . 

Now the boundary of the region containing Q~ is very nearly a rectangle of 
width 3r I and height Oor o. We claim Ooro > r r Suppose not. Then the region 
containing Q~ has area at most 4r 2 and covers 90nl points of Q. Furthermore, if 
r~ > Ooro, this region can be covered by eight discs of radius rx with centers at 
the points indicated in Fig. 3. This implies that there exists a disc of radius less 
than r 1 covering nl points of Q. The contradiction shows Oor o > rl, as claimed. 

Now that we have some control on the relative sizes of the three regions and 

QO 

CI PI 

Fig. 1 
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the separation between them, it is easy to use the pigeon-hole principle to find a 
number z < Oor o and rectangles Ro, R~, as shown in Fig. 4, with R o covering a 
subset e2 of hE points from P1, while R 1 covers a subset Q~' of n2 points from Q~. 
Recall that r/2 = rn/(log n)2°7 < nl. For  convenience, we change scale so that the 
distance (along line L) from the lower right corner of R 0 to the upper left corner 
of R 1 is exactly i. Then let Q~' be any subset of/'/2 points from Q~. Note that if 
x E e2,  Yl e QI', and Y2 ~ Q~', then the angle formed by the segments xy, and xff2 
is at least 106z. 

At this point we want to apply the covering lemma (see [5]-[7]). First extend 
the two vertical sides of rectangle Ro upward to form a rectangle R6 of width z/lO 
and height 0.01. Then choose a family ~ of subrectangles of R~ so that: 

(1) The sides of each rectangle R e ~ are parallel to those of R~. 
(2) The interiors of the rectangles in ~ are pairwise disjoint. 
(3) The ratio w/h of width divided by height is 10z for every rectangle in ~ .  
(4) Each rectangle in ~ contains at least n32/5 and at most 1000 n, a/5 points of P. 
(5) There are at least t/2/5/106 rectangles in ~¢. 

For  a rectangle R, let P2(R) denote those points of P2 covered by R. When 
x e P2 and y e Q~' w Q~', we let C(x, y) denote the circle centered at y and passing 
through x. Now let R ~ ~ ,  x e P2(R), and y e Q['. We claim that the circle C(x, y) 
cannot cross both vertical sides of R (Fig. 5). 

To see that this claim is valid, let R have height h and width w = lOzh. Now 
the point x is covered by R 0, so x is at most z above the line L. It is an easy 
exercise to show that in moving laterally an amount w, the circle C(x, y) must rise 
at least w/Sz and this quantity exceeds h. This shows that C(x,y) cannot cross 

- . _ .  ~ _ . .  r " - - ~ - ' "  ~ l  -"  " ~ ' -  r~ : 

Fig. 3 
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both vertical sides of R. However, it is indeed possible for C(x,y) to cross 
both the top and bottom sides of R. 

Now let R e ~ ,  x ~ Pz(R), Yt ~ Q~', and Y2 ~ Q~'- We claim that it cannot happen 
that C(x, yt) and C(x, y2) both cross the top and bottom sides of R (Fig. 6). 

To see that this claim holds, we consider the angle formed by the line segments 
xy 1 and xy 2. In view of the relative separation between Q~' and Q~', this angle is 
at least 1062. However, if both C(x, yl) and C(x, y2) cross the top and the bottom 
of R, then this angle is at most 100z. The contradiction completes the proof of the 
claim. 

The Crossing Property. Let R e 9~. Subdivide R into four subrectangles of equal 
size by taking the perpendicular bisectors of the sides of R. Let R'  be any one of 

T 
.01 

R / 

W ~ 

/ 

This configuration is forbidden. 
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Fig. 5 
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Fig. 6 

these subrectangles and let x, x '  ~ P2(R'). Then, for every Yl e Q~' and for every 
Y2 e Qj,  either C(x,y~) and C(x',y2) cross at a point inside R, or C(x',yl) and 
C(x, Y2) cross at a point inside R. 

We comment that the proof of the Crossing Property is elementary and 
proceeds by a case-by-case analysis of the four subrectangles and the relative 
positions of x and x '  within them. However, we do note that the desired crossing 
may occur inside R but not inside R'  as illustrated in Fig. 7. 

The reason for introducing the Crossing Property is that we will force pairs of 
circles with centers in Q to cross at a point in the plane not occupied by a point 
of P. We refer to this as a wasted crossing. The final contradiction is obtained by 
showing that the number of wasted crossings is larger than the number of pairs 
of circles from {C(x, y): x ~ P, y ~ Q}. Now set i = 1. We describe a procedure which 

m , ,  

Fig. 7 
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identifies particular points in P2 w Q[' and certam rectangles in ~.  This argument 
will be repeated when i = 2. Let R ~ ~ ,  x ~ R, and y ~ Q['. We call (x, y) a rich pair 
if C(x, y) contains at least two points of P(R). 

Lemma. The number of  rich pairs is less than n 2. 

Proof Suppose the lemma is false and let S be a set of n 2 rich pairs of the 
prescribed form. Choose a number a > 2 for which there are at least n 2 rich pairs 
(x, y) for which C(x, y) contains at least a and at most 2a points of P(R) where R 
is the rectangle containing x. Call such pairs uniform rich pairs. (Note that here 
we actually use the logarithmic factor.) 

Then let 

:~- = {x, x ' ,  y): there exists a rectangle R e ~ containing both x and x',  y ~ Qi, 

x '  ~ C(x, y) and both (x, y) and (x', y) are uniform rich pairs}. 

Then l J -  I > n2a. For each R e ~ ,  let ~--(R) = {(x, x ' ,  y) e 5 :  x, x '  6 R}. Since R 
contains at most lO00n a/s points of P and Q;' contains n 2 points, there are at most 
lO00n~/5 uniform rich pairs (x, y) where x e R and y ~ Q:'. For  each such pair, there 
are at most 2a different x '  ~ R and for which (x, x ' ,  y) is a triple in ~(R).  It follows 
that 13-(R)[ < 2000n~/Sa < n~/Sa. We also observe that n2/S/lO 6 <_ I~[ < n 2/5. Let 
: o  = 0{Y-(R): I : ( R ) I  < n29a/2n2/5}. Then I~ol < n~a/2 and 1 5  - °d--ol > n~a/2. 
So there exists a number b > n2a/2n 2/5 and a subfamily ~ '  _ ~  so that 
b < I~(R)I < 2b for every R e ~ '  and ]U{J-(R): R ~ ~'}1 > n2a/lO log n > n2o a. 

Let ~d-1 = U{~Y'(R): R e ~ ' }  and let R e ~ ' .  For  each distinct pair x, x ' e  P(R), 
let T(x, x ') = {y ~ QI: (x, x ' ,  y) e 5-1}- For  each R e ~ ' ,  let 

• Y'2(R) = {(x, x ' ,  y) e f ( R ) :  IT(x, x')l < b/(2" 106n6/5)}. 

Since IRI < 103n~/5, we see that [J2(R)I < b/2. Set. :-3(R) = J-(R) - J2(R). Since 
9-(R) > b, we see that IY'3(R)I > b/2. Then set Y3 = U{J'3(R): R ~ ' } ,  and ob- 
serve that  1:31 ~ 1Y'11/4 >- n~oa/4. 

When x and x '  are distinct points in P, we call (x, x ')  a standard pair if there 
is some R e ~ '  for which x, x '  e P(R) and I T(x, x')l > b/(2. 106n6/5). When (x, x ' )  is 
a standard pair, we let L(x, x ' )  denote the perpendicular bisector of the line segment 
passing through x and x ' ,  and we let Le denote the set of all perpendicular bisectors 
of standard pairs. Note that each line L(x, x') e Le contains at least b/(2. 106n 6/5) 
points from the set Q~' (Fig. 8). 

For  each line L ~ Le, let ILl denote the number of points of Q~' which lie on L. 
As noted previously, ILl > b/(2" 106n6/5), but it is possible for ILl to be much larger. 
Choose a value e _> b/(2. 106n~/5) and a subset Leo e Le so that 

(1) e < ILl < 2e for every L~  Leo; 
(2) there are at least nZla triples in 33  of the form (x ,x ' ,y )  where (x,x')  is a 

standard pair; and 
(3) L(x, x ')  ~ Leo. 
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Fig. 8 

C a s e 1 :  e > 1 0 x / ~ .  Since I Q ] ' l < n ,  a simple counting argument shows 
ILPol-< lOOn/e. Let d = n41S /(log n) ~. For  each line LEL~ o, we know that L 
contains at most 2e points of Q1- For  each y e Q1 which lies on L, there are at 
most 2ad standard pairs (x, x ' )  for which L = L(x, x ' )  and (x, x ' ,  y) ~ ~--. It  follows 
that 

100n lOan9/5a 
n~la ~ - - 2 e ' 2 a d  < - -  

e (logn) c 

which is clearly false. 

Case 2." e < 10x/~. In this case we use the inequality in Theorem 2 to bound I-~ol. 
Note that e > 2, and even if e > x/~, we can certainly say ILeol < 102°°n2/e 3. It  
follows that 

102oon 2 
n~la < _ - - ' 2 e ' 2 a d .  

e 3 

Thus e < lOl°ln7/5/nll(log n) c/2. However, we already know e > b/(2. 106n 6/s) > 
n2a/(4 • 106. n 6/5. n2/5). Since a < 2, these inequalities for e can be combined to 
show nla2(log n) c/2 < 101 l°n3, which is false. The contradiction completes the proof  
of the lemma. []  

Again set i = 1. We next describe a selection process which identifies particular 
points and rectangles. This process will also be repeated when i = 2. Let R ~ ~ ,  
x ~ P2(R), and y ~ Q['. We call a pair (x, y) a lean pair if C(x, y) contains no other 
point of P(R) besides x. In view of the lemma, we may choose a set W of n ] lean 
pairs. 

Let R e ~ and let x e P(R). We say that x is normal if there are at least n4 points 
in the set Ni(x) = {y ~ Q[' : (x, y) is lean}. Call a rectangle R e ~! normal if it contains 
at least n 3/5 normal  points. So we may choose a set ~ o  of n 2/s normal rectangles. 
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From each R e ~o ,  we may select a set So(R) of n~/~ normal points. For  each 
x ~ So(R), we may choose a set N;(x) of n4 points from Ni(x). 

Consider the set G =  U { S o ( R ) : R ~ l o } .  Then IGI = ,2/s,3/5 "'6 "5 > //6" Now we 
repeat the argument in our lemma when i = 2 but consider only the pairs of the 
form (x, y) where x ~ G and y ~ Q2, We conclude that there exists a set ~1 of n 2Is 
rectangles from ~0 so that: 

For  every rectangle R ~ At,  there is a set SI(R) of nat/s points covered by R so 
that: 

(1) For  each x ~ S l ( R ) ,  there are sets N~'(x)c_ Q~' and N~'(x)c_ Q6' so that 
IN~'(x)l = IN~'(x)l = nv. 

(2) For  each x E S t (R  ) and each i = 1, 2, and for every y ~ N['(x), (x, y) is a lean 
pair. 

We now count wasted crossings. It is clear that the number of wasted crossings 
cannot exceed n2d 2. However, there are n 2/5 rectangles in ~ t -  In the appropriate 
subrectangle, there are at least na 3/5 points, so at least n 6/s pairs of points. For  each 
pair, there are at least n 2 wasted crossings. This requires ,,7~2/5~6/5"2,,9 ,,-7 - < n2d2 which 
is false. The contradiction completes the proof of Theorem 3. []  

3. Concluding Remarks 

It is probably possible to modify the arguments in this paper to show that 
d(n) > n4iS/o~(n) where ~o(n) -~ ~ arbitrarily slowly and n is sufficiently large. In 
fact, perhaps it can be shown that d(n) > en 4/5 for some absolute constant e > O. 
We find little reason to attempt such improvements since they would still leave 
us far from the conjectured lower bound which we suspect is correct. 

Finally, we comment that the argument presented in this paper does not show 
that there is some point from which there are at least n*/5/(log n) c different 
distances. 
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