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Abstract

Let F (n, k) denote the maximum number of two edge colorings of a graph on n vertices

that admit no monochromatic Kk, (a complete graph on k vertices). The following results are

proved: F (n, 3) = 2bn
2/4c for all n ≥ 6. F (n, k) = 2(

k−2
2k−2+o(1))n2

. In particular, the first result

solves a conjecture of Erdös and Rothschild.

1 Introduction

All graphs considered here are finite, undirected and simple. Given a graph G = (V,E), denote by

F (G, r, k) the number of distinct edge colorings of G with r colors having no monochromatic Kk,

(the complete graph on k vertices). Let F (n, r, k) = max{F (G, r, k) |G is a graph on n vertices }.
It is easy to see that F (n, r, k) ≤ rtq−1(n) where tq−1(n) is the maximum size of a graph that does

not contain a Kq (the Turán graph) where q is the Ramsey number that guarantees the existence

of a monochromatic Kk in any r edge coloring of Kq (Cf. [1] for definitions). It is also trivial that

F (n, r, k) ≥ rtk−1(n), since every r edge coloring is acceptable for the corresponding Turán graph.

It seems likely that the lower bound is closer to the truth, at least for r = 2. Indeed, Erdös and

Rothschild conjectured some ten year ago [3] that F (n, 2, 3) = 2bn
2/4c for all sufficiently large n.

In this paper we prove this conjecture. Since we are mainly concerned with the case r = 2 and

k = 3 we put F (n) = F (n, 2, 3), F (G) = F (G, 2, 3), F (n, k) = F (n, 2, k) and F (G, k) = F (G, 2, k).

Hence, we prove the following theorem:

Theorem 1.1 F (1) = 1. F (2) = 2. F (3) = 6. F (4) = 18. F (5) = 82. F (n) = 2bn
2/4c for all

n ≥ 6.

We conjecture that the lower bound for F (n, k) is the correct one, provided n is sufficiently

large.
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Conjecture 1.2 For all k ≥ 3 there is a constant N = N(k) such that for all n ≥ N , F (n, k) =

2tk−1(n).

Although we are unable to prove this conjecture at the moment, we can prove an asymptotic

version of it.

Theorem 1.3 F (n, k) = 2tk−1(n)+o(n
2) = 2(

k−2
2k−2

+o(1))n2

.

The rest of this paper is organized as follows: In section 2 we prove the necessary lemmas, and

also establish the values of F (n) for n ≤ 6. In section 3 we prove Theorem 1.1. Section 4 is devoted

to the proof of Theorem 1.3.

2 The lemmas

In the following two sections, the term coloring refers to a red-blue edge coloring that contains no

monochromatic triangles. Let G be a graph, and G′ a subgraph of G. A coloring f̂ of G is called

an extension of a coloring f of G′ to G if the image of f̂ on G′ equals f . Given a coloring f of G′,

denote by EG(f) the set of all extensions of f to G. We denote by δ(G) the minimum degree of

a vertex of G. Given a vertex x of G, denote by N(x) the set of vertices adjacent to x in G (the

neighbors of x). Put d(x) = |N(x)| (the degree of x). The following lemma establishes an upper

bound on |EG(f)| whenever G′ = G \ {x} is the subgraph induced by all vertices of G, but x.

Lemma 2.1 Let x be any vertex of a graph G. Let Pi, i = 1, . . . , k be a set of vertex disjoint paths

in the subgraph induced by N(x). Let Tj, j = 1, . . . , l be a set of vertex disjoint triangles in the

subgraph induced by N(x) that are pairwise disjoint with the paths. Let zi be the number of vertices

on Pi. Then for every coloring f of G′ = G \ {x},

|EG(f)| ≤ (2d(x)−3l−
∑k

i=1
zi) · (3l) · (

k∏
i=1

azi+2)

where at denotes the t’th Fibonacci number. In particular,

F (G) ≤ F (G′)(2d(x)−3l−
∑k

i=1
zi) · (3l) · (

k∏
i=1

azi+2)

Proof Let H be the subgraph of G induced by N(x) ∪ {x}, and let H ′ be the subgraph of H

induced by N(x). Note that H ′ is also a subgraph of G′. Let f ′ be the restriction of f to H ′.

Every extension of f to G uniquely determines an extension of f ′ to H, and if f̂1, f̂2 ∈ EG(f) are

distinct extensions then the extensions of f ′ to H that they determine are also distinct. Hence
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it suffices to show that |EH(f ′)| ≤ (2d(x)−3l−
∑k

i=1
zi) · (3l) · (

∏k
i=1 azi+2) where f ′ is an arbitrary

coloring of H ′. Recall the definition of the Fibonacci sequence: a1 = 1, a2 = 1, at+2 = at + at+1.

Let Pi = (v1, . . . , vzi). Let Ht, t = 0, . . . , zi be obtained from H by deleting all edges adjacent to x

except (x, v1), . . . , (x, vt). We prove by induction on t that |EHt(f
′)| ≤ at+2. For t = 0 this follows

from H0 = H ′ and a2 = 1. For t = 1 this follows from a3 = 2 and the fact that H1 = H ′ ∪{(x, v1)}
and we may color the edge (x, v1) in two colors. Assuming it is true for t− 2 and t− 1, we show it

is true for t. Let rs (bs) be the number of extensions in EHs(f
′) in which the edge (x, vs) is colored

red (blue). By the induction hypothesis, rt−1 + bt−1 ≤ at+1. Clearly, rt−1 ≤ |EHt−2(f ′)| ≤ at

and similarly, bt−1 ≤ at. Now suppose first that the edge (vt−1, vt) is blue. Then bt ≤ rt−1 and

rt ≤ rt−1 + bt−1. Thus we obtain

rt + bt = 2rt−1 + bt−1 ≤ at+1 + rt−1 ≤ at+1 + at = at+2

Similar arguments apply when (vt−1, vt) is red. We have shown that |EHzi
(f ′)| ≤ azi+2.

Now consider a triangle Tj . Given the colors that f ′ induces on Tj , (clearly, it induces two blue

edges and one red edge or two red edges and one blue edge) there are exactly 3 ways to color the

3 edges connecting x to the vertices of Tj without introducing a monochromatic triangle.

Since the paths Pi are vertex disjoint, and the triangles Tj are vertex disjoint, and the triangles

are pairwise disjoint from the paths, and since the edges connecting x to vertices that do not

belong to any path or triangle can be colored with at most two colors, it follows that |EH(f ′)| ≤
(2d(x)−3l−

∑k

i=1
zi) · (3l) · (

∏k
i=1 azi+2). 2

The bound in Lemma 2.1 cannot be improved since if the edges of each path Pi are all colored

with the same color, and N(x) contains no other edges but the edges of these paths, the bound is

achievable.

The next lemma establishes a bound for F (G) whenever G has a special structure.

Lemma 2.2 Let G be a graph on n ≥ 7 vertices, having a vertex c with d(c) = n − 1, such that

G \ {c} is a complete bipartite graph with vertex classes of sizes k and l = n− 1− k, where l ≥ 3.

Then

F (G) ≤ (2l − 2)(6 · 2l−3)k + 2(2l + 1)k

Proof Let x1, . . . , xk be the vertices of one side of the bipartite graph G \ {c} and let H be their

common set of neighbors. Note that H is a star with root c and l leaves. Denote by Hi the

subgraph induced by H ∪ {xi}. It suffices to prove that for any non-monochromatic coloring f of

H, |EHi(f)| ≤ 6 · 2l−3 and for every monochromatic coloring b (e.g. the all blue coloring) of H,

|EHi(b)| = 2l + 1.
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Let f be a non-monochromatic coloring of H. W.l.o.g there is a substar H ′ with three leaves

with two blue edges and one red edge. There are exactly six ways to color the four edges joining xi

to this substar without creating a monochromatic triangle in H ′ ∪ {x}. The remaining l − 3 edges

of xi can be colored in at most 2l−3 ways.

Now let b be the all blue coloring of H. There is only one extension of b that colors the edge

(xi, c) blue, since all other edges of xi must be colored red. All 2l extensions coloring the edge

(xi, c) red are possible. 2

The next lemma asserts that every graph G contains a K5-free spanning subgraph G′ with

F (G) ≤ F (G′).

Lemma 2.3 If e is an edge belonging to a K5 of G, then F (G) ≤ F (G \ {e}).

Proof Any coloring of a K5 contains exactly five blue and five red edges. Therefore, if f ′ is any

coloring of G \ {e}, then, assuming it is extendible to G, the color of e is uniquely determined in

the extension. Hence |EG(f ′)| ≤ 1. 2

We need the following simple but useful lemma in our proof of Theorem 1.1.

Lemma 2.4 Let G be a graph on n vertices, δ = δ(G). The following four claims hold:

1. There is a path containing δ + 1 vertices in G.

2. If n ≥ 2δ+2 then there are two vertex disjoint paths P1 and P2 in G, Pi containing zi vertices

i = 1, 2, z1 + z2 = 2δ + 2. Furthermore, if δ ≥ 3 then z1 ≥ 4 and z2 ≥ 4.

3. If n < 2δ + 2 then G contains a Hamiltonian path.

4. If n < 2δ and G does not contain a K4, then the vertices of G can be partitioned into t

triangles and a path containing n− 3t vertices, for t = 1, . . . , 2δ − n.

Proof The first and third claims above are well known (cf. [2]).

For the second claim, let P be a longest path in G. If P has 2δ + 2 vertices, we are done. If P

has at most 2δ vertices, it is well known that there is also a cycle C with the same set of vertices,

and by the maximality of P , the subgraph induced by this set of vertices is a connected component

of G. Since this is not the whole graph, it follows from the first claim that there is another path

P2 of length δ+ 1 outside of this connected component. If δ ≥ 3 both paths have length at least 4.

The remaining case is when P contains exactly 2δ + 1 vertices. Put P = (a1, . . . , a2δ+1). Note

that all edges of a1 and of a2δ+1 connect them to vertices inside P . If the set of vertices of P

forms a connected component then, as before, we can obtain another path of length δ + 1 outside

of this connected component. otherwise, there is a vertex b /∈ P such that (b, aj) is an edge for
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some 2 ≤ j ≤ 2δ. W.l.o.g. j ≤ δ + 1. Define P1 = (a1, . . . , aj , b), P2 = (aj+1, . . . , a2δ+1). If δ ≥ 3

and j > 2 then both paths have length at least 4. If j = 2, note that b is connected to at least two

more vertices. Therefore there is a vertex c 6= a2δ such that (b, c) is an edge. If c ∈ P we could

have chosen c instead of a2. If c /∈ P we can redefine P1 = (a1, a2, b, c).

For the fourth claim, take a partition of the vertices of G into t triangles and a path of length

n − 3t, where t is maximal. Such a partition certainly exists by the third claim. Let H be the

graph induced by the N = n − 3t vertices not on triangles. Since H does not contain a K4, we

have δ(H) ≥ δ − 2t. On the other hand, by the maximality of t we have δ(H) ≤ N/2. To see this,

note that if δ(H) > N/2 then H contains a triangle, so we have t + 1 triangles, and in the graph

H ′ induced by the remaining N − 3 vertices δ(H ′) ≥ δ(H) − 2 > (N − 2)/2 − 1 and therefore H ′

contains a Hamiltonian path by the third claim. This contradicts the maximality of t. We have

shown that

δ − 2t ≤ δ(H) ≤ N

2
=
n− 3t

2

therefore t ≥ 2δ − n. 2

We conclude this section with two somewhat technical lemmas. The first lemma establishes the

values of F (n) for n ≤ 6. However, we need this lemma not only for the sake of completeness (if

this were the only reason, we might not have bothered proving it, since it is a finite problem). Our

proof of Theorem 1.1 is by induction on n. Therefore, we must show that F (6) = 512 to establish 6

as a basis to our induction. The second lemma handles four exceptional cases that are encountered

in the proof of Theorem 1.1. These cases are, again, finitely checkable. However, we give analytic

proofs for them.

Lemma 2.5 F (1) = 1, F (2) = 2, F (3) = 6, F (4) = 18, F (5) = 82, F (6) = 512.

Proof The values of F (1), F (2) and F (3) are obvious. To determine F (4) we only need to check

graphs with more than four edges. There are only two such graphs: K4 and K−4 (K−k denotes the

complete graph missing one edge). It is easy to check that both F (K4) = 18 and F (K−4 ) = 18.

To determine F (5) we only need to consider graphs G with δ(G) ≥ 3, since by Lemma 2.1 and

by the fact that F (4) = 18 any graph G on 5 vertices with a vertex of degree ≤ 2 has F (G) ≤ 72.

There are only three graphs on 5 vertices with δ(G) ≥ 3. These are K5, K
−
5 and K−−5 (the graph

obtained from K5 by removing two independent edges). It is easy to check that F (K5) = 12 (in

fact, any coloring of K5 is a partition into two Hamiltonian cycles), F (K−5 ) = 72 and F (K−−5 ) = 82.

To determine F (6) we, again, only need to consider graphs G with δ(G) ≥ 3. Assume first that

δ(G) = 3. If there is a vertex x of degree 3, such that N(x) is not independent, then by Lemma

2.1 we get F (G) ≤ 6F (5) ≤ 492. If for every vertex x of degree 3, N(x) is independent, then G
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must be the complete bipartite graph K3,3, for which F (K3,3) = 512. We may now assume that

δ(G) ≥ 4. There are only four possible graphs to consider: K6, K
−
6 , K−−6 and K2,2,2 (the complete

3-partite graph with equal vertex classes). It is well known that F (K6) = 0. It is also not difficult

to see that F (K2,2,2) = 450 and F (K−−6 ) = 194. Since K−6 contains a K5 we can use Lemma 2.3

to obtain F (K−6 ) ≤ 194. 2

Lemma 2.6 Let x be a vertex of a graph G. Let H be the induced subgraph on N(x). The following

holds for a coloring f of G \ {x}.

1. If H is a graph on 7 vertices and δ(H) ≥ 3 then |EG(f)| ≤ 32.

2. If H is a graph on 6 vertices and δ(H) ≥ 3 then |EG(f)| ≤ 16.

3. If H is a graph on 10 vertices and δ(H) ≥ 5 then |EG(f)| ≤ 128.

4. If H is a graph on 5 vertices and δ(H) ≥ 3 then |EG(f) ≤ 8.

Proof

1. G contains a Hamiltonian path. However, a path of length 7 only implies |EG(f)| ≤ a9 = 34.

To remedy this, take any edge not on the path, and consider the subgraph of H that consists

of this edge and the Hamiltonian path. It is easy to verify that there are at most 32 ways to

extend a given coloring of this subgraph.

2. If H is a K3,3 (a complete bipartite graph), one may easily check that |EG(f)| ≤ 16. Oth-

erwise, there must exist a partition of H into a triangle and a path on three vertices. By

Lemma 2.1 |EG(f)| ≤ 3a5 = 15.

3. If H is a K5,5 one may check directly that |EG(f)| ≤ 128. (It is enough to take a Hamiltonian

cycle with a chord between two antipodal vertices, and verify that any coloring of it cannot

be extended in more than 128 ways). Otherwise, there is a partition of H into a triangle and

a path on 7 vertices. By Lemma 2.1 |EG(f)| ≤ 3a9 = 102.

4. H must contain two triangles with one vertex in common. Let these triangles be {a, b, c}
and {a, d, e}. Given f , there are 3 ways to color the edges (x, a), (x, b), (x, c) without cre-

ating a monochromatic cycle in {a, b, c, x}. Similarly, there are 3 ways to color the edges

(x, a), (x, d), (x, e). The only way all the 9 pairs of extensions are possible, is when the color

of (x, a) is completely determined. In this case, take any path of length 4 whose vertices

are (b, c, d, e) (such a path must exist). There are at most a6 = 8 ways to color the edges

(x, b), (x, c), (x, d), (x, e). Since (x, a) is completely determined, then EG(f) ≤ 8 also in this

case. 2
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3 Proof of Theorem 1.1

We prove Theorem 1.1 by induction on n, for all n ≥ 6. The value F (6) = 512 was computed in

Lemma 2.5, and indeed 512 = 26
2/4. By Lemma 2.3 it suffices to prove the theorem for graphs not

containing a K5. We therefore fix a graph G of order n not containing a K5. Assuming that the

theorem is true for all graphs of order n− 1, we must show that F (G) ≤ 2bn
2/4c.

Let x be a vertex of minimal degree in G. Put G′ = G \ {x}. Our objective is to show that

for any coloring f of G′, |EG(f)| ≤ 2bn/2c (however, in some cases we show that F (G) ≤ 2bn
2/4c

directly). This suffices, since by the induction hypothesis we obtain

F (G) ≤ F (G′)2bn/2c ≤ 2b(n−1)
2/4c+bn/2c ≤ 2bn

2/4c

where the last inequality is true for all n.

Fix a coloring f of G′. If d(x) ≤ bn/2c then, clearly, |EG(f)| ≤ 2bn/2c. We may therefore

assume that d(x) = bn/2c+ t for some t ≥ 1. Let H be the subgraph induced by N(x). Thus

δ(H) ≥ 2t− 1 if n is odd (1)

δ(H) ≥ 2t if n is even (2)

Let P be a longest path in H. P has z vertices and by the first case of Lemma 2.4, z ≥ 2t.

It is convenient to distinguish between a few cases. Some cases are reduced to other cases, but

always to cases appearing above them in the text. Therefore, all possible cases are covered.

Case 1: t = 1, z ≥ 4.

By Lemma 2.1 |EG(f)| ≤ 2bn/2c+1−zaz+2. For all z ≥ 4 we have 21−zaz+2 ≤ 1, and therefore

|EG(f)| ≤ 2bn/2c.

Case 2: t = 1, z = 2 and n ≥ 8.

In this case, H is simply a perfect matching, and since n ≥ 8, bn/2c + 1 ≥ 5 so this matching

contains at least three edges (in fact n ≥ 10 must hold). Therefore by Lemma 2.1 |EG(f)| ≤
2bn/2c+1−6a34 < 2bn/2c.

Case 3: t = 1, z = 2 and n = 7.

As in the previous case, H must be a perfect matching, say (a, b), (c, d) are its edges. Thus

a, b, c, d are also of degree 4 and N(a) = {b, x, u, v}, N(b) = {a, x, u, v}, N(c) = {d, x, u, v},
N(d) = {c, x, u, v}. N(a) is not a perfect matching, since (b, u), (b, v) and (b, x) are all edges.

Similarly, N(b), N(c) and N(d) are not perfect matchings. If (u, v) is an edge, then we can reduce

this case to case 1 (t = 1, z = 4) above by letting a play the role of x. Otherwise, (u, v) is not

an edge, and the graph G is completely determined. It is a complete bipartite graph to which two
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edges have been added. One vertex class is {x, u, v} the other is {a, b, c, d} and the additional edges

are (a, b), (c, d). It is easy to compute (manually) that F (G) = 4 · 93 < 212.

Case 4: t = 1, z = 3 and H is not a star.

Since n ≥ 7 there is an edge e in H whose endpoints are not on P . By Lemma 2.1 |EG(f)| ≤
2bn/2c+1−5a5a4 < 2bn/2c.

Case 5: t = 1, z = 3 and H is a star.

Note that n must be odd, since by (2) for even n the minimal degree in H is at least 2. We may

assume that for every vertex of minimal degree of G, the set of neighbors is a star (otherwise, x

could have been chosen such that one of the cases above would apply). This implies that G must

be the unique graph on n vertices having a vertex a of degree n− 1 such that G \{a} in a complete

bipartite graph with (n− 1)/2 vertices in each vertex class. By lemma 2.2 we have

F (G) ≤ (2(n−1)/2 − 2)(6 · 2(n−7)/2)(n−1)/2 + 2(2(n−1)/2 + 1)(n−1)/2 ≤ 2(n
2−1)/4 = 2bn

2/4c.

Case 6: t > 1, z ≥ 4t.

We require the following inequality for the Fibonacci numbers:

aj+2 ≤ 20.75j , for j /∈ {1, 2, 3} (3)

By Lemma 2.1 we have |EG(f)| ≤ 2bn/2c+t−zaz+2. We must show that 2t−zaz+2 ≤ 1. Indeed, by

(3)

2t−zaz+2 ≤ 2−0.75zaz+2 ≤ 2−0.75z20.75z = 1.

Case 7: t > 1, z < 4t, and bn/2c ≥ 3t.

In this case the conditions of Lemma 2.4 (the second case) are satisfied. The minimal degree of H is

at least 3, and bn/2c+ t ≥ 2(2t−1) + 2. Therefore, according to the lemma, H contains two vertex

disjoint paths P1 and P2. The number of vertices of Pi is zi, i = 1, 2. z1 + z2 = 2(2t− 1) + 2 = 4t

and z1 ≥ 4, z2 ≥ 4. By lemma 2.1 and by (3) we have:

|EG(f)| ≤ 2bn/2c+t−4taz1+2az2+2 ≤ 2bn/2c−3t20.75 · 4t ≤ 2bn/2c.

Case 8: t > 1 z < 4t and bn/2c < 3t, n is even.

The conditions of case 4 of Lemma 2.4 are satisfied for the graph H, since H does not contain a

K4 (since G does not contain a K5), δ(H) ≥ 2t by (2) and 2δ(H) ≥ 4t > n/2 + t = |H|. Therefore,

we can partition the vertices of H into 4t− (n/2 + t) = 3t− n/2 triangles, and a path containing

2n− 8t vertices. By Lemma 2.1 we have

|EG(f)| ≤ 33t−n/2a2n−8t+2.
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We must show that 33t−n/2a2n−8t+2 ≤ 2n/2. Note that 2n − 8t /∈ {1, 2, 3}. Therefore by (3) we

must show

33t−n/220.75(2n−8t) ≤ 2n/2.

Taking Logarithmic factors and rearranging the terms, the last inequality is equivalent to

t(3 log 3− 6) ≤ n(
log 3

2
− 1)

Which is equivalent to t ≥ n/6 which holds by our assumption.

Case 9: t > 1 z < 4t and bn/2c ∈ {3t− 1, 3t− 2}, n is odd.

Note that bn/2c = (n − 1)/2 and that H contains a Hamiltonian path since the conditions of

Lemma 2.4 (case 3) are satisfied for H (2(2t− 1) + 2 > (n− 1)/2 + t). By Lemma 2.1

EG(f) ≤ a(n−1)/2+t+2.

We must show that a(n−1)/2+t+2 ≤ 2(n−1)/2. Equivalently, since t = (n + 1)/6 or t = (n + 3)/6

in our case, we must show that a(2n−1)/3+2 ≤ 2(n−1)/2 or a2n/3+2 ≤ 2(n−1)/2. The first inequality

is true for all n ≥ 17. Note that n = −1 mod 6 in this case, so the only possible value of n for

which this does not hold is n = 11. In this case t = 2 and H is a graph on 7 vertices and minimal

degree at least 3. Therefore, we can use Lemma 2.6 to obtain EG(f) ≤ 32, as required. The second

inequality is true for all n ≥ 21. Note that n = 3 mod 6 in this case, so the only possible values

of n for which this does not hold are n = 15 and n = 9. For n = 15, t = 3 and H is a graph on

10 vertices with minimal degree at least 5. For n = 9, t = 2 and H is a graph on 6 vertices and

minimal degree at least 3. In both cases we can use Lemma 2.6 to obtain EG(f) ≤ 2(n−1)/2, as

required.

Case 10: t > 1 z < 4t and bn/2c ≤ 3t− 3, n is odd.

As in case 8, the conditions of case 4 of Lemma 2.4 are satisfied for the graph H. Therefore, we

can partition the vertices of H into 2(2t − 1) − ((n − 1)/2 + t) = 3t − n/2 − 3/2 triangles, and a

path containing 2n− 8t+ 4 vertices. By Lemma 2.1 we have

|EG(f)| ≤ 33t−n/2−3/2a2n−8t+6.

We must show that 33t−n/2−3/2a2n−8t+6 ≤ 2(n−1)/2. Assume first that 2n− 8t+ 4 ≥ 4 and 3t− 3 >

(n− 1)/2. By (3) it suffices to show

33t−n/2−3/220.75(2n−8t+4) ≤ 2(n−1)/2.

Taking Logarithmic factors and rearranging the terms, the last inequality is equivalent to

t ≥ n/6 + 0.5 + 1/(12− 6 log 3)
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but according to our assumption, 3t−3 > (n−1)/2 so t ≥ n/6 + 7/6 ≥ n/6 + 0.5 + 1/(12−6 log 3).

Now assume that 2n − 8t + 4 ≥ 4 and 3t − 3 = (n − 1)/2. Note that this implies n ≥ 13. In

this case there is only one triangle, and the path has (2n− 8)/3 vertices. Therefore, we must show

3a(2n−2)/3 ≤ 2(n−1)/2. Which holds for n ≥ 13.

Finally, assume 2n− 8t+ 4 < 4. Since n is odd, we have 2n− 8t+ 4 = 2. In this case, the path

is simply an edge, and there are n/4− 3/4 triangles. We must show that 3(n+1)/4 ≤ 2(n−1)/2. This

holds for n ≥ 11. Since n = 3 mod 4 in this case, the only value of n for which this does not hold

is n = 7. In this case H is a graph on 5 vertices and minimum degree at least 3 and by Lemma 2.6

EG(f) ≤ 8. 2

4 The asymptotic behavior of F (n, k)

In this section we prove Theorem 1.3. The proof is based on the Regularity Lemma of Szemerédi [4]

together with some additional ideas. In order to state this lemma we introduce a few definitions,

most of which follow [4]. If G = (V,E) is a graph, and A,B are two disjoint subsets of V , let

e(A,B) = eG(A,B) denote the number of edges of G with an endpoint in A and an endpoint in B.

If A and B are non-empty, define the density of edges between A and B by d(A,B) = e(A,B)
|A||B| . For

ε > 0, the pair (A,B) is called ε-regular if for every X ⊂ A and Y ⊂ B satisfying |X| ≥ ε|A| and

|Y | ≥ ε|B|, the inequality

|d(A,B)− d(X,Y )| < ε

holds.

An equitable partition of a set V is a partition of V into pairwise disjoint classes C0, C1, . . . , Cp,

in which all the classes Ci for 1 ≤ i ≤ p have the same cardinality. The class C0 is called the

exceptional class and may be empty. An equitable partition of the set of vertices V of G into the

classes C0, C1, . . . , Cp, with C0 being the exceptional class, is called ε-regular if |C0| ≤ ε|V |, and all

but at most εp2 of the pairs (Ci, Cj) for 1 ≤ i < j ≤ p are ε-regular. The following lemma is proved

in [4].

Lemma 4.1 (The Regularity Lemma [4]) For every ε > 0 and every positive integer t there

are integers T = T (ε, t) and N = N(ε, t) such that every graph with n ≥ N vertices has an ε-regular

partition into p+ 1 classes, where t ≤ p ≤ T . 2

A variant of the following lemma often appears in conjunction with the Regularity Lemma. We

prove it here in a form that suits our purpose.
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Lemma 4.2 Let C1, . . . , Ck be pairwise disjoint equal sized vertex classes, |Ci| = m for all i.

Suppose that (Ci, Cj) are ε-regular and d(Ci, Cj) ≥ δ for 1 ≤ i < j ≤ k. If (k− 1)ε < (δ/2)k−1 then

there are vertices (v1, . . . , vk), vi ∈ Ci such that (vi, vj) ∈ E(Ci, Cj) for 1 ≤ i < j ≤ k.

Proof Note that the lemma is trivial for k = 1 so we assume k ≥ 2. We claim that for every

p, 1 ≤ p ≤ k, there are vertices vi ∈ Ci for all i < p, and subsets Bi ⊂ Ci, |Bi| ≥ (δ/2)p−1m for all

p ≤ i ≤ k with the following property: Each vi, i < p is adjacent to all vertices in

{v1, . . . , vi−1, vi+1, . . . , vp−1} ∪kj=p Bj .

The assertion of the lemma follows from the above claim for p = k. The proof of the claim is

by induction on p. For p = 1 simply take Bi = Ci for all i. Assume the claim is true for p, we

must show it is true for p + 1. Consider the set Bp. By the assumption, the cardinality of each

Bj is at least εm. For each j, p < j ≤ k, let Dj denote the set of vertices in Bp that have less

than (δ − ε)|Bj | neighbors in Bj . We claim that |Dj | < εm for each j. This is because otherwise

the two sets X = Dj and Y = Bj would contradict the ε-regularity of the pair (Cp, Cj), since

d(Dj , Bj) < δ − ε whereas d(Cp, Cj) ≥ δ. Therefore, the cardinality of the set Bp \ ∪kj=p+1Dj is at

least

|Bp| − (k − p)εm ≥ (
δ

2
)p−1m− (k − 1)εm ≥ ((

δ

2
)k−1 − (k − 1)ε)m > 0.

We can now choose arbitrarily a vertex vp in Bp \ ∪kj=p+1Dj and replace each Bj for p < j ≤ k by

the set of neighbors of vp in Bj . Since δ − ε > δ/2 this will not decrease the cardinality of each Bj

by more than a factor of δ/2, and therefore the claim holds for p+ 1. 2

We are now ready to prove Theorem 1.3. Let ε > 0 be given. we show that there is an n0 = n0(ε)

such that for every graph G on n ≥ n0 vertices,

F (G, k) ≤ 2(
k−2
2k−2

+ε)n2

. (4)

Given a parameter γ, put δ = 2(γ(k − 1))1/(k−1). Now let γ = γ(ε) satisfy

2.5γ < ε/4. (5)

and

H(δ) < ε/2 (6)

where H denotes, as usual, the entropy function. Let t = d1/γe and let T = T (γ, t), N = N(γ, t)

be as in Lemma 4.1. Finally, let n0 ≥ N satisfy

T 2 + log((n0 + 1)!) ≤ ε

8
n20. (7)
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Note that n0 = n0(ε) and that every value greater than n0 also respects (7).

Let G = (V,E) be a fixed graph on n = |V | ≥ n0 vertices. Denote by F the set of all red-blue

colorings of G containing no monochromatic Kk, where the number of blue edges is not less than

the number of red edges. Clearly,

2|F| ≥ F (G, k). (8)

Every coloring f ∈ F determines a unique spanning subgraph Gf = (V,Ef ) of G (the subgraph

induced by the blue edges). We apply lemma 4.1 on Gf to obtain a γ-regular partition C0, . . . Cp

of V where t ≤ p ≤ T . We define the graph Df (the dense pairs graph) as follows: The vertex set

of Df is {1, . . . , p}. The edge set of Df is:

E(Df ) = {(i, j) | d(Ci, Cj) > δ (Ci, Cj) is γ − regular}.

Claim: Df contains at most k−2
2k−2p

2 edges.

Proof By Turán’s Theorem, it suffices to show that Df does not contain a Kk. Assume, for

contradiction, that it does. W.l.o.g. {1, . . . , k} are the vertices of a Kk. The conditions of Lemma

4.2 are satisfied for C1, . . . , Ck. This is because d(Ci, Cj) > δ = 2((k − 1)γ)1/(k−1) and hence

(k − 1)γ < (δ/2)k−1. The lemma implies the existence of a Kk in Gf , which is impossible. 2

With a coloring f ∈ F and a regular partition of Gf we associate a configuration which is the

ordered collection (C0, C1, . . . , Cp, Df ). We call p the index of the configuration. Let C denote the

set of all configurations. We claim that

|C| ≤ 2(ε/8)n
2
. (9)

To see this, note that given p, there are at most γ(n + 1) possible sizes for the exceptional class,

and that the size of the exceptional class determines the size of all other classes. Therefore there

are at most γ(n+1)n! possible γ-regular partitions with p+1 classes. Given such a partition, there

are at most 2(p2) possible graphs on p vertices, and hence the total number of configurations with

index p is γ(n+ 1)!2(p2). we use the fact that p ≤ T and inequality (7) to obtain

|C| ≤ Tγ(n+ 1)!2(T2) ≤ 2T
2+log(n+1)! ≤ 2(ε/8)n

2
.

Next, we give an upper bound on the number of colorings f ∈ F that are associated with the

same configuration. For a given configuration C = (C0, C1 . . . , Cp, D), let s(C) be the number of

colorings in F whose configuration is C. We claim that

s(C) ≤ 2(3ε/4+(k−2)/(2k−2))n2
. (10)

To see this, we must consider all possible arrangements of edges of a Gf that may lead to the

configuration C. This is done as follows:
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• There are at most γn2 edges adjacent to vertices of the exceptional class C0. Therefore, the

total number of arrangements of these edges is at most

2γn
2
. (11)

• There are at most
(C1

2

)
p ≤ (n2/2p) ≤ (n2/2)γ edges with both endpoints in the same (non

exceptional) class. Therefore, the total number of arrangements of these edges is at most

2(γ/2)n
2
. (12)

• There are at most γp2 non γ-regular pairs. There are (significantly) less than 2(p2) possi-

ble arrangements of these sets of pairs. Given the non γ-regular pairs, there are at most

|C1|2γp2 ≤ n2γ edges with endpoints in non-regular pairs. Therefore, the total number of

arrangements of these edges is at most

2p
2+γn2

. (13)

• In every γ-regular pair (Ci, Cj) such that (i, j) /∈ E(D) there are at most |C1|2δ edges. There

are at most 2(p2) possible arrangements of these sets of pairs (Note that given C, we know

which are the non edges of D, but some of them may correspond to non γ-regular pairs, while

others may correspond to γ-regular pairs with density at most δ). For every such pair, there

are at most
bδ|C1|2c∑
j=0

(
|C1|2

j

)
≤ 2H(δ)|C1|2 ≤ 2(ε/2)n

2/p2

possible arrangements of the edges within the pair (here we implicitly used Stirling’s formula).

It follows that for all pairs in a given set of pairs there are at most 2(p2)(ε/2)n
2/p2 ≤ 2(ε/4)n

2

possible arrangements of the edges. Therefore, taking all possible arrangements into consid-

eration, the total number of arrangements of these edges is at most

2((
p
2)+ε/4)n

2
. (14)

• In every pair (Ci, Cj) for which (i, j) ∈ E(D) there are at most |C1|2 ≤ n2/p2 edges. However,

we know which pairs these are, since D is given, and we know by the above claim that there

are at most k−2
2k−2p

2 edges in D. Therefore, the total number of arrangements of these edges

is at most

2
k−2
2k−2

n2

. (15)
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Multiplying (11),(12),(13),(14) and (15) we have that

s(C) ≤ 2(γ+γ/2+γ+ε/4+
k−2
2k−2

)n2+p2+(p2) ≤ 2(2.5γ+ε/4+ε/4+
k−2
2k−2

)n2

≤ 2(3ε/4+
k−2
2k−2

)n2

.

Theorem 1.3 now follows from (9) (10) and (8) by observing that F =
∑
C∈C s(C). 2
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