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Abstract

We show that the maximum number of edges bounding m faces in an arrangement of
n line segments in the plane is O(m2/3n2/3 +nα(n)+n log m). This improves a previous
upper bound of Edelsbrunner et al. [EGS] and almost matches the best known lower
bound which is Ω(m2/3n2/3 + nα(n)). In addition, we show that the number of edges
bounding any m faces in an arrangement of n line segments with a total of t intersecting
pairs is O(m2/3t1/3 + nα( t

n)+ n min{log m, log t
n}), almost matching the lower bound of

Ω(m2/3t1/3 + nα( t
n)) demonstrated in this paper.
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1 Introduction

Let S be a finite set of line segments in the Euclidean plane, where a line segment is a
connected, closed, bounded subset of a line. We call the subdivision of the plane induced
by these line segments the arrangement A(S) of S; it consists of vertices, edges, and faces.
The total number of edges bounding some collection of faces in this arrangement is called the
combinatorial complexity of the collection. We write K(m, n) for the maximum combinatorial

complexity of any m faces in any arrangement of n line segments. Note that κ(n) =
(

n
2

)

−n+2

is the maximum possible number of faces in an arrangement of n line segments. For m = κ(n)
we clearly have K(m, n) = Θ(n2), while for a single face, K(1, n) = Θ(nα(n)), where α(n)
denotes the functional inverse of Ackermann’s function (see [PSS], [GSS], [WS]).6

A recent paper [EGS] shows that K(m, n) = O(m2/3−δn2/3+2δ +nα(n) log m),7 for any δ >

0, where the constant of proportionality depends on δ. For most values of m this bound exceeds
the best known lower bound which is Ω(m2/3n2/3 + nα(n)). Another recent paper [CEGSW]
demonstrates a tight Θ(m2/3n2/3 + n) bound for the maximum combinatorial complexity of
m faces in an arrangement of n lines.

In this paper we show that K(m, n) = O(m2/3n2/3+nα(n)+n log m). This bound improves
that of [EGS] and differs from the lower bound mentioned above only in the term n log m

which dominates the other two terms only if 2α(n) ≤ m ≤ n1/2 log3/2 n. For instance, it yields
K(1, n) = O(nα(n)) and K(κ(n), n) = O(n2), in agreement with the known and tight results
mentioned above.

We also consider the case of arrangements of line segments with fewer than quadratically
many intersecting pairs. Using a mixture of our techniques and those of [CEGSW], we show
that the maximum combinatorial complexity of m faces in an arrangement of n line segments
with t ≤

(

n
2

)

intersecting pairs is O(m2/3t1/3 + nα( t
n
) + n min{log m, log t

n
}) and Ω(m2/3t1/3 +

nα( t
n
)). This result has applications to bounding the combinatorial complexity of non-convex

cells in arrangements of triangles in three-dimensional space (see [AS] for details).

The main technical difference between the cases of lines and of line segments is that in the
former case a fairly early result by Canham [Ca] shows that K(m, n) = O(mn1/2 + n), which
is O(n) when m = O(n1/2). This property is crucial for the analysis in [CEGSW]. The lack
of a similar bound (called a “Canham threshold” in [CEGSW]) for line segments has so far
prevented the direct application of the techniques of [CEGSW] to the case of line segments.
In lieu, [EGS] developed a different technique in order to obtain the bound stated above. The

6For technical reasons that will become more apparent later, we modify the standard definition of α(·) in the
following manner which does not affect its asymptotic behavior. Consider Ackermann’s function and extend
its domain to include all non-negative real numbers by a linear interpolation between consecutive integers.
Define α(·) to be 1 larger than the functional inverse of this extended Ackermann’s function. Thus, α(·) is a
continuous piecewise-linear function defined on the set of non-negative real numbers and bounded away from
zero.

7In this paper, all logarithms are to the base 2.
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results of this paper narrow the gap between the upper and lower bound on the maximum
combinatorial complexity of m faces in an arrangement of n line segments and are tight unless
2α(n) ≤ m ≤ n1/2 log3/2 n.

The paper is organized as follows. Section 2 presents a “Canham threshold” for line
segment arrangements that is almost tight and the proof of the first bound mentioned in the
abstract. Section 3 extends this bound to the case of arrangements of line segments with few
intersecting pairs, and Section 4 concludes with a discussion of the results and some open
problems.

2 General Collections of Line Segments

In this section we prove the main result of this paper, the upper bound on K(m, n) mentioned
in the abstract and the introduction. We begin the proof by recalling the following lemma of
[EGS], called “combination lemma”, restated in a manner suitable for our subsequent analysis.

Lemma 2.1 (Combination lemma). Let B and R be two collections of |B| blue and |R| red
line segments in the plane, n = |B|+ |R|, and let P be a set of m points in the plane not lying
on any of the line segments. Let KB (KR) denote the combinatorial complexity of the faces
of the arrangement A(B) (A(R)) that contain points of P , and suppose that the number of
faces of the overlay arrangement, A(B ∪ R), that contain points of P is m̄ ≤ m. Then the
combinatorial complexity of these faces is at most KB + KR + O(m̄ + n).

The proof is omitted because it is identical to the proof given in [EGS], with the additional
observation that the analysis given there depends only on the number m̄ of faces in the overlay
arrangement that contain the points of P , and not on the size of P .

In addition, we will need the following fact concerning collections L of lines in general

position, that is, such that no two lines in L are parallel and no three meet in a common
point. For reasons that will become clear later we use the term funnels for the faces of the
line arrangement A(L). For a collection F of funnels of A(L) we say that a line ℓ ∈ L splits

F if F contains at least one funnel on each side of ℓ. Let T be a binary tree whose leaves
are in one-to-one correspondence with the funnels of A(L). We write Fλ = {f} if the funnel
f corresponds to the leaf λ of T and we define Fκ = Fµ ∪ Fν for each interior node κ with
children µ and ν. We are now ready to state the fact.

Lemma 2.2 Let L be a set of m lines in general position in the plane. There exists a binary
tree T representing the funnels of A(L) as described above so that

(a) the height of T is O(log m), and

(b) for each node κ, the collection of funnels Fκ is split by at most 2|Fκ| − 2 lines in L.
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Proof. Without loss of generality we can assume that no line in L is vertical. We begin
by defining the notion of the belt-number of a funnel f in A = A(L). Consider a half-line
emanating vertically downward from a point in the interior of f . The belt-number of f is the
number of lines in L that intersect this half-line; it is independent of the choice of the interior
point. For i = 0, 1, . . . , m, the i-belt of A is the collection of funnels of A with belt-number i

(refer to Figure 2.1).

4

3

2

1

0

Figure 2.1: The illustration to the right emphasizes the belts of the line arrangement shown
to the left.

To produce the required tree T , we proceed as follows. First, for each i, construct a
minimum-height binary tree T (i) whose leaves correspond to the funnels of the i-belt of A, so
that the inorder traversal of T (i) visits the funnels from left to right. T is then constructed
with the trees T (i) as leaves in a similar manner, using the top-to-bottom order of the belts
(see Figure 2.2). The height of T is at most 3⌈log m⌉ which shows (a). Moreover, T satisfies

T(2)

T

T(0)

T(1)

T(2)

T(3)

T(4)

Figure 2.2: The left figure shows a tree for a belt, and the right one shows how the trees for
the individual belts are collected to form a single tree.



General Collections of Line Segments 4

(b) which can be seen as follows. For a node κ in T with two children µ and ν, the collections
Fµ and Fν represent either two consecutive portions of one belt, or two adjacent groups of
consecutive belts. In the former case, the only lines of L that possibly split Fκ but not Fµ or
Fν are the two lines that intersect in the vertex shared by the two portions of the belt. Hence,
the number of lines splitting Fκ is at most 2 plus the number of lines that split Fµ plus the
number of lines that split Fν . If Fµ and Fν represent adjacent groups of belts, then there is
no line that separates them, which implies that there is no new line splitting Fκ. If κ has
only one child µ then Fκ = Fµ, and if κ is a leaf then no line splits Fκ. Claim (b) follows by
induction on the size of the sets F .

We now present the key lemma (the “Canham threshold”) required for the proof of the
main result of this section. It makes crucial use of duality and the above two lemmas.

Lemma 2.3 K(m, n) = O(n log m + nα(n)) for m ≤ √
n.

Proof. Let S denote the given collection of n line segments. Mark the desired faces by
choosing an interior point in each, thus forming a set P of m points. We have plenty of
freedom in choosing the exact locations of the points and can thus assume that no two points
lie on a common vertical line and no three points are collinear. We can also assume that no
point lies on a line spanned by one of the line segments. Next, we pass to the dual plane. We
do this by mapping every point p = (a, b) to the dual line p∗ = {(x, y) | y = ax− b}. Note that
by definition of the map none of the dual lines is vertical; we can thus unambiguously talk
about points that lie (vertically) above or below a dual line. Similarly, a non-vertical line ℓ in
the primal plane is mapped to the dual point ℓ∗ in the dual plane so that (ℓ∗)∗ = ℓ. Observe
that the duality preserves incidences and ‘sidedness,’ that is, a point p lies on (above, below)
a non-vertical line ℓ if and only if the dual point ℓ∗ lies on (respectively, above, below) the
dual line p∗.

The set of lines P ∗ = {p∗ |p ∈ P} partitions the dual plane into τ funnels f1, f2, . . . , fτ . We

have τ =
(

m
2

)

+m+1 because the m lines in P ∗ are in general position which is a consequence
of the assumptions on the points in P . Let Sλ ⊆ S be the set of line segments so that the
points dual to the lines containing them lie in fλ, for 1 ≤ λ ≤ τ , and set nλ = |Sλ|. By
assumption, no point dual to such a line lies on any line in P ∗ which implies

∑τ
λ=1 nλ = n.

Now apply the combination lemma (Lemma 2.1) to the collections Sλ, by combining them
in pairs, according to the structure of the binary tree T described in Lemma 2.2. This way
we obtain new collections of line segments which are then combined in pairs, and so on until
all subarrangements are merged to yield the original line segment arrangement. The leaves of
T correspond to the sets Sλ, and its root ρ corresponds to the entire set S of line segments.
For each node κ with children µ and ν define Sκ = Sµ ∪ Sν , set nκ = |Sκ|, and let m̄κ be the
number of faces of A(Sκ) that contain points of P . Let Kκ be the combinatorial complexity
of these m̄κ faces. By the combination lemma we have

Kκ = Kµ + Kν + O(m̄κ + nκ).
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Repeated application of this bound yields

Kρ =
∑

λ a leaf

Kλ + O

(

∑

κ a non-leaf

m̄κ

)

+ O(n log m), (1)

where the last term bounds the sum of the nκ and is due to the fact that the height of T is
O(log m) and each line segment belongs to the nodes along one path of T only.

Next we estimate the sum of the m̄κ. Recall that Fκ is the set of funnels that correspond
to the leaves in the subtree with root κ. By Lemma 2.2 (b) at most 2|Fκ| − 2 lines in P ∗ split
Fκ. Each remaining line of P ∗ either passes above all funnels in Fκ or it passes below all such
funnels. In any case, its corresponding point in P lies in the unbounded face of A(Sκ). Hence,
m̄κ ≤ (2|Fκ| − 2) + 1 < 2|Fκ|. Now we sum this bound over all nodes of T . Because T has
only O(m2) nodes and its height is only O(log m) we obtain

∑

κ

m̄κ <
∑

κ

2|Fκ| = O(m2 log m).

All we still need to derive the assertion from (1) is a bound on the sum of the Kλ, over all
leaves λ. Each λ corresponds to a funnel fλ which is a face of A(P ∗). Hence, each point of
P lies in the unbounded face of A(Sλ). This implies Kλ = O(nλα(nλ)). The sum of the Kλ,
over all leaves λ, is O(nα(n)) because

∑τ
λ=1 nλ = n as noted earlier. We can now substitute

all bounds into (1) and obtain

Kρ = O(nα(n) + m2 log m + n log m).

For m ≤ √
n this implies

K(m, n) = O(n log m + nα(n)),

as asserted.

If m >
√

n we can partition the set of faces into about m√
n

groups of at most
√

n faces
each. If we apply Lemma 2.3 to each group we get

K(m, n) ≤
⌈

m√
n

⌉

K(
⌊√

n
⌋

, n) = O(m
√

n log n + m
√

nα(n)) = O(m
√

n log n).

Since for
√

n < m ≤ κ(n) we have log n = O(log m), we obtain the following bound which is
more general than Lemma 2.3.

Corollary 2.4 K(m, n) = O(m
√

n log m + n log m + nα(n)).

We are now ready for the main result of this section. In contrast to Lemma 2.3 its
proof can conveniently be stated without reference to duality. Indeed, it follows the general
paradigm developed in [CEGSW]. Thus, the main steps of the proof are to partition the
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problem into fairly independent subproblems, to use a Canham threshold (Corollary 2.4) for
each subproblem, and to use bounds on so-called zones to handle the (limited) interaction
between the subproblems. The partition will be defined in terms of a trapezoidation of the
plane, that is, a collections of open and pairwise disjoint trapezoids whose closures cover the
entire plane. Here a trapezoid is defined as the intersection of four open half-planes, one to
the left of a vertical line, one to the right of a vertical line, one below a non-vertical line, and
one above a non-vertical line; some of these half-planes can degenerate to the entire plane. In
reference to their function the trapezoids will also be called funnels.

Theorem 2.5 K(m, n) = O(m2/3n2/3 + nα(n) + n log m).

Proof. The case m ≤ √
n follows trivially from Lemma 2.3, so in the remainder of the proof

we assume that m >
√

n.

Suppose the m desired faces of the line segment arrangement A = A(S) are marked by a
collection P of m points each one lying in the interior of the face it specifies. Let r be a fixed
integer between 1 and n that will be specified later. By a result of Matoušek [Ma] there is a
constant c and a trapezoidation of the plane with the following properties.

(i) The number of trapezoids (funnels) is O(r2).

(ii) Each funnel meets at most cn
r

of the line segments in S.

(In fact, [Ma] proves the existence of a trapezoidation so that (ii) even holds for the lines that
contain the line segments in S.) If a funnel contains more than m

r2 points of P or more than 2n
r2

endpoints of line segments in S we further subdivide it by a vertical cut so that the number
of points (respectively, segment endpoints) in each of the resulting two funnels is at most half
of what it was for the original funnel. After repeating this operation we finally arrive at a
refined trapezoidation, T , with τ funnels f1, f2, . . . , fτ . Define mi = |P ∩ fi|, let ni be the
number of line segments in S that intersect but do not have an endpoint in fi, and let ki be
the number of line segments in S that have at least one endpoint in fi. Then T satisfies the
following properties.

(i) τ = O(r2),

(ii) ni ≤ cn
r

for each 1 ≤ i ≤ τ , and

(iii) mi ≤ m
r2 and ki ≤ 2n

r2 for each 1 ≤ i ≤ τ .

Furthermore,
∑τ

i=1 ki ≤ 2n and we can assume that
∑τ

i=1 mi = m because we are free to
perturb the points of P within a sufficiently small neighborhood of their initial positions.

As mentioned earlier, T is used to decompose the global problem into smaller subproblems,
one for each funnel. As we will see later these subproblems are not completely independent,
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but for now let us ignore this issue and consider the subproblem defined by a typical funnel
fi. Let Ai be the subdivision of fi defined by the ni + ki line segments in S that intersect fi.
We bound the combinatorial complexity of the marked faces of Ai by separately considering

Figure 2.3: The funnel fi with its partition Ai defined by the intersecting line segments is
shown to the left. The coarser partitions A′

i and A′′
i of fi are shown in the middle and to the

right.

the partitions A′
i of fi, defined by the ni line segments that meet fi but have no endpoint in

fi, and A′′
i of fi, defined by the ki line segments that each have at least one endpoint in fi

(see Figure 2.3). There are mi such faces in Ai, each one marked by a point in P ∩ fi. The
face of Ai marked by such a point p is a connected component of the intersection of the face
marked by p in A′

i and the face marked by p in A′′
i . Since A′

i can be viewed as part of a line
arrangement (as opposed to a line segment arrangement), we can use a result of [CEGSW]
which implies that the combinatorial complexity of the marked faces in A′

i is

O(m
2/3
i n

2/3
i + ni). (2)

By Corollary 2.4 the combinatorial complexity of the marked faces in A′′
i is

O(mik
1/2
i log mi + ki log mi + kiα(ki)). (3)

Finally, we can apply the combination lemma, which shows that the combinatorial complexity
of the marked faces in Ai is

O(m
2/3
i n

2/3
i + mik

1/2
i log mi + ki log mi + kiα(ki) + mi + ni), (4)

where the last two terms, mi and ni, come from the application of the combination lemma.

Note that by just summing (4) over all funnels fi we miss some of the edges bounding
marked faces in A. To explain how this can happen call a face of Ai coastal if at least one of
its edges lies on the boundary of fi, and call it inland otherwise. A marked inland face of Ai is
also a marked face of A. However, a marked coastal face of Ai is, in general, only a piece of a
marked face of A. Fortunately, if a face in A intersects more than one funnel then it intersects
each such funnel in a coastal face. Therefore, we can compensate for any overlooked edges
by counting all edges of all coastal faces of all funnels. We obtain a bound on this number
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by separately considering A′
i and A′′

i , as before. By the “zone theorem” in [EOS, ESS], the
combinatorial complexity of all coastal faces in A′

i is O(ni). The combinatorial complexity of
all coastal faces in A′′

i is O(kiα(ki)) because by removing the sides of fi we get all coastal faces
as part of one unbounded face in an arrangement of ki line segments. By the combination
lemma the combinatorial complexity of all coastal faces in Ai is thus O(ni + kiα(ki)) which is
dominated by (4).

Let us now take the sum of (4) over all funnels fi. This yields a bound on the combinatorial
complexity of all marked faces in A which is

O

(

τ
∑

i=1

m
2/3
i n

2/3
i +

τ
∑

i=1

mik
1/2
i log mi +

τ
∑

i=1

ki log mi +
τ
∑

i=1

kiα(ki) +
τ
∑

i=1

mi +
τ
∑

i=1

ni

)

.

Using properties (i), (ii) and (iii) we can simplify this expression and obtain

O(m2/3n2/3 +
mn1/2

r
log m + n log m + nα(n) + m + rn).

We now choose r =
⌈

m1/2

n1/4
log1/2 m

⌉

. In this case we have mn1/2

r
log m ≈ rn ≈ m1/2n3/4 log1/2 m

and thus
K(m, n) = O(m2/3n2/3 + m1/2n3/4 log1/2 m + nα(n) + n log m). (5)

Comparing the second term in (5) with the first and the fourth terms, we discover that this
bound differs from the asserted bound only if

√
n log n ≤ m ≤ √

n log3 n. The main reason
for falling short of the goal in this interval is the weakness of Corollary 2.4 used to bound the
combinatorial complexity of the marked faces in A′′

i resulting in (3). But now we have a new
bound so that we can replace (3) by

O(m
2/3
i k

2/3
i + m

1/2
i k

3/4
i log1/2 mi + kiα(ki) + ki log mi). (6)

After adding (2) and the contribution of the combination lemma we get the following sums
expressing the total combinatorial complexity:

O(
τ
∑

i=1

m
2/3
i n

2/3
i +

τ
∑

i=1

m
2/3
i k

2/3
i +

τ
∑

i=1

m
1/2
i k

3/4
i log1/2 mi+

τ
∑

i=1

kiα(ki)+
τ
∑

i=1

ki log mi+
τ
∑

i=1

mi+
τ
∑

i=1

ni).

So again we use (i), (ii) and (iii) to simplify this to

O(m2/3n2/3 +
m2/3n2/3

r2/3
+

m1/2n3/4

r1/2
log1/2 m + nα(n) + n log m + m + rn).

The second and sixth terms can be trivially dropped. If we choose r = m1/3

n1/6
log1/3 m we get

m1/2n3/4

r1/2 log1/2 m ≈ rn ≈ m1/3n5/6 log1/3 m. But then, the last term, namely m1/3n5/6 log1/3 m,

is O(m2/3n2/3) if m ≥ √
n log n and O(n log m) if m ≤ √

n log2 n. We can thus also drop the
third and the last terms and get

K(m, n) = O(m2/3n2/3 + nα(n) + n log m),
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as asserted.

Remarks. (1) It is interesting to observe that the above proof would imply K(m, n) =
O(m2/3n2/3 +nα(n)) if Lemma 2.3 could be improved to K(m, n) = O(nα(n)) for m ≤ √

n. It
is also interesting that the last step of the current proof, which appears somewhat unnatural,
would still be necessary.

(2) In the preceding analysis we assumed that all line segments are bounded, that is, have
two endpoints. However, our bounds also apply when some of the line segments are half-lines
or lines. Indeed, clip all half-lines and lines outside a sufficiently large circle that encloses
all pairwise intersections. This operation replaces all unbounded faces by a single face whose
complexity is O(nα(n)). Therefore, all bounds above also hold in this slightly more general
setting.

3 Sparsely Intersecting Collections of Line Segments

Let S be a set of n line segments in the plane, with a total of t intersecting pairs. In this section
we study the dependence on t of the combinatorial complexity of m faces in the arrangement
A(S). We prove an upper bound by combining the techniques of [CEGSW] with the results
of the preceding section.

Before plunging into the analysis, note that the bound of Theorem 2.5 grossly over-
estimates the actual combinatorial complexity of m faces when t is considerably smaller
than

(

n
2

)

. Indeed, if t pairs of line segments intersect, then A(S) has at most t + 2n ver-

tices (the intersection points and the endpoints), at most 2t + n edges (each intersection
increases the number of edges by two), and, by Euler’s formula for planar graphs, at most
t−n+d+1 ≤ t+1 faces, where d is the number of connected components of the union of the
n line segments. The total combinatorial complexity of A(S) is therefore O(t + n). However,
if we set m = Θ(t) in the bound of Theorem 2.5, we obtain O(t2/3n2/3 +nα(n)+n log t), which
is much larger than O(t + n) unless t is very small or very large.

We begin with the following observation (Lemma 4.1 of Clarkson and Shor [CS]).

Lemma 3.1 If we draw a random sample R of r line segments from S, the expected number
of intersecting pairs in R is r(r−1)

n(n−1)
t.

Observe that, if t < n, the maximum number of edges of a single face of A(S) is Θ(n)
since the collection of all faces has combinatorial complexity Θ(n). In what follows we will
therefore assume that t ≥ n, for otherwise our bounds hold trivially.

Once again, mark the m desired faces of A(S) by a collection P of m points and fix an
integer 1 ≤ r ≤ n to be specified later. Choose a random sample R ⊆ S of r line segments and
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decompose A(R) into trapezoidal funnels by drawing a line vertically upward and downward
from every vertex (intersection point or endpoint) until it hits another line segment of R or
extends to infinity. Let τ denote the number of resulting funnels; τ is clearly proportional to
the number of vertices of A(R), which consist of the 2r endpoints of the sample line segments
and the intersection points of these line segments. By Lemma 3.1, the expected value of τ is
therefore O(r + r2

n2 t). For each funnel fi, let mi be the number of points of P that lie inside
fi, and let ni be the number of line segments of S that intersect fi (now we do not make a
distinction between line segments that have endpoints in fi and line segments that do not).
Since we are free to perturb the points of P within a sufficiently small neighborhood of their
current position, we can assume that no point lies on the boundary of a funnel, and therefore
∑τ

i=1 mi = m.

The trapezoidation of A(R) defines a subdivision of the global problem into smaller sub-
problems, one for each funnel. As in the proof of Theorem 2.5, for each funnel fi in the
trapezoidation of A(R), consider the subdivision Ai of fi defined by the ni line segments that

intersect fi. Since no two points of P ∩fi lie in the same face of Ai we have mi ≤
(

ni

2

)

+n+1.
By the results of the previous section, the combinatorial complexity of the mi faces of Ai that
contain the mi points in P ∩ fi is at most

O(m
2/3
i n

2/3
i + niα(ni) + ni log mi).

Recall that a face of Ai is coastal if at least one of its edges lies on the boundary of fi.
As before, we add to this bound the overall complexity of all coastal faces of Ai, which is
O(niα(ni)). Summing over all funnels, it follows that the combinatorial complexity of the m

faces in A(S) is

O

(

τ
∑

i=1

m
2/3
i n

2/3
i +

τ
∑

i=1

niα(ni) +
τ
∑

i=1

ni log mi

)

. (7)

We proceed to bound the expected value of (7). Such an estimate will yield an upper bound
on the maximum complexity of m faces of A(S), as the latter quantity is independent of the
choice of the sample.

In the following analysis, we will repeatedly use Theorem 3.6 of Clarkson and Shor [CS]

which provides a bound on the expected value of expressions of the form
∑τ

i=1 W (
(

ni

d

)

), where

W (·) is an arbitrary concave non-negative function and d is a positive integer. Interpreted in
the context of a random sample of r line segments, the theorem states that, for any fixed d,
there is a constant D such that

E(
τ
∑

i=1

W (nd
i )) ≤ E(τ) · W (D(

n

r
)d). (8)

By the Hölder inequality, the first term of (7) is at most

O





(

τ
∑

i=1

mi

)2/3 ( τ
∑

i=1

n2
i

)1/3


 = O



m2/3

(

τ
∑

i=1

n2
i

)1/3


 . (9)
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Now, (8) implies that the expected value of the last sum is

E(τ) · O((
n

r
)2) = O(

n2

r
+ t),

because E(τ) = O(r + r2

n2 t) as noted earlier. By Jensen’s inequality, for any non-negative
random variable X, E(X1/3) ≤ (E(X))1/3, so the expected value of (9) is bounded from above
by O(m2/3(n2

r
+ t)1/3). Moreover, from (8) we also get E(

∑

niα(ni)) = E(τ) · O(n
r
α(n

r
)) =

O((n+ r
n
t)α(n

r
)),8 and E(

∑

ni log mi) is clearly O((n+ r
n
t) log m). On the other hand, recall that

mi = O(n2
i ), for each i, so E(

∑

ni log mi) = O(E(
∑

ni log ni)) which, by another application
of (8), is O(E(τ) · n

r
log n

r
) = O((n + r

n
t) log n

r
). Thus the expected value of the expression in

(7) is

O

(

m2/3(
n2

r
+ t)1/3 + (n +

r

n
t)(α(

n

r
) + min{log m, log

n

r
})
)

.

If we choose r =
⌈

n2

t

⌉

we get n2

r
+ t = O(t) and n + r

n
t = O(n). It follows that the expected

value of the last expression is bounded by

O
(

m2/3t1/3 + nα(
t

n
) + n min{log m, log

t

n
}
)

.

Thus we have shown the following upper bound.

Theorem 3.2 The combinatorial complexity of m faces in the arrangement of a set of n line
segments with a total of t intersecting pairs is at most

O
(

m2/3t1/3 + nα(
t

n
) + n min{log m, log

t

n
}
)

.

Remarks. (1) The maximum meaningful value of m in Theorem 3.2 is Θ(t). In this case the
above bound becomes O(t + n), which matches the actual combinatorial complexity of the
entire arrangement.

(2) When t is quadratic in n, the above bound becomes

O(m2/3n2/3 + nα(n) + n log m),

which is the same as the bound in Theorem 2.5. When t ≤ n, on the other hand, our bound
reduces to the obvious bound Θ(n).

(3) When t ≥ n and m is about n3/2

t1/2 , the above bound becomes O(n log n). Let us compare
this with the discussion in [CEGSW] concerning “Canham Thresholds”, that is, threshold

8Here it is sufficient to argue that xα(x) =
√

x2α(
√

x2) is a concave function of x2. Indeed it is not difficult
to see that

√
yα(

√
y) is concave when restricted to the squares of values taken by the Ackermann’s function,

while our definition of α(·) as a piecewise-linear function guarantees that
√

yα(
√

y) is concave at intermediate
points as well.
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values of m up to which the combinatorial complexity of m faces does not increase much
beyond the maximum combinatorial complexity of a single face. We notice that, for the case
of line segments, the threshold value of m is roughly n3/2

t1/2 ; it increases from n1/2 to n, as the

number of intersecting pairs goes down from
(

n
2

)

to n.

Finally, we describe a construction of arrangements defined by sets of O(n) line segments
with O(t) intersecting pairs that establish a lower bound on the maximum total number of
edges bounding m faces in such arrangements. The bound we obtain is very close to the upper
bound demonstrated in Theorem 3.2. The proof of the lower bound is based on constructions
given in [WS] and in [EW].

Theorem 3.3 For any three positive integers t, m, n such that m ≤ t − n + 2 and t ≤
(

n
2

)

,

there exists an arrangement of O(n) line segments with O(t) intersecting pairs in which there
are m or fewer faces with combinatorial complexity Ω(m2/3t1/3 + nα( t

n
)).

Proof. We first take care of the case t < n. As mentioned before, the entire arrangement has
Θ(n) edges in this case. In fact, t < n is small enough so that there exists an arrangement of
n line segments with t intersecting pairs in which there are no bounded faces. Hence in such
an arrangement, there are m or fewer faces (namely one face) of complexity Θ(n), as claimed.
For the remainder of the proof we can thus assume t ≥ n.

By the construction of [WS], for any integer k, there exists a set Sk of k line segments

so that the unbounded face of the arrangement A(Sk) has Ω(kα(k)) edges. Take q =
⌈

n2

t

⌉

disjoint translates of Sk, with k =
⌈

n
q

⌉

, so that no line segment of one translate intersects any

line segment of any other translate. This gives an arrangement defined by O(n) line segments
in which the unbounded face has Ω(q · n

q
α(n

q
)) = Ω(nα( t

n
)) edges. Moreover, the number of

intersecting pairs in any copy of Sk is at most
(

k
2

)

= O(n2

q2 ) = O( t2

n2 ) = O( t
q
), so that the total

number of intersecting pairs is O(t), as desired. This yields the second term of the claimed
lower bound.

We can thus assume that m > n3/2

t1/2 , for otherwise the first term of our bound is dominated
by the second one. By the construction of [EW], for every pair of positive integers, (k, ℓ),
such that k2 ≥ ℓ, there exists a set Tk of k line segments so that some ℓ faces in A(Tk) have

combinatorial complexity Ω(k2/3ℓ2/3). Apply this construction with k =
⌈

n
q

⌉

and ℓ =
⌊

m
q

⌋

,

with q as above, and consider q disjoint translates of Tk. The resulting set contains Θ(n)

line segments and the number of intersecting pairs is at most q
(

k
2

)

= O(t). The defined
arrangement has qℓ ≤ m faces with combinatorial complexity

Ω(qk2/3ℓ2/3) = Ω(
n2

t
(
t

n
)2/3(

mt

n2
)2/3) = Ω(m2/3t1/3).

These calculations are valid because q ≤ n and q ≤ m for the assumed range of t, m, and n,
so k ≥ 1 and ℓ ≥ 1.
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4 Conclusions

This paper proves an upper bound on the total number of edges bounding m faces in an
arrangement of n line segments in the plane, which improves the previous upper bound of
[EGS]. In addition, we show how the maximum number of edges depends on the number of
intersecting pairs of the given line segments. Our analysis makes a more sophisticated use of
the combination lemma of [EGS], but we do not know whether the results that we obtain are
best possible using this technique. Our bounds come close to the known lower bounds (or to
those established in Theorem 3.3) but leave a gap for some range of values of m.

An obvious open problem is to close this gap. It appears that progress in this direction
hinges on a better understanding of K(m, n) for m = n1/2. Using the techniques of [CEGSW],
an improved bound on K(n1/2, n) would immediately yield better bounds for the general case.
In view of the apparent difficulty in obtaining such a bound, a plausible conjecture is that
K(n1/2, n) is indeed asymptotically larger than the known lower bound which is Ω(nα(n)).
If so, that would represent yet another surprising difference between arrangements of line
segments and arrangements of lines; in an arrangement of n lines n1/2 faces cannot have
asymptotically more edges than a single face.
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