
THE NUMBER OF FINITE TOPOLOGIES1
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Abstract. The logarithm (base 2) of the number of distinct

topologies on a set of re elements is shown to be asymptotic to »2/4

as n goes to infinity.

Let A be a set with n elements, and let T(X) be the set of all

topologies that can be defined on X. Then we set Tn = | T(X) \. The

number Tn has been determined for certain small values of n [4].

T„ has been estimated by several authors [2], [3], [8]. We present

here an asymptotic estimate for the logarithm of Tn. We do this by

considering an equivalent problem. Namely, if P(X) denotes the set

of all partial orders that can be defined on a set X with n elements,

and if we set P„ = | P(X) |, then we estimate P„. The sizes of certain

special subsets of P(X) have been determined, and thus provide lower

bounds for P„ [6], [7].

We begin by presenting several enumeration problems which are

equivalent to one another in a certain sense (see Lemma 1 below).

Let Tn and P„ be defined as above. Similarly, for X a set with n

elements, let To(X) be the set of all Po-topologies that can be defined

on X (i.e., if a, b are two elements of X, then there is some open set

containing one but not both of them [5]), and let 0(X) be the set of

all preorders that can be defined on X (i.e., reflexive and transitive,

but not necessarily antisymmetric). Then set Tn.o=\T0(X)\, and

On = I 0(X) I. Let T'n, P'„, T'„a, 0n denote the numbers of isomorphism

classes in T(X), P(X), T0(X), 0(X) respectively.

From [2] we know that

(1) Tn = 2*2'4.

(Alternatively, we have P„=t2n/4, which we observe trivially after

the introduction of "diagrams" below.)

Lemma 1. Tn = 0n, Tn,0=Pn, T'n = 0'n, T'n,0 = P'n. All eight of these

quantities have logarithms which are asymptotically equal as n tends to

infinity.
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Note. In the statement of Lemma 1 and everywhere else in this

paper all logarithms are of base 2.

Proof. The four equalities are well known [l], [2]. For the

second part of the lemma, in view of (1), it need only be shown that

logiT„/T„)-log(P„,o/P„,o) and log(0„/P„) are all oin2). Since T„/Tn,

and T„,o/Tn,o, are at most n\, and log n\ is oin2), it remains only to

show that log (0„/P„) =o(«2). To obtain a preorder on a set X with

n elements merely partition X into subsets (in at most n\ 2n~1 ways),

and then partially order the subsets (in at most P„ ways) [2]. But

log(«! 2"_1) =oin2). This completes the proof.

There is associated with each partial order a unique Hasse diagram,

or just diagram (basis graph in [9]). It consists of a graph having as

vertices the elements of the set, and for each pair a, b of these vertices

an edge directed from a to & iff a covers b, that is, a>b, and for no c

is a>c>b. Thus, a diagram will be a directed graph which avoids

two types of configurations: a polygon with its edges directed cycli-

cally, or a polygon with all but one edge directed cyclically. For ex-

ample, a bipartite graph with its edges all directed from just one of its

two parts to the other is such a diagram. There are clearly at least

2"/4 of these, and thus P„>2"2/4. Estimating the number of dia-

grams is the same as estimating the number of partial orders, but we

find the former concept more convenient.

Theorem 1. For some constant C,logPn^w2/4-r-C»3/2log nforalln.

The proof of this theorem will be by induction on n. We show that

all diagrams on n + l vertices can be obtained from those with n or

fewer vertices by adjoining vertices and edges in certain specified

ways. The induction is accomplished by observing that if we start

with smaller diagrams and obtain all possible diagrams on n + l

vertices by these methods, then the inequality of Theorem 1 is pre-

served. Each of the three following lemmas concerns itself with one

of the special methods and will be used to show that the inequality

is preserved in the induction step. Together they include all possible

diagrams on n +1 vertices.

For any set V let AiV) denote the set of diagrams that can be

defined with V as vertices such that some vertex is adjacent to (i.e.,

covering or covered by) at most (| V\ —1)/64 of the other vertices.

When \V\ =k, set Ak= |4(F)|.

Lemma 2. log71n+i/P„) <n/5 for n sufficiently large.

Proof. Let | V\ =n + l. We can obtain any member of AiV) by

starting with some diagram on n of the vertices of V and adjoining
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the (w + l)st vertex with at most w/64 vertices covering it, and at

most «/64 covered by it. There are ("J^Pn ways to pick a diagram on

just n of the vertices. The remaining vertex can be connected to some

number, up to ra/64, of vertices covering it. There are

T(n)^-n(    N   )
fo\iJ      64    \[n/64]/

ways to choose these. The number of vertices which it covers can then

be chosen in even fewer ways. Thus, we have

Using Stirling's formula, we have, for n sufficiently large,

/An+X\ n
log(-^Wlog(«-r-l) + 21og-

(3) V ̂  ' 64
/ 1   63\      2m        /1\      2«63        63

— log I 2irn-J-log I — )-log — ■
\       64 64/      64        \64/        64 64

Clearly, then, for n sufficiently large

/An+1\     21 64       n
(4) log   -) <— n+ 2mlog— <— •

V P„ /     64 63       5

This proves the lemma.

Definition. A vertex of a diagram is minimal if it covers no other

vertex.

Definition. Let Q be a set of vertices in a diagram. Then C(Q)

denotes the set of vertices in the diagram which are adjacent to (i.e.,

covering or covered by) any of the vertices in Q.

Let V be a set, and let | V\ =k + l. Denote by B(V) the set of

diagrams that can be defined with V as vertices and with a minimal

vertex covered by a set Q of size [k112], with C(Q) containing at least

k/2 vertices. Let Bk+X=\ B(V)\.

Lemma 3. log(Bn+x/Pf)<n/2+n112 log nfor sufficiently large n.

Proof. First we observe that no diagram can contain a triangle,

since no matter how the edges of the triangle are directed one of the

forbidden configurations occurs. Let | V\ =n + l. Any diagram in

B(V) can be obtained by starting with a diagram on just n of the

vertices of V (there are ("i1)P„ choices for the diagram on n of the
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vertices), and adjoining the (« + l)st vertex iiasa minimal vertex

covered by a set Q of other vertices with | Q\ = [n112], | CiQ) \ =S w/2.

There are at most ([„&2j) ways to choose Q. (Some of the ([„?/2j) choices

for Q either will violate the condition on CiQ) or will produce one of

the forbidden configurations.) Finally, once Q is selected satisfying

| CiQ) | ^ n/2, then there are at most n/2 — [w1'2] remaining vertices to

which v might be adjacent, (u cannot be adjacent to any vertex in

CiQ), otherwise there would be a triangle.) Thus there are at most

2n/2-[« ] wayS t0 connect v to the remaining vertices not in Q or

C«2).Wehave

(B„+i\ /   n   \      n
~-J ^ log in + 1) + log { ) +-- [n1'2]

/   n     \       n
<log([,."]) + T

for sufficiently large n.

From the definition of the binomial coefficients it is immediate that

(6) log ( ) < n" log n    for    0 < a < 1;
\[waJ/

hence,

(7) 1°8([(|"1])<»1/,lo«S-.

(8) log iBn+i/Pn) < n/2 + n1'2 log n

for sufficiently large n, and Lemma 3 is proved.

Let V be a set with k + l elements. Let T>(F) denote the set of

diagrams that can be defined with V as vertices and with a minimal

vertex v covered by a set Q of [&1/2] vertices, with | CiQ) \ ^k/2. Set

Dk+i=\DiV)\.

Lemma 4. log(7>„+i/P„_[Bi/2]) ̂ n3l2/2+4nfor n sufficiently large.

Proof. Let | V\ —n+l. We can obtain all diagrams in DiV) as

follows: First, we choose a diagram TT on n— [n112] of the vertices of

V. Second, from the remaining [w1/2]-(-l vertices we choose a vertex

v to be minimal. Let Q be the other [n112] vertices. Third, we adjoin

v and Q to TT with all vertices of Q covering v, and connect Q to at

most n/2 vertices of TT in such a way that neither forbidden config-

uration occurs. Finally we let v be covered by some of the vertices not

in CiQ).
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There are ([Jt%+X) subsets of the vertices which can be chosen for

H, and for each such set there are P„_[„i/2] ways to define a diagram

on it. From the [«1/2]-fT remaining vertices we can choose v in

[«1/2]-rT ways. In each diagram in D(V) any vertex in C(Q) must

either cover some vertices in Q or be covered by some vertices of Q,

but not both. For if a, bEQ, uEC(Q), and u covers a, and b covers u,

then u, a, b, v form a forbidden quadrilateral. Thus there are 2["18l+1

possible ways to connect the edges from each vertex in C(Q) to Q.

There are at most w/2 vertices in C(Q) for which this has to be done,

and so there are at most (2[n 1+1)"/2 ways to connect vertices in C(Q)

once C(Q) has been chosen. There are at most

(n — \n112]'

"£f»-[»'"]Ns^ „_[„„]
t-o\ *        /        2   -

I        2        J

ways to choose C(Q) once Q has been chosen. Finally, v can be con-

nected in fewer than 2n ways to vertices not in C(Q). We have

lo   (   Dn+1   \

/   n + 1   \ r n   _
<log ) + \og([n^2] + l)+-([n^] + l)

\[n112] + 1/ 2

(9) f      r i/2i.n — [nlll\

n
+ log-1- log   n — |w1/2J   + n.

2

Comparing terms of (10), below, with (9), we get

/   Dn+X   \ nz>2
log (-) < n + 1 + log n -\-

\P„_[»i/2l / 2

n n6'1

-\-\- log n + n + n <-h 4w.
2 2

Lemma 4 is proved.

The three cases considered in these lemmas include all possible

diagrams on n + l vertices for sufficiently large n. This is because a

diagram either has a vertex adjacent to at most «/64 others (An+X),

or it does not. If a minimal vertex v is connected to more than w/64

vertices, then it is connected to some set Q containing [n112] vertices,

for n sufficiently large. Then C(Q) has either at least n/2 vertices
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(P„+i), or at most n/2 vertices (7)B+i). Hence, we have

(11) PB+i ^ 4B+1 + PB+1 + Dn+1.

We now proceed to prove the theorem.

Proof of Theorem 1. Let w>4 be sufficiently large to satisfy the

three preceding lemmas. Then we can choose some number C>2

such that for all m^n we have

(12) log Pm ^ m2/4 + Cm3'2 log m.

Now we complete the induction by using the lemmas to establish (12)

for n + l. From Lemma 2 we have

n n2      n
log 4B+1 g — + log Pn ^ — + — + Cn*'2 log n

5 4       5
(13)

/n + 3\2
< (--J  + C(» + 1)3/2 log in + 1) - 2.

From Lemma 3 we have

n
log PB+1 g log PB + — + n1'2 log n

n2 n
^-1- Cn312 log n H-H n112 log w

4 2

(w+1)2      »        1 / 3        \
(14) <-+ C   »"! + -»l"   logK

3                          n
-Cn112 log n H-log »

(«+ l)2
<-h C(» + l)3'2 log(» + 1) - n1'2 log ».

Finally from Lemma 4 we have

n3l2
log 7>B+i g log PB_(Bv!] + — +I4»

in-[n112})2                r      ,                                 n3'2
^--^-1- + Cin- [„i/i])»/Mog(»- [n1'2]) +-+ An

(15)
n2      n 3

<-1-h Cn312 log n-Cn log n + In
4        4 2

(«+l)2
< —-V Cin + 1)3>2 login + 1) -n log n.
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Let A=(w-H)74 + C(n + l)3'2log(ra-f-l). Then (13), (14), (15) imply

(16) 4n+i<2"-i,        PB+i<2*-i,        Dn+1<2»-i.

Adding these upper bounds for .4B+i, Bn+i, and Dn+i and using (11)

establishes (12) for n + l and completes the induction. This proves

Theorem 1.

It is interesting to note that the constant C in Theorem 1 plays no

role in the proofs of Lemmas 2 to 4. It serves only to begin the induc-

tion in the proof of Theorem 1.
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