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1. Introduction

In 1926, Jarnik [4] proved that a strictly convex arc y = f(x) of length ` contains at most

3(4π)−
1
3 `

2
3 + O(`

1
3 )

integral lattice points, and that the exponent and constant are best possible.
However, Swinnerton–Dyer [10] showed that the preceding result can be substantially

improved if we start with a fixed, C3, strictly convex arc Γ and consider the number of
lattice points on tΓ, the dilation of Γ by a factor t, t ≥ 1. This of course is the same as
asking for rational points (m

N , n
N ) on Γ as N → ∞. In fact, Swinnerton–Dyer proves a

bound of type
|tΓ ∩ ZZ2| ≤ c(Γ, ε)t

3
5+ε

for ε > 0.
A little later, W. M. Schmidt [8] gave a uniform version of Swinnerton–Dyer’s Theorem

(with respect to Γ) and generalized it to higher dimensions. Schmidt proved that if f ∈
C3([0, N ]) with |f | ≤ N and f ′′′ /=0 in [0, N ], then the number of integral points on the
curve Γ: y = f(x) does not exceed c(ε)N

3
5+ε for every ε > 0, for some c(ε) independent

of f , and conjectured the result with exponent 1
2 . His result and conjecture are actually

more precise, but we have stated them in a modified form for the sake of simplicity.
In this paper, we obtain a result which may be considered a first step toward Schmidt’s

conjecture, namely, that the hypotheses f ∈ CD([0, N ]), |f | ≤ N , |f ′| ≤ 1, f (D) /=0 in [0, N ]
imply

|Γ ∩ ZZ2| ≤ c(εD)N
1
2+εD

where εD → 0 as D → ∞. We prove also an independent conjecture of Sarnak [7] that if
f ∈ C∞([0, 1]) is strictly convex then

|tΓ ∩ ZZ2| ≤ c(f, ε)t
1
2+ε

for every ε > 0. In view of the example f(x) =
√

x, the exponent 1
2 is best possible here,

and in Schmidt’s conjecture. These results are proved in section 4.
If Γ is a subset of an irreducible algebraic curve of degree d inside a square of side N ,

we show that the number of lattice points on Γ is bounded by

c(d, ε)N
1
d +ε

for any ε > 0, and determine c(d, ε), which is otherwise independent of Γ, explicitly. This
appears to be new if d ≥ 3. The example f(x) = xd shows that the exponent 1

d is best
possible. This result is proved in section 3.

* Supported in part by NSF grant DMS 8610730.
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If f is a transcendental analytic function on [0, 1], we prove in section 2 the bound

|tΓ ∩ ZZ2| ≤ c(f, ε)tε

for every ε > 0, answering a question implicitly raised by Sarnak [7]. The same bound
holds if f is an algebraic function, unless the curve y = f(x) admits a parametrization
x = X(u), y = Y (u), by rational polynomials X, Y . The related conjecture

|Γ ∩ ZZ2| ≤ c(d, ε)Nε

for algebraic Γ of degree d and genus ≥ 1, proposed by W. M. Schmidt, is still open due
to lack of uniformity in our arguments.

Our results are sufficiently uniform that they can be extended to higher dimensions
by simple slicing arguments.

We would like to thank Peter Sarnak for drawing our attention to these problems.

2. Main Lemma and Analytic Curves

Let Γ be the arc y = f(x), 0 ≤ x ≤ N , where f ∈ Ck([0, N ]). We are interested in the
integral lattice points on Γ. Let P1, · · · , Ps be these points, arranged in order of increasing
abscissae.

Let d ≥ 1 be an integer, and define a finite sequence n` of integers as follows.

(i) n0 = 1
(ii) Suppose n`−1 has been defined. Then n` is the unique integer such that the points Pi

for n`−1 ≤ i < n` lie on some real algebraic curve of degree ≤ d, but the points Pi for
n`−1 ≤ i ≤ n` do not, if such an integer n` exists. Otherwise, the sequence terminates
with n`−1.

Suppose the sequence n` has m + 1 elements.
Let D = 1

2 (d + 1)(d + 2). Then any D − 1 points in the plane lie on some curve of
degree at most d. Hence n` − n`−1 ≥ D − 1.

Let Jd denote the set of pairs j = (j1, j2) with 0 ≤ j1, j2 ≤ j1 + j2 ≤ d. So |Jd| = D.
If P is a point with coordinates (x, y) we write

P j = P (j1,j2) = xj1yj2 .

Lemma 1. The points Pn+1, · · · , Pn+t lie on some algebraic curve of degree ≤ d if
and only if

rank
(
P j

i

)
n+1≤i≤n+t
j∈Jd

< D .

Proof. Let
A =

(
P j

i

)
n+1≤i≤n+t
j∈Jd

.

Suppose that
f(x, y) =

∑
j∈Jd

ajx
j1yj2 , aj ∈ IR
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defines an algebraic curve of degree ≤ d through Pn+1, · · · , Pn+t, and that t ≥ D. Then∑
j∈Jd

ajP
j
i = 0

for i ∈ I, I ⊂ {n + 1, · · · , n + t} any subset of cardinality D. Thus

det
(
P j

i

)
i∈I

j∈Jd

= 0

and rank(A) < D. Conversely, suppose that rank(A) = r < D. Let

AIJ =
(
P j

i

)
i∈I
j∈J

be an r × r minor of A of maximal rank. Since r < D, there is a j∗ /∈ J . Let

f(x, y) = det
(

AIj

xj1yj2

)
j∈J∪{j∗}

.

Then f(x, y) has degree ≤ d, and the cofactor of xj∗1 yj∗2 is det(AIJ) /=0. For any i with
n + 1 ≤ i ≤ n + t, we have

f(Pi) = det
(

AIj

P j
i

)
j∈J∪{j∗}

= 0 ,

since if i ∈ I we have two identical rows, while if i /∈ I, the determinant is zero by definition
of rank.

Corollary.

(i) rank
(
P j

i

)
n`−1≤i<n`

j∈Jd

= D − 1.

(ii) rank
(
P j

i

)
n`−1≤i≤n`

j∈Jd

= D .

Let I be a closed bounded interval. For a function f ∈ Ck(I) we define

‖f‖N,k = max
κ≤k
x∈I

Nκ−1 |f (κ)(x)|
κ!

.

We remark that this norm is invariant under dilations, meaning that if f ∈ Ck(I), and ft

is defined by
ft(x) = tf

(x

t

)
then ft ∈ Ck(tI) and

‖ft‖tN,k = ‖f‖N,k .

Also ‖x‖N,k = 1 for I ⊂ [0, N ].
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Proposition 1. Suppose f1, · · · , fm ∈ Ck(I). Then

‖f1 · · · fm‖N,k ≤ ((k + 1)N)m−1 ‖f1‖N,k · · · ‖fm‖N,k .

In particular
‖xpfq‖N,k ≤ ((k + 1)N)p+q−1 ‖f‖q

N,k ,

for I ⊆ [0, N ] and positive integers p, q.

Proof. For any κ ≤ k,

dκ

dxκ
(f1 · · · fm) =

∑
i1+···+im=κ

κ!
i1! · · · im!

f
(i1)
1 · · · f (im)

m .

Hence for any x ∈ I,

Nκ−1(κ!)−1| dκ

dxκ
(f1 · · · fm)(x)|

≤ Nκ−1
∑

i1+···+im=κ

Nm−κ
m∏

j=1

N ij−1(ij !)−1|f (ij)
j (x)|

≤ Nm−1(κ + 1)m−1‖f1‖N,κ · · · ‖fm‖N,κ .

We now need the following identity. Let x, xi, yij for i, j = 1, · · · , n be indeterminates,
and let V (x1, · · · , xk) denote the van der Monde determinant. Define

gij(x) =
−1

V (x1, · · · , xi)
det


1 x1 . . . xi−1

1 y1j

...
1 xi . . . xi−1

i yij

1 x . . . xi−1 0

 .

Note that, for an indeterminate y,

gij(x) =
−1

V (x1, · · · , xi)
det


1 x1 . . . xi−1

1 y1j

...
1 xi . . . xi−1

i yij

1 x . . . xi−1 y

+ y ,

so that gij(x) is the unique polynomial in x of degree i−1 with gij(xk) = ykj for k = 1, · · · , i.
We write g

(`)
ij for ( d

dx )`gij .

Proposition 2. With the above definitions,

det(yij) =
V (x1, · · · , xn)
1! . . . (n− 1)!

det
(
g
(i−1)
ij

)
.
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Proof. The proof is by evaluation of the right-hand side. Differentiating gij by rows
we get

V (x1, · · · , xn)
1! . . . (n− 1)!

det
(
g
(i−1)
ij

)

=
V (x1, · · · , xn)
1! . . . (n− 1)!

det

 −1
V (x1, · · · , xi)

det


1 x1 . . . xi−1

1 y1j

...
1 xi . . . xi−1

i yij

0 0 . . . (i− 1)! 0




=
V (x1, · · · , xn)

V (x1, x2) . . . V (x1, · · · , xn)
det

det

 1 x1 . . . xi−2
1 y1j

...
1 xi . . . xi−2

i yij




=
1

V (x1, x2) . . . V (x1, · · · , xn−1)
det

(
i∑

k=1

(−1)k−iV (x1, · · · , x̂k, · · · , xi)ykj

)
where the ˆ denotes an omitted variable. We express this last matrix as a product of a
lower triangular matrix and the matrix (yij) to obtain the expression

1
V (x1, x2) . . . V (x1, · · · , xn−1)

det

 ©
. . .

(−1)i−jV (x1, · · · , x̂j , · · · , xi)

det(yij)

=
1

V (x1, x2) . . . V (x1, · · · , xn−1)
·

n−1∏
k=1

V (x1, · · · , xk) · det(yij)

= det(yij) .

In what follows I denotes a closed subinterval of [0, N ], and we write ‖ ‖k for ‖ ‖N,k.
We apply the preceding proposition choosing yij = fj(xi), where x1, · · · , xn ∈ I are distinct
points and fj ∈ Cn−1(I). Then the mean value theorem shows that g

(i−1)
ij is in the range

of f
(i−1)
j (see for example Swinnerton–Dyer [10], Lemma 1, p. 131, or Posse [6]). By

expanding det(g(i−1)
ij ) we get

|det(fj(xi))| ≤ |V (x1, · · · , xn)|n!max
σ

∏
sup

1
(i− 1)!

| di−1

dxi−1
fσ(i)(x)|

for σ running over permutations of {1, · · · , n}. A direct proof of this result could also be
obtained by appealing to a mean value theorem of H.A.Schwarz ([9], Zw. Bd., p. 300). In
view of the definition of norms ‖ ‖k, this yields a fortiori

(1) |det(fj(xi))| ≤ |V (x1, · · · , xn)|n!N−n(n−3)
2 ‖f1‖n−1 . . . ‖fn‖n−1 .
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Lemma 2. For the sequence n0, · · · , nm associated to the curve Γ : y = f(x), x ∈ I,
f ∈ CD−1(I), and any integer d ≥ 1 we have

|xn`+1 − xn`
| ≥

(
D2‖f‖D−1

)− 4
3(d+3) N1− 8

3(d+3) .

Proof. By lemma 1, the matrix(
P j

i

)
n`≤i≤n`+1
j∈Jd

has maximal rank D. Thus there is a subset I ⊂ {n`, · · · , n`+1} of cardinality D (no
confusion should arise with the interval I of definition of f) such that

∆ = det
(
P j

i

)
i∈I

j∈Jd

/=0 .

Obviously ∆ is an integer, which gives |∆| ≥ 1. We now use formula (1) appropriately to
give an upper bound for |∆|. We apply (1) with n = D, the points xi with i ∈ I and fj

the functions xj1f(x)j2 for (j1, j2) ∈ Jd in some order. Clearly,

|V (xi; i ∈ I)| ≤ |xn`+1 − xn`
|

D(D−1)
2 .

Hence (1) yields:

|∆| ≤ |xn`+1 − xn`
|

D(D−1)
2 N−D(D−3)

2 D!
∏

j∈Jd

‖xj1f(x)j2‖D−1

≤ |xn`+1 − xn`
|

D(D−1)
2 N−D(D−3)

2 DD
∏

j∈Jd

(DN)j1+j2−1‖f‖j2
D−1

=
( |xn`+1 − xn`

|
N

)D(D−1)
2

(DN)
dD
3 ‖f‖

dD
6

D−1

Since |∆| ≥ 1, the lemma follows after some simplification.

Since D
8

3(d+3) < 3 for every d, the following is now obvious:

Main Lemma. Let d ≥ 1, D = 1
2 (d + 1)(d + 2) and f ∈ CD−1(I). Then the integral

points on Γ : y = f(x), x ∈ I lie on the union of not more than

3
(
‖f‖

1
2
D−1N

) 8
3(d+3)

+ 1

real algebraic curves of degree ≤ d. If ‖f‖
1
2
D−1N ≥ 1, this in turn does not exceed

4
(
‖f‖

1
2
D−1N

) 8
3(d+3)

.

Remark. Our construction shows that the curves can be taken to be defined over ZZ,
with height at most

D!
(
N2‖f‖0

) dD
3 ,

but we have no use for this fact in the sequel.
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We can now prove

Theorem 1. Let f(x) be a real analytic function on a closed bounded interval I and
suppose that f(x) is not algebraic. Let Γ be the graph of f(x). Let ε > 0. Then there is a
constant c(f, ε) such that

|tΓ ∩ ZZ2| ≤ c(f, ε)tε

for all t ≥ 1.

Proof. Without loss of generality, we may assume I ⊆ [0, 1]. Since Γ is compact and
f(x) is not algebraic, Γ intersects any algebraic curve in only finitely many points. Since
the space of algebraic curves of a given degree d is compact, there is a number γ(f, d) such
that Γ intersects any algebraic curve of degree d in at most γ(f, d) points. Combining with
the Main Lemma and using the scaling invariance of the norm, we find that

|tΓ ∩ ZZ2| ≤ γ(f, d)
{
‖f‖

4
3(d+3)

I,D−1t
8

3(d+3) + 1
}

.

We remark that the numbers γ(f, d), for a given f , can grow in an arbitrary manner.
Consider, for example,

f(x) =
∞∑

i=0

2−di

di∏
k=1

(x− 2−k) .

This f(x) is analytic in the unit disk, and

γ(f, di) ≥ di+1 .

We now show that if f(x) is algebraic, the conclusion of the above Theorem continues
to hold unless Γ admits a parametrization by rational polynomials. Let τ(n) denote the
number of divisors of the integer n.

Theorem 2. Let F (x, y) ∈ IR[x, y] be the defining equation of a real algebraic irre-
ducible plane curve C. Then the number of rational points

(
m
N , n

N

)
with |m|, |n| ≤ N on

C does not exceed
O
(
τ(N)a(log N)b

)
with a = a(C), b = b(C), except in the case in which C admits a rational polynomial
parametrization.

Proof. Without loss of generality, we may assume that C is defined over |Q. If the
curve C has genus g ≥ 1 then the number of rational points P of logarithmic height
h(P ) ≤ H is bounded by c0(C, ε)Hr+ε, where r = rank J(|Q) is the rank of the Mordell–
Weil group of the Jacobian J of C (there is no need to invoke here the well-known theorem
of Faltings that |C(|Q)| < ∞ if g ≥ 2, the above weaker result being amply sufficient for our
modest needs). This shows that the number of rational points

(
m
N , n

N

)
with m,n = O(N)

on C is O((log N)c1) for some c1 > 0 if C has geometric genus ≥ 1.
Now suppose that C has geometric genus 0. Then C is rational and either |C(|Q)| <

+∞ or C has a non-singular rational point. By a result of Hilbert and Hurwitz [3] it then
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follows in the latter case that C has a birational parametrization x = x(t), y = y(t) with
x(t), y(t) rational functions in |Q(t), and we can write

x(t) =
p(t)
r(t)

, y(t) =
q(t)
r(t)

,

where p, q, r ∈ ZZ[t] and GCD(p, q, r) = 1. Moreover t = T (x(t), y(t)) for some T ∈ |Q(x, y),
therefore all rational points of C come from rational values of t. We want to solve

p(t)
r(t)

=
m

N
,

q(t)
r(t)

=
n

N

or equivalently

(2) Np(t) = mr(t), Nq(t) = nr(t).

Since GCD(p, q, r) = 1 there are polynomials A(t), B(t), C(t) in ZZ[t] such that

A(t)p(t) + B(t)q(t) + C(t)r(t) = d

for some integer d, identically in t. Thus

A(t)Np(t) + B(t)Nq(t) + C(t)Nr(t) = dN

so equation (2) becomes

(3) (mA(t) + nB(t) + NC(t))r(t) = dN

to be solved for rational t.
Let r(t) = r0t

k + r1t
k−1 + · · ·+ rk and let t = u/v. Then (3) implies

r0u
k + r1u

k−1v + · · ·+ rkvk | dNvk′

for some k′. Now (u, v) = 1 and

(r0u
k + r1u

k−1v + · · ·+ rkvk, vk′) | (r0u
k + r1u

k−1v + · · ·+ rkvk, v)k′

= (r0u
k, v)k′ = (r0, v)k′ | rk′

0 ,

and we get

(4) r0u
k + r1u

k−1v + · · ·+ rkvk | drk′

0 N.

If r(t) has at least 3 distinct roots, (4) is a Thue–Mahler equation and the number
of solutions does not exceed cw

2 , where w is the number of distinct prime factors of drk′

0 N
and c2 depends only on the degree k and the coefficients ri, by an old result of Lewis and
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Mahler [5] (we can take c2 a power of k, independent of the ri’s, but we do not need this
more difficult result). Thus in this case we have only O(τ(N)c3) solutions.

Suppose now that r has not more than two distinct roots, hence

r(t) = r0(t− α)k

or
r(t) = r0(t− α)`(t− β)k−`

with α, β ∈ |Q, or
r(t) = r0((t− α)(t− α))k/2

with α of degree 2 over |Q and k even.
If r(t) = r0(t− α)`(t− β)k−` then by (4) we deduce that r0u− r0αv and r0u− r0βv

divide drk′

0 N , which gives at most (2τ(drk′

0 N))2 solutions (u, v).
If instead r(t) = r0((t− α)(t− α))k/2 then

(5) r0(u− αv)(u− αv) | drk′

0 N.

If the quadratic form in (5) is definite, the preceding argument still gives a power of a
divisor function for the number of solutions. If however the quadratic form is indefinite,
the quadratic field |Q(α) is real and the above argument works only up to units in a
suitable localization of ZZ[α]. In any case, one sees that the number of solutions of (5) with
|u|, |v| ≤ X is bounded by O(τ(N)c4(log X)c5) for some constants c4, c5 depending on α.
Since the parametrization (x(t), y(t)) is birational we can write t = T (x(t), y(t)) for some
T ∈ |Q(x, y), which shows that if (x, y) = (m

N , n
N ) with m,n = O(N) then u, v = O(N c6)

for some c6. Hence in this case we cannot have more than O(τ(N)c4(log N)c5) solutions.
It remains for consideration the case in which r(t) = r0(t − α)k. After a translation

in t, we may assume that α = 0 and

r(t) = r0t
k.

If k ≥ 1 then (4) implies that u | drk′

0 N . If p = deg p(t) > k, then x = p(t)
r(t) = m

N implies

also that v | drk′

0 N , and we get at most O(τ(N)2) solutions. The same argument of course
can be applied to the y coordinate, so that we remain with degt x(t) ≤ 0, degt y(t) ≤ 0.
However, in this last case we have x(t) = r−1

0 t−kp(t), y(t) = r−1
0 t−kq(t) with p(t), q(t)

polynomials of degree ≤ k. By reparametrizing C by means of t → t−1 we see that the
only case left is the case in which k = 0. Hence C is parametrized by polynomials.

Combining the previous two theorems we get the following result.

Theorem 3. Suppose φ:S1 → IR2 is analytic. Then for all ε > 0

|tφ(S1) ∩ ZZ2| ≤ c(φ, ε)tε .

Proof. If the image φ(S1) is algebraic, it clearly cannot be parametrized by polyno-
mials, so the conclusion follows from the stronger Theorem 2. If φ(S1) is not algebraic, we
can use the finite number of points where the tangent to φ(S1) has slope ±1 to divide φ(S1)
into finitely many pieces, each an analytic function with respect to one of the coordinate
axes. The conclusion then follows from Theorem 1.
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In particular, the estimate c(Ω, ε)tε holds for the number of integer points on the
dilation by a factor t of a real analytic oval Ω.

We remark that the conclusion can fail if φ is not analytic at just one point. As an
example of this, consider the curve

C: y2 = x2(x + 1) .

The curve C admits a parametrization

x = u2 − 1 , y = u3 − u ,

giving a map [−1, 1] → C which, considered as a map φ:S1 → IR2 is continuous and
analytic except at u = ±1. However, considering the points

x = −n(n2 − k2)
n3

, y =
k(n2 − k2)

n3
, k = −n, · · · , n− 1

we see that (setting t = n3)
|tφ(S1) ∩ ZZ2| ≥ 2t

1
3 .

3. Integral Points on Algebraic Curves

Our object in this section is to obtain a bound for the number of integral solutions in a
square of side N to an equation of the form

F (x, y) = 0

where F (x, y) ∈ IR[x, y] is irreducible of degree d ≥ 2. We follow the same approach as
in section 2. In order to preclude the possibility that the algebraic curves we construct
may contain the curve F (x, y) = 0 as a component, we will restrict the monomials used
to define them. We thus begin by developing a general form of the Main Lemma of the
previous section.

Let M be a finite set of monomials in the indeterminates x and y, and let D be the
cardinality of M . Set also

J =
{
j = (j1, j2):xj1yj2 ∈ M

}
p =

∑
j∈J

(j1 + j2) , q =
∑
j∈J

j2 .

Suppose C is an algebraic curve defined by G(x, y) = 0 where G(x, y) ∈ IR[x, y]. We
will say that C is defined in M if the monomials appearing in G all belong to M .

Again, let I be a closed subinterval of [0, N ] and suppose that Γ is the graph of
y = f(x) for x ∈ I, where f ∈ CD−1(I).

Let P1, · · · , Ps be the integral points of Γ, arranged in order of increasing abscissae.
Define a finite sequence n` as follows:

(i) n0 = 1.
(ii) Suppose n` has been defined. Then n`+1 is the unique integer such that the points

Pi for n` ≤ i < n`+1 lie on an algebraic curve defined in M , but the points Pi

for n` ≤ i ≤ n`+1 do not, if such an integer n`+1 exists. Otherwise the sequence
terminates with n`.
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Lemma 3. The points Pn+1, · · · , Pn+t lie on some algebraic curve defined in M if
and only if

rank
(
P j

i

)
n+1≤i≤n+t
j∈J

< D .

Proof. The proof is completely analogous to the proof of Lemma 1.

Corollaries.

(i) n`+1 − n` ≥ D − 1.

(ii) rank
(
P j

i

)
n`≤i<n`+1
j∈J

= D − 1.

(iii) rank
(
P j

i

)
n`≤i≤n`+1
j∈J

= D.

Lemma 4. For the sequence n0, · · · , nm we have

|xn`+1 − xn`
| ≥

(
Dp‖f‖q

D−1

)− 2
D(D−1) N1− 2p

D(D−1)

Proof. The proof is entirely analogous to the proof of Lemma 2.

As before we now obtain

Generalized Main Lemma. Let M be a finite set of monomials in x and y. Define
D,J, p, q as above. Suppose Γ is the graph of y = f(x) for x ∈ I, where f ∈ CD−1(I).
Then the integral points of Γ lie on the union of not more than(

Dp‖f‖q
D−1

) 2
D(D−1) N

2p
D(D−1) + 1

real algebraic curves defined in M .

When ‖f‖q/p
D−1N ≥ 1 it is more convenient to use the bound

2
(
Dp‖f‖q

D−1

) 2
D(D−1) N

2p
D(D−1) .

To treat the curve F (x, y) = 0 we define, for each δ, a set MF (δ) of monomials of
degree ≤ δ in such a way that no curve defined in MF (δ) contains the curve C determined
by F (x, y) = 0. Let jF ∈ Jd be the index of the monomial of degree d of highest degree in
y appearing in F . Now let δ be a positive integer, and define

MF (δ) =
{
xj1yj2 : d ≤ j1 + j2 ≤ δ and (x, y)jF /|(x, y)j

}
.

The restriction that the monomials in MF (δ) have degree at least d, which slightly weakens
our results, is made in order to simplify our calculations.

11



Proposition 3. Let G(x, y) ∈ IR[x, y] and suppose that the monomials appearing in
G all belong to MF (δ). Then

F (x, y)/|G(x, y) .

Hence, by Bézout’s theorem, the curves determined by F and G intersect in at most dδ
points.

Proof. Suppose that, contrary to the proposition,

G(x, y) = H(x, y)F (x, y)

for some H(x, y) ∈ IR[x, y]. Then the monomial (x, y)jH (x, y)jF appears in G(x, y), contra-
dicting the hypothesis that all the monomials in G belong to MF (δ) and are not divisible
by (x, y)jF .

We now fix F (x, y) and δ, and assume that δ ≥ 2d. We let M = MF (δ), and define
D,J, p, q as before.

For h ≥ d, the number of monomials of exact degree h not divisible by a fixed monomial
of degree d is d. Thus we have:

D = d(δ − d + 1) ,

p = d[
1
2
δ(δ + 1)− 1

2
d(d− 1)] .

and
2p

D(D − 1)
=

d[δ(δ + 1)− d(d− 1)]
d(δ − d + 1)[d(δ − d + 1)− 1]

=
[δ − (d− 1)](δ + d)

(δ − d + 1)[d(δ − d + 1)− 1]
=

δ + d

dδ − d2 + d− 1
.

We also note that
1
d
≤ 1

d

(
δ + d

δ + 1

)
=

δ + d

dδ + d
≤ 2p

D(D − 1)

≤ δ + d

dδ − d2
=

1
d

(
δ + d

δ − d

)
≤ 1

d
+

2
δ − d

≤ 1
d

+
4
δ

since δ − d ≥ 1
2δ.

We now consider a C∞ function f(x) on a closed interval I ⊆ [0, N ] with F (x, f) = 0
and |f ′(x)| ≤ 1. Since the graph of f intersects any curve defined in M in at most dδ
points, by applying the Generalized Main Lemma we find that the graph of f contains at
most

dδ
[(

Dp‖f‖q
D−1

) 2
D(D−1) N

2p
D(D−1) + 1

]
integral points. Our next objective is to obtain a bound independent of the norms of f ,
essentially by showing that the intervals on which the norms are large, are small.

12



Lemma 5. Suppose G(x, y) ∈ IR[x, y] is absolutely irreducible and of degree b. Let
g(x) be a C∞ function on an interval I, with G(x, g) = 0. Suppose g(x) is not a polynomial.
Then for k ≥ 1 and c ∈ IR, the equation

g(k)(x) = c

has at most b(b− 1)(2k − 1) solutions x ∈ IR.

Proof. Since G(x, g) = 0 we have by differentiation that

(6) Gx + Gyg′ = 0 .

Now suppose that

(7) Hk + Gak
y g(k) = 0

and let hk = deg(Hk). Then

Hkx + Hkyg′ + akGak−1
y (Gyx + Gyyg′)g(k) + Gak

y g(k+1) = 0 .

Multiplying by G2
y and substituting using (6) and (7) we obtain

Gy(HkxGy −HkyGx)− akHk(GyxGGy −GyyGx) + Gak+2
y g(k+1) = 0 .

For the sequences ak and hk we therefore have the following recurrences:

ak+1 = ak + 2
a1 = 1

}
ak = 2k − 1

hk+1 ≤ hk + 2b− 3
h1 = b− 1

}
hk ≤ (2k − 1)(b− 1)− k

and solutions of g(k)(x) = c are among the values of x corresponding to the intersection of
the two curves

G(x, y) = 0 , Hk + Gak
y c = 0 .

Since g is not a polynomial, g(k) is not identically equal to any constant, and since G is
irreducible, the intersection is proper and consists of at most

b(b− 1)(2k − 1)

points as claimed.
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Lemma 6. Let g(x) be a C∞ function on an interval I, satisfying G(x, g) = 0,
where G(x, y) ∈ IR[x, y] is irreducible of degree b ≥ 2. Let A` be positive real numbers for
` = 1, · · · , k. Then we can divide I into at most 2b2k2 subintervals Iν such that for each ν
and each ` = 1, · · · , k we have either (i) or (ii) holding:

(i) |g(`)(x)| ≤ A` for all x ∈ Iν .

(ii) |g(`)(x)| ≥ A` for all x ∈ Iν .

Proof. If g(x) is not a polynomial, we take as division points the solutions of

g(i)(x) = ±Ai i = 1, · · · , k .

According to Lemma 5, there are at most
k∑

i=1

2b(b− 1)(2i− 1) = 2b(b− 1)k2

such points, giving rise to at most

2b(b− 1)k2 + 1 ≤ 2b2k2

intervals. If g(x) is a polynomial of degree at most b, we take as division points the
solutions of

g(i)(x) = ±Ai i = 1, · · · , b− 1 ,

a total of at most
b−1∑
i=1

2(b− i) = 2b(b− 1)− b(b− 1) = b(b− 1)

points.

Lemma 7. Suppose I = [a, b], g ∈ Ck([a, b]) and for some A, N we have

|g(i)(x)| ≤ i!Ai/kN1−i for x ∈ I, i = 0, · · · , k − 1

and
|g(k)(x)| ≥ k!AN1−k for x ∈ I .

Then |I| ≤ 2A−1/kN .

Proof. For some ξ ∈ I we have

g(b)− g(a) =
k−1∑
i=1

g(i)(a)
i!

(b− a)i +
g(k)(ξ)

k!
(b− a)k .

Hence

|I|kAN1−k ≤
k−1∑
i=1

|I|iAi/kN1−i + 2N .

Let λ = (|I|/N)A−1/k. Then we have

λk ≤
k−1∑
i=1

λi + 2 .

Hence λ ≤ 2, completing the proof.
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We are now ready to prove

Theorem 4. Let f(x) be a C∞ function on a closed subinterval of [0, N ], and suppose
that F (x, f) = 0, where F (x, y) ∈ IR[x, y] is absolutely irreducible of degree d ≥ 2. Suppose
that |f ′(x)| ≤ 1. Then the number of integral points on the graph of f is at most

N
1
d exp

(
11
√

d log N log log N
)

provided N ≥ exp(d6).

Proof. Let
G(N) = G(d, N)

be the maximum number of integral points on the graph of a C∞ function g(x), on an
interval I of length at most N , with |g′(x)| ≤ 1, and g satisfying some algebraic relation
G(x, g) = 0, with G absolutely irreducible of degree d. Clearly we may assume I ⊂ [0, N ].

Now fix some δ ≥ 2d, and let g(x) be such a C∞ function. Given A ≥ 1, by appealing
to Lemma 6 we can divide the domain I of g(x) into at most

2d2(D − 1)2 ≤ 2d2D2

subintervals Iν such that for each Iν and each ` = 1, · · · , D − 1, either (i) or (ii) holds:

(i) |g(`)(x)| ≤ `!A`/(D−1)N1−` for all x ∈ Iν

(ii) |g(`)(x)| ≥ `!A`/(D−1)N1−` for all x ∈ Iν .

After translating the graph of g(x) on each Iν by an integer, we can assume, since |g′(x)| ≤
1, that

|g(x)| ≤ N for all x ∈ Iν .

Now for each Iν , either (i) or (ii) holds:

(i) |g(`)(x)| ≤ `!A`/(D−1)N1−` for all x ∈ Iν and all ` = 0, · · · , D − 1 .

In this case, ‖g‖D−1 ≤ A.

|g(`)(x)| ≤ `!A`/(D−1)N1−` for all x ∈ Iν and all ` < k , and(ii)
|g(k)(x)| ≥ k!Ak/(D−1)N1−k for all x ∈ Iν .

In this case, the hypotheses of Lemma 7 hold with Ak/(D−1) in place of A, and hence
|Iν | ≤ 2A− 1

D−1 N .
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For the Iν of the first type, we apply the Generalized Main Lemma, using the set of
monomials

M = MGν
(δ)

where Gν is the appropriate translation of G, while if Iν is of the second type we have
|Iν | ≤ 2A− 1

D−1 N , as noted earlier. We thus obtain the following recurrence relation for
G(N) :

G(N) ≤ 2d2D22dδ(DpAq)
2

D(D−1) N
2p

D(D−1) + 2d2D2G
(
2A− 1

D−1 N
)

.

Using D ≤ dδ, we can write

G(N) ≤ HNα + KG(λN)

where
H = 4d5δ3(DpAq)

2
D(D−1)

K = 2d4δ2

α =
2p

D(D − 1)
,

1
d
≤ α ≤ 1

d
+

4
δ

λ = 2A− 1
D−1 ;

continuing, we find that, provided λn−1N ≥ 1,

G(N) ≤ HNα(1 + Kλα + · · ·+ (Kλα)n−1) + KnG(λnN) .

We now choose λ so that

Kλα =
1
2

that is, we set

λ =
(

1
2K

)1/α

= (4d4δ2)−
D(D−1)

2p

and thus

A =
(

2
λ

)D−1

= 2D−1(4d4δ2)
D(D−1)2

2p > 1 .

Finally, we choose n so that
λ

N
≤ λn <

1
N

.

Then G(λnN) ≤ 1, and

G(N) ≤ 2HNα + 2−nλ−αNα ≤ 2(H + K)Nα .
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Our final task is to choose δ. Since p ≤ q, we have

H + K ≤ 5d5δ3(DA)
2p

D(D−1)

≤ 5d5δ3(D2D−1)
2p

D(D−1) (4d4δ2)D−1

≤ 5dδ.d2δ2.(16d4δ2)D

≤ (d4δ5)dδ

≤ 1
2
δ9dδ .

Hence

G(N) ≤ N
1
d exp

(
4
δ

log N + 9dδ log δ

)
.

Take

δ =
√

4 log N
/
d log log N .

Then δ ≥ 2d provided N ≥ exp(d6) and

G(N) ≤ N
1
d exp

(
11
√

d log N log log N
)

.

Theorem 5. Let C be an absolutely irreducible curve of degree d ≥ 2 and let N ≥
exp(d6). Then the number of integral points on C and inside a square [0, N ]× [0, N ] does
not exceed

N
1
d exp

(
12
√

d log N log log N
)

.

Proof. Let S = [0, N ] × [0, N ]. The curve C has at most 1
2d(d − 1) singular points,

and at most 2d(d−1) points with slope ±1. Hence C∩S is made up of at most 3d2 graphs
of C∞ functions with slope bounded by 1 with respect to one of the axes. The number of
integral points is therefore at most

3d2G(N) ≤ 3d2N
1
d exp

(
11
√

d log N log log N
)

.

If d ≥ 2, the bound

O
(√

N log N
)

,

which is stronger than ours if d = 2, can be obtained using the large sieve in a similar
way to that of Example 3 of Bombieri [1]. The idea of using the sieve in this connection
has occurred to several authors, the earliest we could find being S.D. Cohen [2]. Those
methods do not appear to give our stronger result for higher degree.

17



4. Integral Points on Smooth Curves

We now turn our attention to curves with many derivatives, and in particular to smooth
curves. Initially we consider the homothetic dilations of a fixed curve, and later we make
some uniform statements in terms of the number of zeros of derivatives of high order.
According to the Main Lemma, if f(x) has 1

2 (d+1)(d+2)−1 continuous derivatives, then
the integral points on the graph of f reside on quite few algebraic curves of degree at most
d. The number of these points can be estimated using the results of the previous section.

Let I be a closed subinterval of [0, 1].

Theorem 6. Let d ≥ 2 and suppose that f(x) ∈ CD−1(I) is a strictly convex function.
Let Γ be the graph of f for x ∈ I. Then the number of integral points on NΓ is at most

d

{(
D
√
‖f‖N,D−1N

) 8
3(d+3)

+ 1
}

N
1
2 exp

(
12
√

d log N log log N
)

provided N ≥ exp(d6).

Proof. According to the Main Lemma, the integral points of NΓ reside on at most

(
D
√
‖f‖N,D−1N

) 8
3(d+3)

+ 1

algebraic curves of degree ≤ d. Since Γ has at most 2 intersections with any line, we can
assume that the irreducible components of these curves do not consist of lines, so that such
a curve has at most

1
2
d ·N 1

2 exp
(
12
√

d log N log log N
)

integral points in a square of side N .

The estimate in this theorem can be made uniform in terms of the number of zeros
of f (D) on I, assuming now that f ∈ CD(I). Before pursuing such a result, we note the
following immediate consequence of Theorem 6.

Theorem 7. Let f(x) be a C∞ strictly convex function on an interval I. Let ε > 0.
Then there is a constant c(f, ε) such that if Γ is the graph of f(x) for x ∈ I, then

|tΓ ∩ ZZ2| ≤ c(f, ε)t
1
2+ε

for all t ≥ 1. Hence the same estimate holds for the dilations of a C∞ oval.

To get a uniform result we will use a recurrence argument, as in the algebraic case.
Controlling the number of zeros of f (D) gives us control on the number of solutions of
f (i)(x) = c for i ≤ D− 1, and hence control on the number of subdivisions we must make.
As usual I is a closed subinterval of [0, N ].

18



Theorem 8. Suppose d ≥ 4, N ≥ 1, and let f(x) ∈ CD(I) be a strictly convex
function with |f ′| ≤ 1. Suppose f (D) has at most m zeros. Let Γ be the graph of f . Then

|Γ ∩ ZZ2| ≤ (m + 1)c(d)N
1
2+ 3

d+3 .

Proof. It suffices to prove the theorem in the case m = 0. In this case, an equation
of the form

f (i)(x) = 0, i ≤ D − 1, c ∈ IR

has at most D − i distinct solutions interior to I. Let

G(N) = G(d, N)

be the maximum number of integral points on the graph of a CD convex function g(x) on
an interval of length at most N , with |g′(x)| ≤ 1, and such that g(D) has no zeros in the
interior of the interval.

If g(x) is such a function, with domain I, and A > 0, we can divide I into at most

1 + 2
D−1∑
i=1

(D − i) ≤ D2

subintervals Iν , such that for each Iν and each ` = 1, · · · , D − 1, either (i) or (ii) holds:

(i) |g(`)(x)| ≤ `!A`/(D−1)N1−` all x ∈ Iν

(ii) |g(`)(x)| ≥ `!A`/(D−1)N1−` all x ∈ Iν .

Using δ = 6d + 20 to estimate the points on algebraic curves (so that 2
δ−2 ≤

1
3(d+3) ),

we obtain the following recursive bound for G(N)

G(N) ≤ D2 · 1
2
d·(d4δ6)dδ ·N

1
2+ 1

3(d+3) · 2
(
D
√

AN
) 8

3(d+3)

+ D2G
(
2A− 1

D−1 N
)

.

The rest of the argument is the same as in the proof of Theorem 4.
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Appendix

We give here a construction which disproves the conjecture of Schmidt in the strongest
form proposed, namely, that there is an absolute constant c such that if Γ is an arc in a
square of side N ≥ 1 given by y = f(x), where f ′′ exists and is weakly monotonic, and
vanishes for at most one value of x, then

|Γ ∩ ZZ2| ≤ c
√

N .

Our construction will give

|Γ ∩ ZZ2| ≥ 1
20

√
N log N

for suitable smooth curves Γ having the requisite properties in boxes of side N , with
N →∞. The constant 1

20 is mentioned merely for convenience and it can be replaced by
a larger one (e.g. 0.5) rather easily.

Initially, we construct a C1 function f0(x), consisting of pieces of parabolas with
increasing second derivatives whose graph Γ0 is contained in a box of side N , and contains
at least

1
10

√
N log N

integer points. We then find a C∞ function f(x) coinciding with f0(x) on large pieces of
the domain of f(x), with f ′(x) non-decreasing, whose graph Γ contains at least half the
integral points of Γ0.

Let
a1, · · · , aM
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be a finite, non-increasing sequence of positive integers. Let x0 = 0 and set

xi =
i∑

j=1

a2
j , i = 1, · · · ,M,

yi =
i∑

j=1

(2j − 1)a2
j , i = 1, · · · ,M .

Now let Γ0 be the graph of the function y = f0(x) where f0(x) is defined on the interval
[x0, xM ] as follows:

f0(x) =
(

x− xi−1

ai

)2

+ 2(i− 1)(x− xi−1) + yi−1

for x ∈ [xi−1, xi], i = 1, · · · ,M . Since(
xi − xi−1

ai

)2

+ 2(i− 1)(xi − xi−1) + yi−1 = (2i− 1)a2
i + yi−1 = yi ,

the definition is consistent at the endpoints of the subintervals [xi−1, xi], and since

2
xi − xi−1

a2
i

+ 2(i− 1) = 2i ,

the function f0 is C1 on [x0, xM ]. Clearly f ′′0 exists except at the points xi for i =
1, · · · ,M − 1, and since the sequence ai is non-increasing, f ′′0 is non-decreasing where it
exists, and is clearly non-vanishing.

The graph Γ0 is contained in a box of side

yM =
M∑
i=1

(2i− 1)a2
i ,

and contains at least
M∑
i=1

ai

integer points — ai of them in each subinterval (xi−1, xi).
We now choose

ai =
[
C

i

]
for some large positive C. This gives at least

M∑
i=1

[
C

i

]
≥ C

M∑
i=1

1
i
−M ≥ C log M −M
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integer points on a curve in a box of side at most

2C2
M∑
i=1

1
i
≤ 2C2(log M + 1) .

Now taking

C =
√

N
/
log N , M = 2[N

1
5 ] + 1 ,

we get, for N sufficiently large, at least

1
10

√
N log N

points on a curve in a box of side at most N . The choice M = 2[N
1
5 ] + 1 ensures that the

sequence ai is strictly decreasing.
We now show that, by sacrificing at most half of the integer points, we can obtain a

smooth modification Γ of Γ0 with weakly monotonic second derivative everywhere. The
graph G0 of g0 = f ′0 is a convex polygon, with vertices (xi, 2i), i = 0, 1, · · · ,M . Let ε > 0
be sufficiently small. We change G0 into a C∞ graph G of a function g ∈ C∞([x0, xM ])
as follows. For every odd i let σi be the broken line consisting of the graph of g0 over
[xi, xi+1 + ε] and let us replace it with a smooth arc γi, making sure that

(i) the resulting curvilinear polygon G is smooth
(ii) there is no change in area in the undergraph when we replace σi by γi

(iii) γi has a continuously increasing tangent everywhere.

Thus γi initially stays below σi and then crosses it to join smoothly to G0. By property
(ii), we have ∫ x

0

g(u)du =
∫ x

0

g0(u)du = f0(x)

for x ∈ [xi+1 + ε, xi+2], i odd, and f(x) =
∫ x

0
g(u)du is the required modification. Since

f(0) = 0, f(xM ) = yM we see that the graph γ of f is contained in a box of side N and,
for small ε, contains at least ∑

i odd

ai

integral points. Since the ai are decreasing, Γ contains at least half as many integral points
as did Γ0.

In this example, f ′′ is weakly monotonic but not strictly monotonic. However, if we
interchange the role of x and y we obtain examples in which the third derivative f ′′′ never
vanishes.
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