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1 IntrodutionA ballot path of size n is a path on the square lattie, onsisting of north and east steps,starting at (0, 0), ending at (n, n), and never going below the diagonal {x = y}. Thereare three standard ways, often named after Stanley, Kreweras and Tamari, to endow theset of ballot paths of size n with a lattie struture (see [15, 20, 22℄, and [4℄ or [21℄ fora survey). We fous here on the Tamari lattie Tn, whih, as detailed in the followingproposition, is onveniently desribed by the assoiated overing relation. See Figure 1for an illustration.
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Figure 1: A overing relation in the Tamari lattie, shown on ballot paths and binarytrees. The path enodes the postorder of the tree (apart from the �rst leaf).Proposition 1. [4, Prop. 2.1℄ Let P and Q be two ballot paths of size n. Then Q overs
P in the Tamari lattie Tn if and only if there exists in P an east step a, followed by anorth step b, suh that Q is obtained from P by swapping a and S, where S is the shortestfator of P that begins with b and is a (translated) ballot path.Alternatively, the Tamari lattie Tn is often desribed in terms of rooted binary trees.The overing relation amounts to a re-organization of three subtrees, often alled rotation(Figure 1). The equivalene between the two desriptions is obtained by reading the treein postorder, and enoding eah leaf (resp. inner node) by a north (resp. east) step (apartfrom the �rst leaf, whih is not enoded). We refer to [4, Se. 2℄ for details. The Hassediagram of the lattie Tn is the 1-skeleton of the assoiahedron, or Stashe� polytope [11℄.A few years ago, Chapoton [12℄ proved that the number of intervals in Tn (i.e., pairs
P, Q ∈ Tn suh that P ≤ Q) is

2

n(n + 1)

(

4n + 1

n − 1

)

.He observed that this number is known to ount 3-onneted planar triangulations on n+3verties [30℄. Motivated by this result, Bernardi and Bonihon found a beautiful bijetion
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Figure 2: The relation ≺ between m-ballot paths (m = 2).between Tamari intervals and triangulations [4℄. This bijetion is in fat a restrition ofa more general bijetion between intervals in the Stanley lattie and Shnyder woods. Afurther restrition leads to the enumeration of intervals of the Kreweras lattie.In this paper, we study a generalization of the Tamari latties to m-ballot paths due toBergeron, and ount the intervals of these latties. Again, a remarkably simple formulaholds (see (1)). As we explain below, this formula was �rst onjetured by F. Bergeron,in onnetion with the study of oinvariant spaes.An m-ballot path of size n is a path on the square grid onsisting of north and eaststeps, starting at (0, 0), ending at (mn, n), and never going below the line {x = my}. Itis a lassial exerie to show that there are 1
mn+1

(

(m+1)n
n

) suh paths [14℄. Consider thefollowing relation ≺ on m-ballot paths, illustrated in Figure 2.De�nition 2. Let P and Q be two m-ballot paths of size n. Then P ≺ Q if there exists in
P an east step a, followed by a north step b, suh that Q is obtained from P by swapping aand S, where S is the shortest fator of P that begins with b and is a (translated) m-ballotpath.As we shall see, the transitive losure of ≺ de�nes a lattie on m-ballot paths of size
n. We all it the m-Tamari lattie of size n, and denote it by T

(m)
n . Of ourse, T (1)

noinides with Tn. See Figure 3 for examples. The main result of this paper is a losedform expression for the number f
(m)
n of intervals in T

(m)
n :

f (m)
n =

m + 1

n(mn + 1)

(

(m + 1)2n + m

n − 1

)

. (1)The �rst step of our proof establishes that T (m)
n is in fat isomorphi to a sublattie(and more preisely, an upper ideal) of Tmn. We then proeed with a reursive desriptionof the intervals of T (m)

n , whih translates into a funtional equation for the assoiatedgenerating funtion (Setion 2, Proposition 8). This generating funtion keeps trak ofthe size of the paths, but also of a atalyti parameter1 that is needed to write the equation.This parameter is the number of ontats of the lower path with the line {x = my}. Ageneral theorem asserts that the solution of the equation is algebrai [7℄, and gives asystemati proedure to solve it for small values of m. However, for a generi value of1This terminology is due to Zeilberger [32℄.
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Figure 3: The m-Tamari lattie T (m)
n for m = 1 and n = 4 (left) and for m = 2 and n = 3(right). The three walks surrounded by a line in T

(1)
4 form a lattie that is isomorphi to

T
(2)

2 . This will be generalized in Setion 2.
m, we have to resort to a guess-and-hek approah to solve the equation (Setion 3,Theorem 10). We enrih our enumeration by taking into aount the initial rise of theupper path, that is, the length of its initial run of north steps. We obtain an unexpetedsymmetry result: the joint distribution of the number of ontats of the lower path (minusone) and the initial rise of the upper path is symmetri. Setion 4 presents omments andquestions.To onlude this introdution, we desribe the algebrai problem that led Bergeron toonjeture (1).Let X = (xi,j)1≤i≤ℓ

1≤j≤n

be a matrix of variables, for some positive integers ℓ, n ≥ 1. We alleah line of X a set of variables. Let C[X] be the ring of polynomials in the variables of
X. The symmetri group Sn ats as a representation on C[X] by permuting the olumnsof X. That is, if σ ∈ Sn and f(X) ∈ C[X], then

σ(f(X)) = f(σ(X)) = f((xi,σ(j))1≤i≤ℓ

1≤j≤n

).We onsider the ideal I of C[X] generated by Sn-invariant polynomials having no onstantterm. The quotient ring C[X]/I is (multi-)graded beause I is (multi-)homogeneous, andis a representation of Sn beause I is invariant under the ation of Sn. We fous on thedimension of this quotient ring, and to the dimension of the sign subrepresentation. Wedenote by W ε the sign subrepresentation of a representation W .
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Let us begin with the lassial ase of a single set of variables. When X = [x1, . . . , xn],we onsider the oinvariant spae Rn, de�ned by
Rn = C[X]

/

〈{

n
∑

i=1

xr
i

∣

∣r ≥ 1
}〉

,where 〈S〉 denotes the ideal generated by the set S. It is known [1℄ that Rn is isomorphito the regular representation of Sn. In partiular, dim(Rn) = n! and dim(Rε
n) = 1. Thereexist expliit bases of Rn indexed by permutations.Let us now move to two sets of variables. In the early nineties, Garsia and Haimanintrodued an analogue of Rn forX =

[

x1 . . . xn

y1 . . . yn

], and alled it the diagonal oinvariantspae [19℄:
DR2,n = C[X]

/

〈{

n
∑

i=1

xr
i y

t
i

∣

∣r + t ≥ 1
}〉

.About ten years later, using advaned algebrai geometry [18℄, Haiman settled severalonjetures of [19℄ onerning this spae, proving in partiular that
dim(DR2,n) = (n + 1)n−1 and dim(DR ε

2,n) =
1

n + 1

(

2n

n

)

. (2)He also studied an extension of DR2,n involving an integer parameter m and the ideal Agenerated by alternants [16, 17℄:
A =

〈{

f(x)
∣

∣σ(f(X)) = (−1)inv(σ)f(X), ∀σ ∈ Sn

}〉

.There is a natural ation of Sn on the quotient spae Am−1
/

JAm−1. Let us twist thisation by the (m − 1)st power of the sign representation ε: this gives rise to spaes
DRm

2,n := εm−1 ⊗Am−1
/

JAm−1,so that DR1
2,n = DR2,n. Haiman [18, 17℄ generalized (2) by proving

dim(DRm
2,n) = (mn + 1)n−1 and dim(DRm ε

2,n ) =
1

mn + 1

(

(m + 1)n

n

)

.Both dimensions have simple ombinatorial interpretations: we reognize in the latter thenumber of m-ballot paths of size n, and the former is the number of m-parking funtionsof size n (these funtions an be desribed as m-ballot paths of size n in whih the northsteps are labelled from 1 to n in suh a way the labels inrease along eah run of northsteps; see e.g. [31℄). However, it is still an open problem to �nd bases of DRm
2,n or DRm ε

2,nindexed by these simple ombinatorial objets.For ℓ ≥ 3, the spaes DRℓ,n and their generalization DRm
ℓ,n an be de�ned similarly.Haiman explored the dimension of DRℓ,n and DR ε

ℓ,n. For ℓ = 3, he observed in [19℄ that,for small values of n,
dim(DR3,n) = 2n(n + 1)n−2 and dim(DR ε

3,n) =
2

n(n + 1)

(

4n + 1

n − 1

)

.
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Following disussions with Haiman, Bergeron ame up with onjetures that diretly implythe following generalization (sine DR1
3,n oinides with DR3,n):

dim(DRm
3,n) = (m+1)n(mn+1)n−2 and dim(DRm ε

3,n ) =
m + 1

n(mn + 1)

(

(m + 1)2n + m

n − 1

)

.Both onjetures are still wide open.A muh simpler problem onsists in asking whether these dimensions again have asimple ombinatorial interpretation. Bergeron, starting from the sequene 2
n(n+1)

(

4n+1
n−1

),found in Sloane's Enylopedia that this number ounts, among others, ertain ballotrelated objets, namely intervals in the Tamari lattie [12℄. From this observation, andthe role played by m-ballot paths for two sets of variables, he was led to introdue the m-Tamari lattie T
(m)

n , and onjetured that m+1
n(mn+1)

(

(m+1)2n+m

n−1

) is the number of intervalsin this lattie. This is the onjeture we prove in this paper. Another of his onjeturesis that (m + 1)n(mn + 1)n−2 is the number of Tamari intervals where the larger path is�deorated� by an m-parking funtion [3℄. This is proved in [6, 5℄.2 A funtional equation for the generating funtion ofintervalsThe aim of this setion is to desribe a reursive deomposition of m-Tamari intervals, andto translate it into a funtional equation satis�ed by the assoiated generating funtion(Proposition 8). There are two main tools:
• we prove that T (m)

n an be seen as an upper ideal of the usual Tamari lattie Tmn,
• we give a simple riterion to deide when two paths of the Tamari lattie are om-parable.2.1 An alternative desription of the m-Tamari lattiesOur �rst transformation is totally harmless: we apply a 45 degree rotation to 1-ballotpaths to transform them into Dyk paths. A Dyk path of size n onsists of steps (1, 1)(up steps) and steps (1,−1) (down steps), starts at (0, 0), ends at (0, 2n) and never goesbelow the x-axis.We now introdue some terminology, and use it to rephrase the desription of the(usual) Tamari lattie Tn. Given a Dyk path P , and an up step u of P , the shortestportion of P that starts with u and forms a (translated) Dyk path is alled the exursionof u in P . We say that u and the �nal step of its exursion math eah other. Finally, wesay that u has rank i if it is the ith up step of P .Given two Dyk paths P and Q of size n, Q overs P in the Tamari lattie Tn if andonly if there exists in P a down step d, followed by an up step u, suh that Q is obtainedfrom P by swapping d and S, where S is the exursion of u in P . This desription impliesthe following property [4, Cor. 2.2℄.
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Property 3. If P ≤ Q in Tn then P is below Q. That is, for i ∈ [0..2n], the ordinateof the vertex of P lying at absissa i is at most the ordinate of the vertex of Q lying atabsissa i.
≺S

SFigure 4: The relation ≺ of Figure 2 reformulated in terms of m-Dyk paths (m = 2).Consider now an m-ballot path of size n, and replae eah north step by a sequene of
m north steps. This gives a 1-ballot path of size mn, and thus, after a rotation, a Dykpath. In this path, for eah i ∈ [0..n − 1], the up steps of ranks mi + 1, . . . , m(i + 1)are onseutive. We all the Dyk paths satisfying this property m-Dyk paths. Clearly,
m-Dyk paths of size mn are in one-to-one orrespondene with m-ballot paths of size n.Consider now the relation ≺ of De�nition 2: one reformulated in terms of Dyk paths,it beomes a overing relation in the (usual) Tamari lattie (Figure 4). Conversely, it iseasy to hek that, if P is an m-Dyk path and Q overs P in the usual Tamari lattie,then Q is also an m-Dyk path, and the m-ballot paths orresponding to P and Q arerelated by ≺. We have thus proved the following result.Proposition 4. The transitive losure of the relation ≺ de�ned in De�nition 2 is alattie on m-ballot paths of size n. This lattie is isomorphi to the sublattie of theTamari lattie Tmn onsisting of the elements that are larger than or equal to the Dykpath umdm . . . umdm. The relation ≺ is the overing relation of this lattie.Notation. From now on, we only onsider Dyk paths. We denote by T the set of Dykpaths, and by Tn the Tamari lattie of Dyk paths of length n. By T (m) we mean theset of m-Dyk paths, and by T

(m)
n the Tamari lattie of m-Dyk paths of size mn. Thislattie is a sublattie of Tmn. Note that T (1) = T and T

(1)
n = Tn.2.2 Distane funtionsLet P be a Dyk path of size n. For an up step u of P , we denote by ℓP (u) the size of theexursion of u in P . The funtion DP : [1..n] → [1..n] de�ned by DP (i) = ℓ(ui), where uiis the ith up step of P , is alled the distane funtion of P . It will sometimes be onvenientto see DP as a vetor (ℓ(u1), . . . , ℓ(un)) with n omponents. In partiular, we will omparedistane funtions omponent-wise. The main result of this subsetion is a desription ofthe Tamari order in terms of distane funtions. This simple haraterization seems tobe new.Proposition 5. Let P and Q be two paths in the Tamari lattie Tn. Then P ≤ Q if andonly if DP ≤ DQ.
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In order to prove this, we �rst desribe the relation between the distane funtions oftwo paths related by a overing relation.Lemma 6. Let P be a Dyk path, and d a down step of P followed by an up step u. Let
S be the exursion of u in P , and let Q be the path obtained from P by swapping d and S.Let u′ be the up step mathed with d in P , and i0 the rank of u′ in P . Then DQ(i) = DP (i)for eah i 6= i0 and DQ(i0) = DP (i0) + ℓP (u).

u
′

u u
′ u

≺

S
S

P Q
2ℓP (u

′) 2ℓP (u) 2ℓQ(u
′)

dFigure 5: How the distane funtion hanges in a overing relation.This lemma is easily proved using Figure 5. It already implies that DP ≤ DQ if
P ≤ Q. The next lemma establishes the reverse impliation, thus onluding the proof ofProposition 5.Lemma 7. Let P and Q be two Dyk paths of size n suh that DP ≤ DQ. Then P ≤ Qin the Tamari lattie Tn.Proof. Let us �rst prove, by indution on the size, that P is below Q (in the sense ofProperty 3). This is learly true if n = 0, so we assume n > 0.Let u be the �rst up step (in P and Q). Note that ℓP (u) = DP (1) ≤ DQ(1) = ℓQ(u).Let P ′ (resp. Q′) be the path obtained from P (resp. Q) by ontrating u and the downstep mathed with u. Observe that DP ′ is obtained by deleting the �rst omponent of
DP , and similarly for DQ′ and DQ. Consequently DP ′ ≤ DQ′, and hene by the indutionhypothesis, P ′ is below Q′. Let us onsider momentarily Dyk paths as funtions, andwrite P (i) = j if the vertex of P lying at absissa i has ordinate j. Note that P (i) =
P ′(i − 1) + 1 for 1 ≤ i < 2ℓP (u), and P (i) = P ′(i − 2) for 2ℓP (u) ≤ i ≤ 2n. Similarly
Q(i) = Q′(i − 1) + 1 for 1 ≤ i < 2ℓQ(u), and Q(i) = Q′(i − 2) for 2ℓQ(u) ≤ i ≤ 2n. Sine
ℓP (u) ≤ ℓQ(u) and P ′(i) ≤ Q′(i) for 0 ≤ i ≤ 2n − 2, one easily heks that P (i) ≤ Q(i)for 0 ≤ i ≤ 2n, so that P is below Q.In order to prove that P ≤ Q, we proeed by indution on ||DP − DQ||, where
||(x1, . . . , xn)|| = |x1|+ · · ·+ |xn|. If DP = DQ then P = Q, beause P is below Q and Qis below P . So let us assume that DP 6= DQ. Let i be minimal suh that DP (i) < DQ(i).We laim that P and Q oinide at least until their up step of rank i. Indeed, sine Plies below Q, the paths P and Q oinide up to some absissa, and then we �nd a downstep δ in P but an up step in Q. Let j be the rank of the up step that mathes δ in
P . This up step belongs also to Q, and, sine δ 6∈ Q, we have DP (j) < DQ(j). Hene
j ≥ i by minimality of i, and P and Q oinide at least until their up step of rank i,whih we denote by u. Let d be the down step mathed with u in P (Figure 6). Sine
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DP (i) < DQ(i), the step d is not a step of Q. The step of Q loated at the same absissaas d ends stritly higher than d, and in partiular, at a positive ordinate. Hene d is notthe �nal step of P . Let s be the step following d in P .
u d

su′

P
Q Figure 6: Why s annot be desending.Let us prove ad absurdum that s is an up step. Assume s is down. Then s is mathedin P with an up step u′ of rank j < i (Figure 6). Hene u′ belongs to Q and has rank j in

Q. Sine s annot belong to Q, this implies that DP (j) < DQ(j), whih ontradits theminimality of i.Hene s is an up step of P (Figure 7). Let S be the exursion of s in P . Sine
ℓQ(u) > ℓP (u) and sine Q is above P , we have ℓQ(u) ≥ ℓP (u) + ℓP (s), i.e., DQ(i) ≥
DP (i) + ℓP (s). Let P ′ be the path obtained from P by swapping d and S. Then P ′overs P in the Tamari lattie. By Lemma 6, DP = DP ′ exept at index i (the rank of
u), where DP ′(i) = DP (i) + ℓP (s). Sine DP (i) + ℓP (s) ≤ DQ(i), we have DP ′ ≤ DQ.But ||DP ′ − DQ|| = ||DP − DQ|| − ℓP (s) and by the indution hypothesis, P ′ ≤ Q in theTamari lattie. Hene P < P ′ ≤ Q, and the lemma is proved.

u d s

2ℓP (u) 2ℓP (s)

2ℓQ(u)

Q
P Figure 7: General form of P and Q.

2.3 Reursive deomposition of intervals and funtional equationA ontat of a Dyk path P is a vertex of P lying on the x-axis. It is initial if it is (0, 0).A ontat of a Tamari interval [P, Q] is a ontat of the lower path P . The reursivedeomposition of intervals that we use makes the number of ontats ruial, and we say
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that this parameter is atalyti. We also onsider another, non-atalyti parameter, whihwe �nd to be equidistributed with non-initial ontats (even more, the joint distributionof these two parameters is symmetri). Given an m-Dyk path Q, the length of the initialrun of up steps is of the form mk; the integer k is alled the initial rise of Q. The initialrise of an interval [P, Q] is the initial rise of the upper path Q. The aim of this subsetionis to establish the following funtional equation.Proposition 8. For m ≥ 1, let F (x) ≡ F (m)(t; x) be the generating funtion of m-Tamariintervals, where t ounts the size (divided by m) and x the number of ontats. Then
F (x) = x + xt (F (x) · ∆)(m) (F (x)),where ∆ is the following divided di�erene operator

∆S(x) =
S(x) − S(1)

x − 1
,and the power m means that the operator G(x) 7→ F (x) · ∆G(x) is applied m times to

F (x).More generally, if F (x, y) ≡ F (m)(t; x, y) keeps trak in addition of the initial rise (viathe variable y), we have the following funtional equation:
F (x, y) = x + xyt (F (x, 1) · ∆)(m) (F (x, y)). (3)Note that eah of the above two equations de�nes a unique formal power series in t(think of extrating indutively the oe�ient of tn in F (m)(t; x) or F (m)(t; x, y)).Examples1. When m = 1, the above equation reads

F (x, y) = x + xytF (x, 1) · ∆(F (x, y))

= x + xytF (x, 1)
F (x, y) − F (1, y)

x − 1
.When y = 1, we obtain, in the terminology of [7℄, a quadrati equation with one atalytivariable:

F (x) = x + xtF (x)
F (x) − F (1)

x − 1
.2. When m = 2,

F (x, y) = x + xyt F (x, 1) · ∆(F (x, 1) · ∆(F (x, y)))

= x + xyt F (x, 1) · ∆

(

F (x, 1)
F (x, y) − F (1, y)

x − 1

)

= x +
xyt

x − 1
F (x, 1)

(

F (x, 1)
F (x, y) − F (1, y)

x − 1
− F (1, 1)F ′(1, y)

)

,
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where the derivative is taken with respet to the variable x. When y = 1, we obtain aubi equation with one atalyti variable:
F (x) = x +

xt

x − 1
F (x)

(

F (x)
F (x) − F (1)

x − 1
− F (1)F ′(1)

)

.The solution of (3) will be the topi of the next setion. For the moment we fous on theproof of this equation.We say that a vertex q lies to the right of a vertex p if the absissa of q is greaterthan or equal to the absissa of p. A k-pointed Dyk path is a tuple (P ; p1, . . . , pk) where
P is a Dyk path and p1, . . . , pk are ontats of P suh that pi+1 lies to the right of
pi, for 1 ≤ i < k (note that some pi's may oinide). Given an m-Dyk path P ofpositive size, let u1, . . . , um be the initial (onseutive) up steps of P , and let d1, . . . , dmbe the down steps mathed with u1, . . . , um, respetively. The m-redution of P is the
m-pointed Dyk path (P ′; p1, . . . , pm) where P ′ is obtained from P by ontrating allthe steps u1, . . . , um, d1, . . . , dm, and p1, . . . , pm are the verties of P ′ resulting from theontration of d1, . . . , dm. It is easy to hek that they are indeed ontats of P ′ (Figure 8).

⇒

P
P ′

DP = (10,7, 2, 1, 4, 1, 2, 1, 2, 1, 2, 1) DP ′ = (2, 1, 4, 1, 2, 1, 2, 1, 2, 1)

x1=6 x2=8Figure 8: The m-redution of an m-Dyk path (m = 2).The map P 7→ (P ′; p1, . . . , pm) is learly invertible, hene m-Dyk paths of size mnare in bijetion with m-pointed m-Dyk paths of size m(n− 1). Note that the non-initialontats of P orrespond to the ontats of P ′ that lie to the right of pm. Note also thatthe distane funtion DP ′ (seen as a vetor with m(n − 1) omponents) is obtained bydeleting the �rst m omponents of DP . Conversely, denoting by 2xi the absissa of pi,
DP is obtained by prepending to DP ′ the sequene (xm + m, xm−1 + m − 1, . . . , x1 + 1).In view of Proposition 5, this gives the following reursive haraterization of intervals.Lemma 9. Let P and Q be two m-Dyk paths of size mn > 0. Let (P ′; p1, . . . , pm) and
(Q′; q1, . . . , qm) be the m-redutions of P and Q respetively. Then P ≤ Q in T

(m)
n if andonly if P ′ ≤ Q′ in T

(m)
n−1 and for i ∈ [1..m], the point qi lies to the right of pi.The non-initial ontats of P orrespond to the ontats of P ′ loated to the right of

pm.Let us all k-pointed interval in T (m) a pair onsisting of two k-pointed m-Dyk paths
(P ; p1, . . . , pk) and (Q; q1, . . . , qk) suh that P ≤ Q and for i ∈ [1..k], the point qi liesto the right of pi. An ative ontat of suh a pair is a ontat of P lying to the rightof pk (if k = 0, all ontats are delared ative). For 0 ≤ k ≤ m, let us denote by
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G(m,k)(t; x, y) ≡ G(k)(x, y) the generating funtion of k-pointed m-Tamari intervals, where
t ounts the size (divided by m), x the number of ative ontats, and y the initial rise (wedrop the supersript m sine it will not vary). In partiular, the series we are interestedin is

F (x, y) = G(0)(x, y). (4)Moreover, Lemma 9 implies
F (x, y) = x + xytG(m)(x, y). (5)We will prove that, for k ≥ 0,

G(k+1)(x, y) = F (x, 1) · ∆G(k)(x, y). (6)The funtional equation (3) then follows using (4) and (5).For k ≥ 0, let I = [P •, Q•] be a (k + 1)-pointed interval in T (m), with P • =
(P ; p1, . . . , pk+1) and Q• = (Q; q1, . . . , qk+1) (see an illustration in Figure 9 when k = 0).Sine P is below Q, the ontat qk+1 of Q is also a ontat of P . By de�nition of pointedintervals, qk+1 is to the right of p1, . . . , pk+1. Deompose P as PℓPr where Pℓ is the partof P to the left of qk+1 and Pr is the part of P to the right of qk+1. Deompose similarly
Q as QℓQr, where the two fators meet at qk+1. The distane funtion DP (seen as avetor) is DPℓ

onatenated with DPr
, and similarly for DQ. In partiular, DPℓ

≤ DQℓand DPr
≤ DQr

. By Proposition 5, Ir := [Pr, Qr] is an interval, while Iℓ := [P ◦, Q◦],with P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk), is a k-pointed interval. Its initial riseequals the initial rise of I. We denote by Φ the map that sends I to the pair of intervals
(Ir, Iℓ).

⇒

,

⇒

p1 q1Figure 9: The reursive deomposition of intervals. Starting from an m-Tamari intervalof size n (here, m = 1 and n = 7), one �rst obtains by redution an m-pointed intervalof size n − 1 (Lemma 9). This interval is further deomposed into two intervals, the �rstone being (m − 1)-pointed.Conversely, take an interval Ir = [Pr, Qr] and a k-pointed interval Iℓ = [P ◦, Q◦],where P ◦ = (Pℓ; p1, . . . , pk) and Q◦ = (Qℓ; q1, . . . , qk). Let P = PℓPr, Q = QℓQr, anddenote by qk+1 the point where Qℓ and Qr (and Pr and Pℓ) meet. This is a ontat of Pand Q. Then the preimages of (Ir, Iℓ) by Φ are all the intervals I = [P •, Q•] suh that
P • = (P ; p1, . . . , pk+1) and Q• = (Q; q1, . . . , qk+1), where pk+1 is any ative ontat of Pℓ.If Pℓ has i ative ontats and Pr has j ontats, then (Ir, Iℓ) has i preimages, havingrespetively j, 1 + j, . . . , i + j − 1 ative ontats (j ative ontats when pk+1 = qk+1,
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and i + j − 1 ative ontats when pk+1 = pk). Let us write G(k)(x, y) =
∑

i≥0 G
(k)
i (y)xi,so that G

(k)
i (y) ounts (by the size and the initial rise) k-pointed intervals with i ativeontats. The above disussion gives

G(k+1)(x, y) = F (x, 1)
∑

i≥1

G
(k)
i (y)(1 + x + · · ·+ xi−1)

= F (x, 1)
∑

i≥1

G
(k)
i (y)

xi − 1

x− 1

= F (x, 1) · ∆G(k)(x, y),as laimed in (6). The fator F (x, 1) aounts for the hoie of Ir, and the term ∆G(k)(x, y)for the hoie of Iℓ and pk+1. This ompletes the proof of Proposition 8.3 Solution of the funtional equationIn this setion, we solve the funtional equation of Proposition 8, and thus establish themain result of this paper. We obtain in partiular an unexpeted symmetry property: theseries yF (m)(t; x, y) is symmetri in x and y. In other words, the joint distribution of thenumber of non-initial ontats (of the lower path) and the initial rise (of the upper path)is symmetri.For any ring A, we denote by A[x] the ring of polynomials in x with oe�ients in A,and by A[[x]] the ring of formal power series in x with oe�ients in A. This notation isextended to the ase of polynomials and series in several indeterminates x1, x2, . . .Theorem 10. For m ≥ 1, let F (m)(t; x, y) be the generating funtion of m-Tamari inter-vals, where t ounts the size (divided by m), x the number of ontats of the bottom path,and y the initial rise of the upper path. Let z, u and v be three indeterminates, and set
t = z(1 − z)m2+2m, x =

1 + u

(1 + zu)m+1
, and y =

1 + v

(1 + zv)m+1
. (7)Then F (m)(t; x, y) beomes a formal power series in z with oe�ients in Q[u, v], and thisseries is rational. More preisely,

yF (m)(t; x, y) =
(1 + u)(1 + zu)(1 + v)(1 + zv)

(u − v)(1 − zuv)(1 − z)m+2

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (8)In partiular, yF (m)(t; x, y) is a symmetri series in x and y.Remark. This result was �rst guessed for small values of m. More preisely, we �rstguessed the values of ∂iF
∂x

(1, 1) for 0 ≤ i ≤ m − 1, and then ombined these onjeturedvalues with the funtional equation to obtain onjetures for F (x, 1) and F (x, y). Let us
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illustrate our guessing proedure on the ase m = 1. We �rst onsider the ase y = 1,where the equation reads
F (x, 1) = x + xtF (x, 1)

F (x, 1) − F (1, 1)

x − 1
. (9)Our �rst objetive is to guess the value of F (1, 1). Using the above equation, we easilyompute, say, the 20 �rst oe�ients of F (1, 1). Using the Maple pakage gfun [27℄, weonjeture from this list of oe�ients that f ≡ F (1, 1) satis�es

1 − 16 t − (1 − 20 t) f −
(

3 t + 8 t2
)

f 2 − 3 t2f 3 − t3f 4 = 0.Using the pakage algurves, we �nd that the above equation admits a rational parame-trization, for instane
t = z(1 − z)3, f = F (1, 1) =

1 − 2z

(1 − z)3
.This is the end of the �guessing� part2. Assume the above identity holds, and replae tand F (1, 1) in (9) by their expressions in terms of z. This gives an algebrai equation in

F (x, 1), x and z. Again, the pakage algurves reveals that this equation, seen as anequation in F (x, 1) and x, has a rational parametrization, for instane
x =

1 + u

(1 + zu)2
, F (x, 1) =

(1 + u) (1 − 2 z − z2u)

(1 + zu) (1 − z)3 .Let us �nally return to the funtional equation de�ning F (x, y):
F (x, y) = x + xytF (x, 1)

F (x, y)− F (1, y)

x − 1
.In this equation, replae t, x and F (x, 1) by their onjetured expressions in terms of zand u. This gives

(

1 + zu − zy
(1 + u)2

u

)

F (x, y) =
1 + u

1 + zu
− zy

(1 + u)2

u
F (1, y). (10)We onlude by applying to this equation the kernel method (see, e.g. [2, 8, 26℄): let

U ≡ U(z; y) be the unique formal power series in z (with oe�ients in Q[y]) satisfying
U = zy(1 + U)2 − zU2.Equivalently,

U = z
1 + v

1 − 2z − z2v
, with y =

1 + v

(1 + zv)2
.2For a general value of m, one has to guess the series ∂

i
F

∂x
(1, 1) for 0 ≤ i ≤ m − 1. All of them arefound to be rational funtions of z, when t = z(1 − z)m

2
+2m.
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Setting u = U in (10) anels the left-hand side, and thus the right-hand side, giving
yF (1, y) =

(1 + v) (1 − 2 z − z2v)

(1 + zv) (1 − z)3 .A onjeture for the trivariate series F (t; x, y) follows, using (10). This onjeture oin-ides with (8). 2Before we prove Theorem 10, let us give a losed form expression for the number ofintervals in T
(m)

n .Corollary 11. Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamari lattie T
(m)

nis
f (m)

n =
m̄

n(mn + 1)

(

nm̄2 + m

n − 1

)

,where we denote m̄ = m + 1. For 2 ≤ i ≤ n + 1, the number of intervals in whih thebottom path has i ontats with the x-axis is
f

(m)
n,i =

(nm̄2 − im̄ + m)!(im̄ − m)!

(nm̄2 − n − im + 2m)!(n − i + 1)!(mi)!(i − 2)!
Pm(n, i), (11)where Pm(n, i) is a polynomial in n and i. In partiular,

P1(n, i) = 2, P2(n, i) = 6(33 in − 9 i2 + 15 i− 2 n − 2).More generally,
i(i − 1)Pm(n, i) = −m̄!(m − 1)!(n − i + 1)

(

im̄

m

)(

nm(m + 2) − im + 2m

m − 1

)

+
m−2
∑

k=1

kk!2(m − k − 2)!(m − k − 1)!((i + 1)mm̄ + 2m̄ + k)(n − i)(n − i + 1)×

(

im̄ − k − 1

m − k − 1

)(

im

k

)(

nm̄2 − im̄ + m + k

k

)(

nm(m + 2) − im + 2m

m − k − 2

)

+ m!2
(

im

m − 1

)(

i

(

nm̄2 − im̄ + 2m

m

)

−
(m − 1)(im̄ + 2)(n − i + 1)

m

(

nm̄2 − im̄ + 2m − 1

m − 1

))

. (12)Remarks1. The ase m = 1 of (11) reads
f

(1)
n,i =

(i − 1)(4n − 2i + 1)!

(3n − i + 2)!(n − i + 1)!

(

2i

i

)

.This result an also obtained using Bernardi and Bonihon's bijetion between intervalsof size n in the (usual) Tamari lattie and planar 3-onneted triangulations having n+3
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verties [4℄. Indeed, through this bijetion, the number of ontats in the lower pathof the interval beomes the degree of the root-vertex of the triangulation, minus one [4,Def. 3.2℄. The above result is thus equivalent to a result of Brown ounting triangulationsby the number of verties and the degree of the root-vertex [10, Eq. (4.7)℄.2. Our expression of Pm is not illuminating, but we have given it to prove that Pm isindeed a polynomial. If we �x i rather than m, then, experimentally, Pm(n, i) seems tobe a sum of two hypergeometri terms in m and n. More preisely, it appears that
Pm(n, i) =

mm̄!(im)!

(im̄ − m)!
(

n

i−1

)×

(

m̄Ri(m, n)

(

nm̄2 − (i − 2)m̄ − 1

m̄

)

+ Qi(m, n)

(

nm(m + 2) − (i − 2)m

m

))

,where Ri and Qi are two polynomials in m and n. This holds at least for small values of
i.3. The oe�ients of the trivariate series F (t; x, y) do not seem to have small primefators, even when m = 1.Proof of Theorem 10. The funtional equation of Proposition 8 de�nes a unique formalpower series in t (think of extrating indutively the oe�ient of tn in F (t; x, y)). Theoe�ients of this series are polynomials in x and y. The parametrized expression of
F (t; x, y) given in Theorem 10 also de�nes F (t; x, y) uniquely as a power series in t,beause (7) de�nes z, u and v uniquely as formal power series in t (with oe�ientsin Q, Q[x] and Q[y] respetively). Thus it su�es to prove that the series F (t; x, y) ofTheorem 10 satis�es the equation of Proposition 8.If G(t; x, y) ≡ G(x, y) is any series in Q[x, y][[t]], then performing the hange of vari-ables (7) gives G(t; x, y) = H(z; u, v), where

H(z; u, v) ≡ H(u, v) = G

(

z(1 − z)m2+2m;
1 + u

(1 + zu)m+1
,

1 + v

(1 + zv)m+1

)

.Moreover, if F (x, y) is given by (8), then
F (x, 1) =

(1 + u)(1 + zu)

u(1 − z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

,and
F (x, 1)∆G(x, y) =

(1 + u)(1 + zu)

(1 − z)m+2

H(u, v)− H(0, v)

u
.Let us de�ne an operator Λ as follows: for any series H(z; u, v) ∈ Q[u, v][[z]],

ΛH(z; u, v) := (1 + u)(1 + zu)
H(z; u, v) − H(z; 0, v)

u
. (13)
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Then the series F (t; x, y) of Theorem 10 satis�es the equation of Proposition 8 if and only ifthe series H(u, v) obtained by performing the hange of variables (7) in y(1−z)m+2F (x, y),that is,
H(u, v) =

(1 + u)(1 + zu)(1 + v)(1 + zv)

(u − v)(1 − zuv)

(

1 + u

(1 + zu)m+1
−

1 + v

(1 + zv)m+1

)

. (14)satis�es
zΛ(m)H(u, v) =

(1 + zu)m+1(1 + zv)m+1

(1 + u)(1 + v)
H(u, v)− (1 − z)m+2. (15)Hene we simply have to prove an identity on rational funtions. Observe that both

H(u, v) and the onjetured expression of Λ(m)H(u, v) are symmetri in u and v. Moregenerally, omputing (with the help of Maple) the rational funtions Λ(k)H(u, v) for afew values of m and k suggests that these frations are always symmetri in u and v. Thisobservation raises the following question: Given a symmetri funtion H(u, v), when is
ΛH(u, v) also symmetri? This leads to the following lemma, whih will redue the proofof (15) to the ase v = 0.Lemma 12. Let H(z; u, v) ≡ H(u, v) be a series of Q[u, v][[z]], symmetri in u and v.Let Λ be the operator de�ned by (13), and denote H1(u, v) := ΛH(u, v). Then H1(u, v) issymmetri in u and v if and only if H satis�es

H(u, v) =
u(1 + v)(1 + zv)H(u, 0)− v(1 + u)(1 + zu)H(v, 0)

(u − v)(1 − zuv)
. (16)If this holds, then H1(u, v) also satis�es (16) (with H replaed by H1). By indution, thesame holds for Hk(u, v) := Λ(k)H(u, v).The proof is a straightforward alulation.Note that a series H satisfying (16) is haraterized by the value of H(u, 0). The series

H(u, v) given by (14) satis�es (16), with
H(u, 0) =

(1 + u)(1 + zu)

u

(

1 + u

(1 + zu)m+1
− 1

)

= Λ

(

1 + u

(1 + zu)m+1

)

.Moreover, one easily heks that the right-hand side of (15) also satis�es (16), as expetedfrom Lemma 12. Thus it su�es to prove the ase v = 0 of (15), namely
zΛ(m+1)

(

1 + u

(1 + zu)m+1

)

=
(1 + u)(1 + zu)

u

(

1 −
(1 + zu)m+1

1 + u

)

− (1 − z)m+2. (17)This will be a simple onsequene of the following lemma.Lemma 13. Let Λ be the operator de�ned by (13). For m ≥ 1,
Λ(m)

(

1

(1 + zu)m

)

= (1 − z)m − (1 + zu)m.
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Proof. We will atually prove a more general identity. Let 1 ≤ k ≤ m, and denote
w = 1 + zu. Then

Λ(k)

(

1

(1 + zu)m

)

=
(1 − z)k

wm−k
−

m−1
∑

i=k

k
∑

j=1

(−1)k+jzk−j+1

wm−i−1

(

k

j − 1

)(

i − j + 1

k − j

)

+
k−1
∑

i=1

i
∑

j=1

(−1)j−1zjwk−i

(

i − 1

j − 1

)(

m − k + j − 1

j

)

− wk. (18)The ase k = m is the identity of Lemma 13. In order to prove (18), we need an expressionof Λ(wp), for all p ∈ Z. Using the de�nition (13) of Λ, one obtains, for p ≥ 1,






























Λ

(

1

wp

)

=
1 − z

wp−1
− z

p−2
∑

a=0

1

wa
− w,

Λ(1) = 0,

Λ (wp) = (z − 1)w + z

p
∑

a=2

wa + wp+1.

(19)
We now prove (18), by indution on k ≥ 1. For k = 1, (18) oinides with theexpression of Λ(1/wp) given above (with p replaed by m). Now let 1 ≤ k < m. Apply

Λ to (18), use (19) to express the terms Λ(wp) that appear, and then hek that theoe�ient of wazb is what it is expeted to be, for all values of a and b. The details are abit tedious, but elementary. One needs to apply a few times the following identity:
r2
∑

r=r1

(

r − a

b

)

=
(r2 + 1 − a − b)

b + 1

(

r2 + 1 − a

b

)

−
(r1 − a − b)

b + 1

(

r1 − a

b

)

.We give in the appendix a onstrutive proof of Lemma 13, whih does not requireto guess the more general identity (18). It is also possible to derive (18) ombinatoriallyfrom (19) using one-dimensional lattie paths (in this setting, (19) desribes what stepsare allowed if one starts at position p, for any p ∈ Z).Let us now return to the proof of (17). We write
z

1 + u

(1 + uz)m+1
=

1

(1 + uz)m
+

z − 1

(1 + uz)m+1
.Thus

zΛ(m+1)

(

1 + u

(1 + uz)m+1

)

= Λ

(

Λ(m)

(

1

(1 + uz)m

))

+ (z − 1)Λ(m+1)

(

1

(1 + uz)m+1

)

= Λ ((1 − z)m − (1 + uz)m)

+(z − 1)
(

(1 − z)m+1 − (1 + uz)m+1
)by Lemma 13. Eq. (17) follows, and Theorem 10 is proved.
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Proof of Corollary 11. Let us �rst determine the oe�ients of F (t; 1, 1). By letting uand v tend to 0 in the expression of yF (t; x, y), we obtain
F (t; 1, 1) =

1 − (m + 1)z

(1 − z)m+2
,where t = z(1 − z)m2+2m. The Lagrange inversion formula gives

[tn]F (t; 1, 1) =
1

n
[tn−1]

1 − (m + 1)2t

(1 − t)nm(m+2)+m+3
,and the expression of f

(m)
n follows after an elementary oe�ient extration.We now wish to express the oe�ient of tnxi in

F (t; x, 1) =
(1 + u)(1 + zu)

u(1 − z)m+2

(

1 + u

(1 + zu)m+1
− 1

)

.We will expand this series, �rst in x, then in t, applying the Lagrange inversion formula�rst to u, then to z. We �rst expand (1 − z)m+2F (t; x, 1) in partial frations of u:
(1− z)m+2F (t; x, 1) = −z1m>1 − (1 + zu)−

m−2
∑

k=1

z

(1 + uz)k
+

1 − z2

z(1 + uz)m−1
−

(1 − z)2

z(1 + uz)m
.By the Lagrange inversion formula, applied to u, we have, for i ≥ 1 and p ≥ −m,

[xi](1 + zu)p =
p

i

(

im̄ + p − 1

i − 1

)

zi(1 − z)im+p,with m̄ = m + 1. Hene, for i ≥ 1,
i[xi]F (t; x, 1) = −

(

im̄

i − 1

)

zi(1 − z)(i−1)m−1 +
m−2
∑

k=1

k

(

im̄ − k − 1

i − 1

)

zi+1(1 − z)(i−1)m−k−2

− (m − 1)

(

im̄ − m

i − 1

)

zi−1(1 + z)(1 − z)(i−2)m + m

(

(i − 1)m̄

i − 1

)

zi−1(1 − z)(i−2)m.We rewrite the above line as
(

im̄ − m

i − 1

)(

i

im̄ − m
zi−1(1 − z)(i−2)m − (m − 1)zi(1 − z)(i−2)m

)

.Reall that z = t

(1−z)m2+2m
. Hene, for i ≥ 1,

i[xitn]F (t; x, 1) = −

(

im̄

i − 1

)

[tn−i]
1

(1 − z)m̄(im+1)

+
m−2
∑

k=1

k

(

im̄ − k − 1

i − 1

)

[tn−i−1]
1

(1 − z)(i+1)mm̄+2m̄+k

+

(

im̄ − m

i − 1

)(

i

im̄ − m
[tn−i+1]

1

(1 − z)m(im̄−m)
− (m − 1)[tn−i]

1

(1 − z)m(im̄+2)

)

.
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By the Lagrange inversion formula, applied to z, we have, for p ≥ 1 and n ≥ 1,
[tn]

1

(1 − z)p
=

p

n

(

nm̄2 + p − 1

n − 1

)

.This formula atually holds for n = 0 if we write it as
[tn]

1

(1 − z)p
=

p (nm̄2 + p − 1)!

n! (nm̄2 − n + p)!
,and atually for n < 0 as well with the onvention ( a

n−1

)

= 0 if n < 0. With thisonvention, we have, for 1 ≤ i ≤ n + 1,
i[xitn]F (t; x, 1) = −

m̄(im + 1)

n − i

(

im̄

i − 1

)(

nm̄2 − im̄ + m

n − i − 1

)

+
m−2
∑

k=1

k
(i + 1)mm̄ + 2m̄ + k

n − i − 1

(

im̄ − k − 1

i − 1

)(

nm̄2 − im̄ + m + k

n − i − 2

)

+ m

(

im̄ − m

i − 1

)(

i

n − i + 1

(

nm̄2 − im̄ + 2m

n − i

)

−(m − 1)
im̄ + 2

n − i

(

nm̄2 − im̄ + 2m − 1

n − i − 1

))

.This gives the expression (11) of f (m)
n,i , with Pm(n, i) given by (12). Clearly, i(i−1)Pm(n, i)is a polynomial in n and i, but we still have to prove that it is divisible by i(i − 1).For m ≥ 1 and 1 ≤ k ≤ m − 2, the polynomials (im̄

m

) and (im
k

) are divisible by i. Thenext-to-last term of (12) ontains an expliit fator i. The last term vanishes if m = 1,and otherwise ontains a fator ( im

m−1

), whih is a multiple of i. Hene eah term of (12)is divisible by i.Finally, the right-hand side of (12) is easily evaluated to be 0 when i = 1, using thesum funtion of Maple.4 Final ommentsBijetive proofs? Given the simpliity of the numbers (1), it is natural to ask about abijetive enumeration of m-Tamari intervals. A related question would be to extend thebijetion of [4℄ (whih transforms 1-Tamari intervals into triangulations) into a bijetionbetween m-Tamari intervals and ertain maps (or related strutures, like balaned treesor mobiles [28, 9℄). Counting these strutures in a bijetive way (as is done in [25℄ fortriangulations) would then provide a bijetive proof of (1).Symmetry. The fat that the joint distribution of the number of non-initial ontats ofthe lower path and the initial rise of the upper path is symmetri remains a ombinatorialmystery to us, even when m = 1. What is easy to see is that the joint distribution of the
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number of non-initial ontats of the lower path and the �nal desent of the upper pathis symmetri. Indeed, there exists a simple involution on Dyk paths that reverses theTamari order and exhanges these two parameters: If we onsider Dyk paths as postorderenodings of binary trees, this involution amounts to a simple re�etion of trees. Via thebijetion of [4℄, these two parameters orrespond to the degrees of two verties of theroot-fae of the triangulation [4, Def. 3.2℄, so that the symmetry is also lear in thissetting.A q-analogue of the funtional equation. As desribed in the introdution, thenumbers f
(m)
n are onjetured to give the dimension of ertain polynomial rings DRm ε

3,n .These rings are tri-graded (with respet to the sets of variables {xi}, {yi} and {zi}), and itis onjetured [3℄ that the dimension of the homogeneous omponent in the xi's of degree
k is the number of intervals [P, Q] in T

(m)
n suh that the longest hain from P to Q, inthe Tamari order, has length k. One an reyle the reursive desription of intervalsdesribed in Setion 2.3 to generalize the funtional equation of Proposition 8, taking intoaount (with a new variable q) this distane. Eq. (3) remains valid, upon de�ning theoperator ∆ by

∆S(x) =
S(qx) − S(1)

qx − 1
.The oe�ient of tn in the series F (t, q; x, y) does not seem to fator, even when x = y = 1.The oe�ients of the bivariate series F (t, q; 1, 1) have large prime fators.More on m-Tamari latties? We do not know of any simple desription of the m-Tamari lattie in terms of rotations in m + 1-ary trees (whih are equinumerous with

m-Dyk paths). A rotation for ternary trees is de�ned in [23℄, but does not give a lattie.However, as noted by the referee, if we interpret m-ballot paths as the pre�x (rather thanpost�x) ode of an m + 1-ary tree, the overing relation an be desribed quite simply.One �rst hooses a leaf ℓ that is followed (in pre�x order) by an internal node v. Then,denoting by T0, . . . , Tm the m + 1 subtrees attahed to v, from left to right, we insert vand its �rst m subtrees in plae of the leaf ℓ, whih beomes the rightmost hild of v. Therightmost subtree of v, Tm, �nally takes the former plae of v (Figure 10).
≺

ℓ
v

T0

T1 T2

ℓ

v

T0

T1

T2

Figure 10: The overing relation of Figure 2 translated in terms of ternary trees.More generally, it may be worth exploring analogues for the m-Tamari latties of thenumerous questions that have been studied for the usual Tamari lattie. To mention only
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one, what is the diameter of the m-Tamari lattie, that is, the maximal distane betweentwo m-Dyk paths in the Hasse diagram? When m = 1, it is known to be 2n − 6 for nlarge enough, but the proof is as ompliated as the formula is simple [13, 29℄.
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⊳ � ⋄ � ⊲Appendix. A onstrutive approah to Lemma 13. In order to prove Lemma 13, wehad to prove the more general identity (18). This identity was �rst guessed by expanding

Λ(k)(1/wm) in w and z, for several values of k and m. Fortunately, the oe�ients in thisexpansion turned out to be simple produts of binomial oe�ients.What if these oe�ients had not been so simple? A onstrutive approah goes asfollows. Introdue the following two formal power series in3 t and s, with oe�ients in
Q[w, 1/w, z]:

P (t; s) =
∑

m≥1,k≥0

tksm−1Λ(k)(wm) and N(t; s) =
∑

m≥0,k≥0

tksmΛ(k)

(

1

wm

)

,where we still denote w = 1 + zu. Observe that
P (t; 0) =

∑

k≥0

tkΛ(k)(w).We want to ompute the oe�ient of tmsm of N(t; s), sine this oe�ient is Λ(m)(1/wm).Eq. (19) yield funtional equations for the series P and N . For P (t; s) �rst,
P (t; s) =

∑

m≥1

sm−1wm + t
∑

m≥1,k≥1

tk−1sm−1Λ(k−1)

(

(z − 1)w + z

m
∑

a=2

wa + wm+1

)

=
w

1 − sw
+

t(z − 1)

1 − s
P (t; 0) +

tz

1 − s
(P (t; s) − P (t; 0)) + t

P (t; s) − P (t; 0)

s
.Equivalently,

(

1 −
tz

1 − s
−

t

s

)

P (t; s) =
w

1 − sw
−

tP (t; 0)

s(1 − s)
. (20)Now for N(t; s), we have

N(t; s) =
∑

m≥0

sm

wm
+ t

∑

m≥1,k≥1

tk−1smΛ(k−1)

(

1 − z

wm−1
− z

m−2
∑

a=0

1

wa
− w

)

=
1

1 − s/w
+ ts(1 − z)N(t; s) −

tzs2

1 − s
N(t; s) −

ts

1 − s
P (t; 0).3The variable t that we use here has nothing to do with the variable t that ours in the generatingfuntion F (t; x, y) of intervals.
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Equivalently,
(

1 − ts +
tzs

1 − s

)

N(t; s) =
1

1 − s/w
−

ts

1 − s
P (t; 0). (21)Equation (20) an be solved using the kernel method (see e.g. [2, 8, 26℄): let S ≡ S(t, z)be the unique formal power series in t, with oe�ients in Q[z], having onstant term 0and satisfying

1 −
tz

1 − S
−

t

S
= 0.That is,

S =
1 + t − tz −

√

1 − 2t(1 + z) + t2(1 − z)2

2
. (22)Then setting s = S anels the left-hand side of (20), giving

P (t; 0) =
wS(1 − S)

t(1 − wS)
.Combined with (21), this yields an expliit expression of N(t; s):

N(t; s) =
1

1 − ts + tzs
1−s

(

1

1 − s/w
−

wsS(1 − S)

(1 − s)(1 − wS)

)

.We want to extrat from this series the oe�ient of tmsm, and obtain the simple expres-sion (1−z)m −wm predited by Lemma 13. Clearly, the �rst part of the above expressionof N(t; s) (with non-positive powers of w) ontributes (1 − z)m, as expeted. For i ≥ 1,the oe�ient of wi in the seond part of N(t; s) is
Ri := −

sSi(1 − S)

(1 − s)
(

1 − ts + tzs
1−s

) .Reall that S, given by (22), depends on t and z, but not on s. Sine S = t + O(t2), theoe�ient of tmsm in Ri is zero for i > m. When i = m, it is easily seen to be −1, asexpeted. In order to prove that the oe�ient of tmsm in Ri is zero when 0 < i < m, we�rst perform a partial fration expansion of Ri in s, using
(1 − s)

(

1 − ts +
tzs

1 − s

)

= (1 − sS)(1 − st/S),where S is de�ned by (22). This gives
Ri = −

Si+1(1 − S)

t − S2

(

1

1 − ts/S
−

1

1 − sS

)

,so that
[sm]Ri = −

Si+1−m(1 − S)

t − S2

(

tm − S2m
)

=

m−1
∑

j=0

tm−1−jS2j+i−m+1(S − 1)
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and
[smtm]Ri =

m−1
∑

j=0

[tj+1]S2j+i−m+1(S − 1) =
m−i
∑

j=0

[tj+1]S2j+i−m+1(S − 1). (23)The Lagrange inversion gives, for n ≥ 1 and k ∈ Z,
[tn]Sk(S − 1) =



























0 if n < k;
−1 if n = k;
1 − kz if n = k + 1;

1

n

n−k
∑

p=1

zp

(

n

p

)(

n − k − 1

p − 1

)

n − p − kp

n − k − 1
otherwise.Returning to (23), this gives

[smtm]Ri = −(m − i − 1)z+

m−i−2
∑

j=0

m−i−j
∑

p=1

zp

j + 1

(

j + 1

p

)(

m − i − j − 1

p − 1

)

j + 1 − p(2j + i − m + 2)

m − i − j − 1
.Proving that this is zero boils down to proving, that, for 1 ≤ p ≤ m − i,

m−i−2
∑

j=0

1

j + 1

(

j + 1

p

)(

m − i − j − 1

p − 1

)

j + 1 − p(2j + i − m + 2)

m − i − j − 1
= (m − i − 1)1p=1.This is easily proved using Zeilberger's algorithm [24, Chap. 6℄, via the Maple pakageEkhad (ommand zeil), or diretly using the Maple ommand sum.

the electronic journal of combinatorics 18(2) (2012), #P31 26


