
The Number of Knight's Tours Equals 33,439,123,484,294 |Counting with Binary Decision DiagramsMartin L�obbing� and Ingo Wegener�FB Informatik, LS II, Univ. Dortmund, 44221 Dortmund, Germanye-mail: loebbing/wegener@ls2.informatik.uni-dortmund.deSubmitted: October 25, 1995; Accepted: January 19, 1996.AMS subject classi�cation: 05-04, 05C38, 68R10.AbstractThe number of knight's tours, i. e. Hamiltonian circuits, on an 8 � 8 chessboard is computed withdecision diagrams which turn out to be a useful tool for counting problems.1 IntroductionBinary decision diagrams are representations of Boolean functions with many applications in hardwareveri�cation and computer-aided design (Bryant (1992)). We believe that binary decision diagrams alsohave many applications in combinatorics and graph theory. To support this claim we determine thenumber of cycle coverings of the knight's graph on an 8�8 chessboard as well as the number of knight'stours with binary and slightly more general multi decision diagrams. We have chosen the knight's tourproblem because of its long history (famous mathematicians like Euler, Legendre, and Vandermonde(see Rouse Ball and Coxeter (1987)) have worked on this problem) and since it is a combinatorial chessproblem known to everybody. Our results are the following ones.Theorem 1 The number of cycle coverings of the directed knight's graph for 8� 8 chessboards equals�2, where � = 2; 849; 759; 680, i. e. it equals 8,121,130,233,753,702,400.Theorem 2 The number of undirected knight's tours on an 8�8 chessboard equals 33,439,123,484,294.The number of directed knight's tours is twice the number of undirected ones.2 Binary and multi decision diagramsMany counting problems can be modeled as the problem of counting the number of satisfying inputsfor a function f : A1 � � � � � An ! f0; 1g. An input a = (a1; : : : ; an) is called satisfying if f(a) = 1.Some types of representations of functions allow to solve this problem e�ciently, if f has a short(especially not exponential) representation. For typical representations of �nite functions, like circuits�Supported in part by DFG grant We 1066/7{3.



the electronic journal of combinatorics 3 (1996), #R5 2or formulae, the problem of counting the satisfying inputs is #P-complete. Hence, we look for typesof representations, where it is easy to count the satisfying inputs.De�nition 1 A variable ordering is a permutation � on f1; : : : ; ng. An ordered multi decision diagram(OMDD) for a function f : A1�� � ��An ! f0; 1g, where Ai = f0; : : : ; ki�1g, and a variable ordering� is a rooted directed acyclic graph with at most two sinks labelled with 0 or 1 and inner nodes, eachone labelled with an index i 2 f1; : : : ; ng. Each inner node with label i has ki outgoing edges labelledwith 0; : : : ; ki � 1, each of these edges leads to one of the nodes with label j, where �(j) > �(i), or toa sink. For the input a = (a1; : : : ; an) 2 A1 � � � � � An the unique path leaving the root and followingthe edge with label ai at nodes with label i has to reach the sink with label f(a). If ki = 2 for all i, wehave OBDDs (B=binary).Typically, there are a lot of nodes with label i, but each directed path can contain at most one ofthem. It is also possible that no node with label i exists. In general it is di�cult to �nd an appropriatevariable ordering to obtain small OMDDs, but in our applications we de�ne the functions in such away that the variable ordering �, where �(i) = i for all i, is appropriate. In the following we only usethis variable ordering. We summarize known results on OMDDs. It is easy to count the number ofsatisfying inputs. A formal description, e. g. a circuit, can be transformed step by step into an OMDD.Let f := g 
 h for some binary operator 
. Then it is easy to obtain an OMDD for f from OMDDsfor g and h. Moreover, the OMDD of minimal size for a given function and variable ordering is uniqueand called reduced. It is possible to create reduced OMDDs only. The whole approach is heuristic,since for some functions OMDDs are exponentially larger than, e. g., circuits. The practical usefulnessof OMDDs relies on the uniqueness of reduced OMDDs. Therefore, we avoid typical problems whicharise in backtracking algorithms. Let us consider all the di�erent \situations" for the di�erent valuesof (a1; : : : ; ai), where i < n. A situation corresponds to the subfunction of f , where the �rst i variablesare replaced by constants. In backtracking algorithms it is a problem to detect situations without anysolutions (the subfunction is the constant 0) and to detect isomorphic situations (the subfunctionsare equal). In OMDDs all situations without any solutions are represented automatically by the sinkwith label 0 and isomorphic cases are represented automatically by the same node (for details seeBryant (1992)).For the knight's tour problem we have to count the number of satisfying inputs of the followingfunction TOUR de�ned on 64 variables. We assume a �xed numbering of the squares. Then ki is thenumber of knight's moves leaving the i-th square. Hence, a = (a1; : : : ; a64) describes for each square aknight's move leaving this square and TOUR(a) = 1 if and only if a describes a knight's tour.3 Counting knight's tours with decision diagramsThe counting of cycle coverings is a quite direct application of OBDD techniques. It is easy to see thatthe number of cycle coverings on an 8� 8 chessboard is equal to �2, if � is the number of one-to-onemappings from the white to the black squares respecting the legal moves of a knight. The Booleanfunction deciding whether some choice of moves represents such a one-to-one mapping is described as acircuit and then translated gate by gate into an OBDD. We obtain � as the number of satisfying inputs.We got the same result for � with three independent approaches: OBDDs of size 598,472, ZBDDs (anOBDD variant introduced by Minato (1993)) of size 406,660 (6.5 CPU minutes on a SUN 670/140with 128 MB storage), and with backtracking (the most clever approach took more than 30 days).
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Figure 1: An example of a knight's tourCounting knight's tours is much more di�cult, since tours cannot be described by local properties.We use a hybrid approach of OMDD techniques, backtracking and divide-and-conquer. The ideas areillustrated in Fig. 1.The chessboard is divided into L (row 1, 2, and 3), M (row 4 and 5) and U (row 6, 7, and 8). Thelower \half board" LM consists of L and M and the upper half board UM consists of U and M . Theoverlapping of the half boards leads to a smaller number of cases in our divide-and-conquer approach.If we de�ne that a move from row 4 to row 5 belongs to LM and a move from row 5 to row 4 belongsto UM , each move belongs to one half board.Let us consider a �xed directed knight's tour. A square belongs to UL, if the move to this squarebelongs to the upper half board and the move leaving this square belongs to the lower half board.LU , LL and UU are de�ned similarly. Each square of U (or L) belongs to UU (resp. LL). We divideour problem according to the di�erent partitions of M into UL, LU , LL and UU . It is su�cient toconsider �161 �2 + �162 �2 + � � �+ �168 �2 = 383; 358; 644 cases. For each i 2 f1; : : : ; 8g we choose each pair(A;B) of subsets of M of size i and let LL = A \ B, UL = A � A \ B, LU = B � A \ B (ensuringthe necessary condition jULj = jLU j) and UU = M � (A [B). We obtain all cases, where jLLj � 8.Because of symmetry it is su�cient to multiply the number of solutions of the cases where jUU j � 9by 2.



the electronic journal of combinatorics 3 (1996), #R5 4Each directed knight's tour consists in LM �UU of cycle free disjoint paths combining each nodein UL with one node in LU . Let f : UL ! LU be the one-to-one mapping such that f(v) is theendpoint of the path starting at v, i. e. v points to f(v). Similarly, we obtain for the paths in UM �LLa one-to-one mapping g : LU ! UL. The pointers de�ned by f and g lead to a cycle on UL[LU . Suchpairs (f; g) are called good. In our example f(A5) = G4, f(F4) = D5, g(G4) = F4 and g(D5) = A5de�ne the cycle A5! G4! F4! D5! A5. Disjoint path systems on LM �UU and UM �LL de�nea directed knight's tour i� (f; g) is good. Let #(UL;LU ;LL;UU ; f) be the number of disjoint pathsystems on LM � UU respecting the partition of M and respecting f , and let #(UL;LU ;LL;UU ; g)be de�ned similarly for UM � LL. Then the number of directed knight's tours equalsX(UL;LU ;LL;UU ) X(f;g) good#(UL;LU ;LL;UU ; f) �#(UL;LU ;LL;UU ; g)and the number of undirected tours is half this number.To check the rather \global" property that a set of moves respects a given function f : UL! LUis di�cult with OMDDs. They become too large to be stored in the storage space which is nowadaysavailable. We create for each partition (UL;LU ;LL;UU ) two OMDDs for LM � UU . The �rst onechecks whether each white square is left once and each black square is reached exactly once by themoves chosen for the white squares and whether the partition (UL;LU ;LL;UU ) is respected. Theother OMDD does the same for the moves leaving the black squares. For each pair of inputs satisfyingthe two OMDDs we like to check whether they describe a cycle free path system. Each such pairhas to be counted for the corresponding parameter #(UL;LU ;LL;UU ; f). We obtain the parameters#(UL;LU ;LL;UU ; g) by symmetry. Finally, the above formula is evaluated.The use of OMDDs has two major advantages. It is easy to check whether a reduced OMDDrepresents the constant 0. Then nothing has to be done. Otherwise, the satisfying inputs can beenumerated by backtracking on the OMDD without considering any non satisfying input.The computation can be easily distributed to many computers. We have performed the computationwith 20 SUN work stations within approximately four months. The CPU time is much less, since wecould use the computers only during their idle times.ConclusionBDD techniques known from hardware veri�cation and computer-aided design have been applied tothe solution of open combinatorial problems. The number of knight's tours on the 8� 8 chessboard isdetermined.ReferencesBryant, R. E. (1992). Symbolic Boolean manipulationwith ordered binary-decision diagrams. ACMComputing Surveys 24(3), 293{318.Minato, S.-I. (1993). Zero-suppressed BDDs for set manipulation in combinatorial problems. Proc.of the 30th ACM/IEEE Design Automation Conference, 272{277.Rouse Ball, W. W. and Coxeter, H. S. M. (1987). Mathematical recreations and essays. Dover,New York.


