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A characterization theorem is given for a class of developmental languages. 
The theorem binds together the number of occurrences of letters in the words 
of the given language with the distribution of these letters. 

INTRODUCTION 

This paper deals with a class of developmental languages. The theory 
of developmental systems and languages originated in the works of 
Lindenmayer (1968). This theory provided a useful theoretical framework 
within which the nature of cellular behavior in development can be discussed, 
computed and compared (see, e.g., Herman and Rozenberg, to appear, 
Lindenmayer, 1968, and Lindenmayer and Rozenberg, 1972). It turned out 
that developmental systems and languages are interesting and novel objects 
from the formal language theory point of view. Especially in comparison 
with Chomsky grammars and languages (see, e.g., Ginsburg, 1966) they 
provided a lot of insight into the basic problems of formal language theory. 

An important subclass of developmental systems are the so-called E0L 
systems (see, e.g., Herman, 1974, or Herman, Lindenmayer, and Rozenberg), 
which were devised to allow descriptions of development which take into 
account the inaccuracy of our observations. 

One of the basic open problems within the theory of E0L systems (and 
in fact within the whole theory of developmental systems) is the charac- 
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terization theorems that allow one, for example, to prove that some languages 
are not E0L languages (i.e., languages generated by the E0L systems). 

This  paper provides such a characterization for a subclass of E0L 
languages. The  characterization theorem binds together the number  of 
occurrences (in the words of the given E0L language) of letters from a 
given set of letters with the distribution of these letters. 

The  paper also discusses some applications of the main result. 

1. PRELIMINARIES 

We assume the reader to be familiar with the basics of formal language 
theory (see, e.g., Ginsburg, 1966, whose notation and terminology we shall 
mostly follow). In  addition to this, we shall use the following notation: 

(i) N denotes the set of nonnegative integers and N+ = N - -  {0}. 
I f  n is an integer, then abs(n) denotes its absolute value. 

(ii) I f  x is a word over an alphabet Z, then I x I denotes the length 
of x and Min(x) denotes the set of letters which occur in x. For a in Z, 
#~(x) denotes the number  of occurrences of the letter a in x and if B is a 
subset of Z then #~(x) = ~2~B #~(x). I f  k is a positive integer, then x k 
denotes x catenated h times with itself. 

(iii) I f  A is a finite set, then # A  denotes its cardinality. I f  B C A 
and # B  = 1 then B is called a singleton in A. 

(iv) A coding is a letter to letter homomorphism. I f  h is a homo- 
morphism from Z* into V* and L _C V* then h-l(L) = {x ~ Z*:  h(x) = y 
for some y in L}. 

(v) I f  ~ = s l ,  s~, s a ,... is a sequence of objects and i l ,  i2, ia .... are 
such that i 1 < i~ < i a < -'-, then sil,  si2, s<~ .... is called a subsequence of 7. 

(vi) z denotes the empty  set and A denotes the empty word. 

(vii) I f  d is a (nondeterministic) finite automaton, then L ( d )  denotes 
its language. 

(viii) I f  A is an ultimately periodic sequence (set) of nonnegative 
integers then thres(A) denotes the smallest integer j for which there exists 
a positive integer q such that, for every i >/j, if i is in A then (i -t- q) is 
in A. The  smallest positive integer p such that, for every i / >  thres(A), 
whenever i is in A then also (i + p) is in A, is denoted by per(A). 
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2. DEFINITIONS AND EXAMPLES OF E0L SYSTEMS 

In this section we give basic definitions concerning developmental lan- 
guages, which are relevant for this paper. 

DEFINITION 1. An E 0 L  system is a construct G = <VN, V r ,  P, to) 
such that 

V N is a finite alphabet (of nonterminal letters and symbols), 

V T is a finite nonempty  alphabet (of terminal letters or symbols), such 

that VN n V T = 2J, 

to is an element of (V N k_) VT) ÷ (called the axiom of G), 

P is a finite nonempty set (called the set of productions of G) each 
element of which is of the form a --+ ~, where the symbol "--+" is not in 
V u td VT, a is in VN tJ VT, and ~ is in (V  N k) Vr)*. Moreover,  for every a 
in VN U U r there exists a word a in ( V  u u fiT)* such that a ~ ~ is in P. 

In  the sequel we shall often write "a  --+, £ '  rather than "a --+ c~ is in P . "  
Also a production of the form a ~ a is called a production for a in P. 

DEFINITION 2. An E0L system G ~ - < V  w,  V T , P ,  to) is called a 
0 L  system if, and only if, K~ = ~ .  (In this case we write G as < KT, P,  co>). 

0L systems are investigated, for example, in Rozenberg and Doucet  (1971). 

DEFINITION 3. Let  G = < Vw, VT, P, to> be an E0L system. 

(i) Let  x a ( V l v t ) V T ) + ,  say x = b  l ' - ' b  t for some b 1 .... , b  t in 
V N td Vr ,  and let y c ( V  N t j  Vr)*. We say that x directly derives y (in G), 
denoted as x ~ a  Y, if there exists a sequence 7r 1 ,..., ~r t of productions from P, 
such that, for e v e r y i i n { 1  .... ,t},~r i = b  i - + ~ i a n d y  ~ c~ l ' ' ' c ~  t .  

(ii) As usual, ~ +  denotes the transitive closure of the relation ~ a  
and ~ a  denotes the reflexive and transitive closure of the relation ~ a .  
I f  x *~a Y then we say that x derives y in G. 

(iii) A finite sequence D =- (Xo, x 1 ,..., xr) of words from (Vw t.) VT)* 

such that, r >~ 1 and, for each i in { 1 , . ,  r}, xi-1 ~ a  x i ,  is called a derivation 
(of xr from Xo) in G. I f  x o = to, then D is called a derivation of xr in G. 

(iv) An infinite sequence D = (Xo, x I ,...) of words from (VN L; VT)+ 
such tha L for each i ~ 1, xi_ 1 ~ c  x l ,  is called an infinite derivation in G. 

(v) I f  D = (Xo, xl ,..., xr) is a derivation in G, then its control sequence 
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is any sequence r = (T  1 ,..., Tr) of subsets of P, such that, for each i in 

{1,..., r}, x~_ 1 ~ a  xi "using" all and only productions from T~. 

(vi) For x in (VN t.3 VT)+,y in (VN tO VT)* and a positive integer r we 
write x ~ y if there exists a derivation D = (x o = x, x 1 .... , x r = y)  in G. 

We also write x 9 ° x, for every x in ( V  N W ~/'T) +. 

(vii) max(G) is defined as max{I a I: a ~ a for some a in VN V) V r 

and o~ in ( V  iv L3 VT)*}. 

DEFINITION 4. Let G = ( V N ,  V r ,  P, ~o) be an E0L system. The  

language of G, denoted as L(G), is defined by L(G) = {x c VT*: o, *~G X}. 

DEFINITION 5. A language K is called an E0 L  language (0L language) if, 
and only if, there exists an E 0 L  system (0L system) G such that L(G) ~- K,  

Remark 1. Given an E0L system G = ( V N ,  Vr ,  P, w), a derivation 
D = (x o ..... x~) and its control sequence r = (T 1 .... , T,.), the pair (D, r), 
in general, does not tell us which productions are used to rewrite the particular 

occurrences of letters in the words x 0 ,..., x~_ 1 . However (to avoid cum- 
bersome notation and to keep the size of this paper decent), we shall often 

assume that the pair (D, r) provides such information. This should not 

lead to confusion. 

Remark 2. The  properties we are interested in (in this paper) are trivial 

for finite languages, hence we consider only infinite languages. Thus  in the 
sequel if we write "a language" (or "an E0L language") we mean an infinite 

one, unless explicitly stated otherwise. Also whenever we write "an E0L 
system" we mean one generating an infinite language. 

Remark 3. Given an EOL system G = ( V N ,  VT, P, oJ) we shall 
sometimes consider P to be the "set of names for productions" rather than 
the set of productions itself. I n  this sense we can talk about the words over P, 

etc., and this should not lead to confusion. 

We end this section with two examples of EOL systems. 

EXAMPLE 1. G = (VN,  VT, P, ~) ,  where 1/- N = {S}, Vr = {a, b}, P =- 
{S  ---> a, S --+ b, a --+ a 2, b --+ b a} and w = S, is an E0L system such that 
L(G) = {aS": n /> O} U {ba': n >~ 0}. 

EXAMPLE 2. G = (2J, P, w), where 27 = {a, b}, P = {a --* (ab) 2, b --+ A} 
and co = ab, is a 0L system such that L(G) = {(ab)~=: n >/0}. 
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3. BASIC NOTIONS AND THEIR PROPERTIES 

In  this section we introduce basic notions describing the structure of OL 
languages we are interested in and we prove some properties of these notions. 

DEFINITION 6. Let  L be a language over an alphabet Z and let B be a 
nonempty subset of Z. Let  IL. B = {n E N: there exists a word w in L such 

that #~(w) = n}. 

(i) B is numerically dispersed (in L) if, and only if, IL, B is infinite 
and for every positive integer k there exists a positive integer n7¢ such that, 

for every u l ,  u 2 in IL. B , if u 1 :# u s , u 1 > n k and u 2 > n k then abs(u 1 - -  us) > k. 

(ii) B is clustered (in L) if, and only if, IL, B is infinite and there exist 
positive integers k 1 , k s such that k s > l ,  k s > 1 and, for every word w in L, 
if #B(w) > / k  1 , then w contains at least two occurrences of symbols from B 

which are distant less than kz. 

DEFINITION 7. Let  L be a language over an alphabet Z and let a be in 2:. 
The  symbol a is said to be frequent (in L) if, and only if, for every positive 
integer n there exists a word w in L such that #a(W) > n; otherwise a is 

called nonfrequent (in L). 

DEFINITION 8. Let  G = (Z,  P,  oJ) be a 0L system, let B be a nonempty  
subset of 27 and let a be in Z. 

(i) We  define a B-characteristic sequence of a (in G), denoted as 
Seq(G, B, a), as an infinite sequence Z 1 , Z~ ,... of finite subsets of N such 
that, for each i ~> 1 and every nonnegative integer n, n is in Zi if, and only if, 

i a :~a w for some w in Z* such that #B(w) = n. 

(ii) Seq(G, B, a ) =  Z 1 , Z 2 .... is called unique if, and only if, for 
every i >/ 1, # Z i  = 1. 

(iii) Seq(G, B, a) - -  Z1,  Z 2 ,... is called bounded if, and only if, there 
exists a constant C such that, for every i / >  1, n < C for every n in Z~. 
In  this case we also say that a is B-bounded (in G) and that C bounds 
Seq(G, B, a). We  say that a is B-unbounded (in G) otherwise. 

(iv) Seq(G, B, a ) =  Z1,  Z 2 .... is called constant if, and only if, for 
each i, j >~ 1, Zt = Z j .  In  this case we also say that a is B-constant (in G). 

LEMMA 1. Let G = <Z, P, oJ) be a 0L system, let B be a nonempty 
subset of Z and let a be a symbol in Z. Let Seq(G, B, a) = Z 1 , Z2 ,... and let 



EOL L~'~GUAGES 261 

U(G, B, a) = {i x , i~ .... } be the set of positive integers such that, for every 
j ~ 1, j is in U(G, B, a) if, and only if, Zj ~ O. Then U(G, B, a) is an 
ultimately periodic set. 

Proof. Let G, B, a, Seq(G, B, a), and U(G, B, a) be as in the statement 
of the lemrna. Let  d = <Q, V, 3, q0, F )  be a finite automaton such that 
Q = Z ,  V = P ,  q0 ~ a ,  F = B ,  for every q, q i n  Q and every v in V, 
q E 3(q, v) if, and only if, v is a production of the form q ~ ~1q7~ for some 

71,72 in Z*. 
We leave to the reader the easy proof of the fact that, for every j ~ 1, 

Z~ @ {0} if, and only if, there exist a word y over V such that I Y ] = j and 
3(q0, Y ) n  F va ~ .  Hence, U(G, B, a) = {n E N: there exists a word y in 
L ( d )  such that I Y ] ~ n}. 

But it is well known (see, e.g., Ginsburg, 1966, Theorems 2.1.2 and 2.1.3) 
that the set of lengths of a regular language is an ultimately periodic set 
and consequently L e m m a  1 holds. 

DEFINITION 9. Let  G = <Z, P, co) and let B be a nonempty subset 
of Z. A B-uniformperiod of G, denoted as re(G, B) is defined to be the smallest 
positive integer such that 

(i) for every b in Z, re(G, B) > thres(U(G, B, b)), and 

(ii) re(G, B) is divisible by per(G, B, b), for every b in Z, such that 
U(G, B, b) is infinite. 

LEMMA 2. Let G = <Z, P, co> be a 0L system and let B be a nonempty 
subset of Z. I f  B is numerically dispersed in L(G), then, for every symbol a 
which is frequent in L(G), Seq(G, B, a) is unique. 

Proof. Let  G = (Z,  P, co) be a 0L system and let B be a numerically 
dispersed (in L(G)) subset of Z. Let  a be a symbol from Z which is frequent 
in L( G). 

Let  us assume, to the contrary, that Seq(G, B, a ) =  Z j ,  Z~ ,... is not 
unique, meaning that, for some i o ~ 1, Zio contains at least two nonnegative 
integers n a and n 2 (say n 2 > n 1 , so that n~ > 0). 

Now, let m be an arbitrary positive integer. 
Let  x be a word in L(G) which containst occurrences of the letter a for 

some t ~ m (recall that a is frequent in L(G) and so such a word x exists). 
Let  D = (x o = x, xa ,..., xi o) be a derivation of some word x% from the 

word x with a control sequence .r = T 1 .... , Tio which is such that each 
occurrence of a in x contributes nz occurrences of symbols from B in x~o 
(recall that n 2 ~ Zio ). 
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Let /9 = (x o = x, 21 ,..., 2i0 ) be a derivation of some word x-/0 from the 
word x with a control sequence ¢ = T1 ,..., Ti o which is such that exactly 
one occurrence of a in x contr ibutes  n 1 occurrences of symbols  f rom B in  

2i0 (recall that n 1 ~ Zio ) and all other occurrences in x of the letter a as well 
as all occurrences in  x of all other letters "behave"  in exactly the same way 

as in the derivation D with the control sequence ~-. 

T h u s  #B(X%) - -  #B(2%) = n 2 - -  nl , where #B(X%) ~ t" n 2 . 

Consequent ly ,  there exists a positive integer k o (put  k o = n 2 - -  n 1 + 1) 
such that for every integer m there exist integers u I and u 2 larger than  m 
(put  u 1 = tn 2 - -  (n 2 - -  ha) , u 2 =- t " n~ and notice that  u 2 and  u 1 are large 
enough if t is large enough)  such that  u~ > u 1 (note that  u 2 - -  u 1 = n 2 - -  ha) , 

u 1 and u 2 are in IL(a),~ and  u 2 - - u  1 < k o. T h u s  B is no t  numer ica l ly  
dispersed; a contradiction.  

Hence  Seq(G, B, a) mus t  be un ique  and L e m m a  2 holds. 

LEMMA 3. Let  G = (X ,  P,  o~) be a 0L system and let B be a subset 

of  X which is numerically dispersed in L(G).  Let  a be a symbol from X such 

that a is frequent in L(G)  and a is B-unbounded in L(G).  Then, for  every c~ 

in X*,  i f  a --~p ~, then ~ must contain at least one occurrence of  a B-unbounded 
letter. 

Proof. Let  G, B,  and a satisfy the s ta tement  of the lemma.  Let  

Seq(G, B, a) = G ,  G . . . . .  
Let  a---*e ~ and let us assume, to the contrary, that either ~ = A or 

c¢ =7"- A and each letter which occurs in c¢ is B-bounded .  

First ,  let us note  that, if for every 7 such that  a --*p 7 we would  have 
that  either y = A or y ~ A and  every letter which occurs in 7 is B-bounded ,  

then  a itself would be B - b o u n d e d ;  a contradiction.  

T h u s  for some & in Z'+ we have that  a --~p & and & contains  an occurrence 
of a B - u n b o u n d e d  letter. 

Let  G = (27, P,  ~o) be a 0L system such that  P differs from P only in 
this that all product ions  for a that are different f rom a ~ ~ are deleted. 
Then ,  obviously, Seq(G, B, a) = Z1 ,  Z 2 ,... is bounded  (say for every i >~ 1, 
if n E Z i then  n < C for some positive integer constant  C dependen t  on G 
only). 

As a is B - u n b o u n d e d ,  for every positive integer C (in part icular  for C), 
there exists an integer i c such that Zic  contains an integer larger than  C. 
But, obviously, for each i >~ 1, Zi  C_ Z i ,  and  consequent ly,  for some i o ~> 1 
(set i 0 = ic) , Zi0 mus t  conta in  at least two different integers (one smaller 
than  C and  another  equal to or larger than  C). 
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Consequently, Seq(G, B, a) is not unique which contradicts Lemma  2. 
Thus,  for every ~ in 2]*, if a --->~ a, then a must contain an occurrence 

of a B-unbounded letter. Hence L e m m a  3 holds. 

DEFINITION 10. Let  G = (27, P, w) be a 0L system and n a positive 
integer such that n ) 2. Let  A(G, n) = {x 6L(G):  for some i in {0,..., n - -  1}, 

i X}. O9 ~ G  

(i) The  n-decomposition of G, denoted as Dec(G, n), is the set of 
all 0L systems of the form (27, P(~), z) ,  where z 6 _~(G, n) and p ( n ) =  
{a -+  a: a ~ ~}. Each 0L system from Dec(G, n) is called a n-component 

of G. 

(ii) A set {G 1 ,..., G~} of 0L systems is called a decomposition of G 
if, and only if, for some n ) 2, {G 1 ..... Gv} = Dec(G, n). 

We leave to the reader the obvious proof of the following result. 

LEMMA 4. Let G = (Z ,  P, w)  be a 0L system and let ~ -~ {G 1 ..... G,} 
be its decomposition. Let n be a positive integer such that n ~ 2 and let, for i 
in{1 .... ,p}, ~(o = ~G (i) (i) 

• ~Ji=l 1 ..... Gv~ } be the n-decomposition of G i Then ~ ~(i) 
is a decomposition of G. 

The  following lemma states a number  of properties that follow directly 
from Definitions 6, 7, 8 and 10. As the proof of these properties is straight- 
forward, we leave it to the reader. Some of these properties are so obvious 
and useful that they will be used in the sequel without directly quoting them. 

LEMMA 5. Let G = (Z,  P, co} be a 0L system and {G 1 .... , G,} be a 

decomposition of G. 

- -  U i = I  L ( G i ) -  (i) L(G) 

(ii) I f  B is a subset of Z such that B is numerically dispersed in L(G), 
then, for every i in {1 ..... p), if lL(a ).B is infinite, then B is numerically dispersed 
in L( Gi), and for at least one j in {1,..., p}, B is numerically dispersed in L( Gs). 

(iii) I f  B is a subset of Z such that, for every i in (1,..:, p}, B is either 
clustered in L(Gi) or IL(a),~ is finite, then B is clustered in L(G). 

(iv) I f  {G 1 ,..., G~} is a n-decomposition of G, B is a nonempty subset of Z 
and a is in Z, then, for each i in {],..., p}, Seq(Gi , B, a) = Z 1 , Z 2 .... with 
g j  = Zs. ~ for every j ~ 1 (where Seq(G, B, a) = Z~, Z2 .... ). 

(v) I f  B is a nonempty subset of 27 and the letter a is B-bounded in G, 
then, for every i in {1,..., p}, a is also B-bounded in Gi • 

643/26/3-5 
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(vi) I f  the letter a is nonfrequent in L(G), then, for each i in {1 .... , p}, 
a is also nonfrequent in L(Gi). 

(vii) I f  the letter a is frequent in L(Gi) for some i in {1 ..... p}, then a 
is also frequent in L(G). 

(viii) I f  B is a nonempty subset of 2 and a is a symbol from 27 such that 
a is B-unique (B-constant) in G, then, for each i in {1,..., p}, a is B-unique 
(B-constant) in Gi. 

DEFINITION 11. Let  G = <27, P, o~> be a 0L system and ~ = {G1,..., G~} 
be a decomposition of G. Let B be a nonempty subset of 27. ~ is called a 
B-fitted decomposition of G if, and only if, for every i in {1,..., p} and for 
every a in 27, if a is frequent in L(Gi) , then 

(i) I f  a is B-bounded in Gi, then a is B-constant in G i ,  and 

(ii) I f  a is B-unbounded in G~, then, for every j ~ 1, Z i = {zi} for 
some zj ~ 2 (where Seq(Gi , B, a) = Z1, Z 2 ,...). 

The  reader may easily notice that, Lemma  2 implies that if G is a 0L 
system, B is numerically dispersed in L(G), ~ is a B-fitted decomposition 
of G and H is in f~, then if a is a symbol which is both, frequent in L(H) 
and B-bounded in H,  then Seq(H, B, a) = {z}, {z},... where z is a non- 
negative integer. 

4. THE EXISTENCE OF B-FITTED DECOMPOSITIONS 

In this section we prove that, for every 0L system G and for every B 
which is numerically dispersed in L(G), there exists a B-fitted decomposition 
of G. 

LEMMA 6. Let G = <Z, P, w> be a 0L system and let B be a nonempty 
subset of ~ such that B is numerically dispersed in L(G). Let f~ = {G 1 ,..., G~} 
be a re(G, B)-decomposition of G. Let i be in {1,..., p} and let a be in 27. I f  a 
is frequent in L(Gi) and Seq(Gi ,  B, a) -- Z1, Z~ .... , then either Z i = {0} 
for every j ~ 1, or Z~ = {zj} where zj ~ 0 for every j >/ 1. 

Proof. Let G, B, and f# = {G 1 ,..., G~} be as in the statement of the 
lemma. Let  i be in {1,...,p} and let a be a symbol from 27 such that a is 
frequent in L(Gi). 

By Lemma  2 and Lemma  5(vii), Seq(G, B, a) is unique and hence, by 
Lemma  5(viii), Seq(G~, B, a) is unique. 
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By L e m m a  1, U(G, B, a) is ultimately periodic. Hence, by Lemma  5(iv) and 
by the definition of re(G, B), for every i in {1 .... ,g}, if Seq(Gi ,  B, a) = 
Z1,  Z 2 .... , then, for every j >~ 1, Z~ @ {0} if, and only if, Z 1 @ {0}. 

Thus  L e m m a  6 holds. 

LEMMA 7. Let G = (Z, P, co) be a 0L system and let B be a nonempty 
subset of Z such that B is numerically dispersed in G. Let f~ -= {G 1 ,..., G~} 
be the re(G, B)-decomposition of G. Let i be in {1,..., p} and let a be in Z. I f  a 
is frequent in L(Gi) and a is B-bounded in Gi , then Seq(Gi ,  B, a) is an ulti- 
mately periodic sequence. 

Proof. Let G, B and N = {G 1,..., G~} satisfy the statement of the 
lemma. Let  i be in {l,. . . ,p} and let a be a symbol from 2J such that a is 
frequent in L(G) and a is B-bounded in G i . Let  Seq(Gi ,  B, a) = Z1, Z 2 ... . .  

By L e m m a  6, either Seq(Gi ,  B, a) = {0}, {0} .... or Seq(Gi , B, a) consists 
of singletons different from {0} only. 

I f  Seq(Gi ,  B, a) = {0}, {0}, {0},... then obviously L e m m a  7 holds. 
Thus  let us assume that Seq(Gi ,  B, a) consists of singletons different 

from {0} only. 
Let  D = (a = xo, x 1 , x 2 .... ) be an infinite derivation in Gi such that, 

for each i >~ 1, x i contains at least one occurrence of a letter frequent in 
L(Gi) such that its B-characteristic sequence consists of singletons different 
from {0} only. (Obviously such a derivation exists.) Let, for j >/ 1, Y~. be 
a subset of all such letters from Min(xj) that their B-characteristic sequences 
consist of singletons different from {0} only. 

First, we shall prove that there exists a constant F such that, for every 
j >/ 1, #rj(x~) < F. Let  us put F to be a positive integer constant such 
that, for every j >~ 1 and every integer n, if n is in Zj then n < F (recall 
that a is B-bounded).  Let  us assume to the contrary, that, for somejo ) 1, 
#r~o(xJo ) >/F. Thus  xjo has more than F occurrences of letters which are 
frequent inL(Gi) and B-characteristic sequences of which consist of singletons 
different from {0} only. (Recall L e m m a  6 and the choice of Yj for each 
j ~ 1.) Consequently, each such letter contributes a t  least one occurrence 
of an element from B to x~o+l (and, in fact, to each next word in D), and so 
#~(xj0+l ) > F which contradicts the fact that Seq(G~, B, a) is bounded by F. 

Thus  our claim holds. 
Now, for j >~ 1, let £~ denote the word resulting by erasing from x~ of 

all occurrences of all letters in Min(xj) - -  Yg". Note that among all words 
of the form £j ,  for j >/ 1, there is only a finite number  of different words 
(because none of these words is longer than F). Hence for some J l ,  j2 such 
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that J2 > J1 we have 233 ---- x~l" But note that, for each j / >  2, 2j "is con- 
tained" in the contribution to xj from xj_ 1 . This  is so, because (obviously) 
an occurrence in xj. of a letter the B-characteristic sequence of which consists 
only of singletons different from {0} may be contributed from an occurrence 
in xj_a of a letter the B-characteristic sequence of which consists of singletons 
different from {0} only. 

T h u s  for some j l  ,j2 such that j2 > J l  we have xJ2 = x~~ and, for every g 
in {Jl ,Jl  + 1,...,J2 - -  1}, we have 2g = 2g+s(~2_j~ ) for every s > /0 .  

But the "contributions to Seq(Gi,  B, a)" from the words in the derivation 
D, depend (obviously) on the words 2~- ( f o r j  >/ 1) only, and by the above, 
these contributions form an ultimately periodic sequence of numbers dif- 
ferent from 0. However, (recall Lemma  6) the sequence Seq(Gi ,  B, a) 
consists of singletons only and so it is itself an ultimately periodic sequence. 

Thus  the lemma is proved. 

LEMMA 8. Let G = (Z ,  P, (o} be a 0L system, let B be a nonempty subset 
of Z such that B is numerically dispersed in L(G) and let ~ = {G~ ,:.., G~} 
be a re(G, B)-decomposition of G. Let i ~ {1,..., p} and let a be a symbol from Z 
such that a is frequent in L( Gi) and a is" B-unbounded in Gi .Let  Seq(Gi ,  B, a) = 
Zt  , Z2,... . Then for every positive integer C there exists a positive integer i c 
such that, for every j > / i c ,  Z~ --  {zj} where zj > C. 

Pro@ Let G, B, N = {G 1 .... , G~}, Gi,  a and Seq(Gi,  B, a) satisfy the 
statement of the lemma. 

As a is frequent in L(Gi) and B-unbounded in Gi,  IL(ai),B is infinite. 
Then  by Lemmata  2, 5(ii), 5(vii), and 5(viii), Seq(Gi,  B, a) is unique, 
(say, for each 1/> 1, Z~ = {z~}). 

Let  C be an arbitrary positive integer and let i c be the smallest positive 
integer g such that zg > C • max(G). 

Let D = (a, xl .... , xic ) be a derivation in Gi of a word xic such that 
#B(Xic ) = Zic. Let r be a control sequence of D. Now, each occurrence 
of a letter from B in Xlc must be derived (in (D, r)) from some occurrence 
in xic_ 1 of a letter whose B-characteristic sequence in G, consists of singletons 
different from {0} only. Consequently (recall the choice of ic) Xic_~ must 
have more than C occurrences of letters whose B-characteristic sequences 
in Gi consist of singletons different from {0} only. Hence, one can "prolon- 
gate" the derivation D to an infinite derivation D = (a, x 1 ,..., Xic, xic+l ,...) 
such that, for each g >~ i c ,  #B(xg) > C. 

But Seq(G/,  B, a) consists of singletons only, and so Lemma  8 holds. 
The  property stated in Lemma 8 carries over through decompositions 
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of O L  systems in the following way. (We leave to the reader the obvious 
proof  of the next result.) 

LEMMA 9. Let G = (Z,  P, o J) be a 0L system, let B be a nonempty subset 
of Z such that B is numerically dispersed in L(G) and let f~ = {G 1 .... , G~} be 
a m(G, B)-decomposition of G. Let i E {1,..., p}, let a be a symbol from Z such 
that a is frequent in L( Gi) and a is B-unbounded in Gi . Let ~(i) = ~¢-~1("~(i),'", G(i)}~% 
be a decomposition of G i and let j ~ {1,..., Pi}. Let Seq(G~ i), B, a) = Z1, Z 2 ,.. . .  
Then for every positive integer C there exists a positive integer i C such that, 

for every j > / i c ,  Zj = {zj}, where zj > C. 

DEFINITION 12. Let  G = (27, P, o~) be a 0L system, let B be a non- 
empty subset of 27 such that B is numerically dispersed in G and let N = 
{G 1 .... , G~} be the m(G, B)-decomposition of G. We define 

(i) ml(G , B) to be the smallest positive integer such that, for every i 
in {1 .... , p} and for every a in 27such that a is frequent inL(Gi) and B-bounded 
in Gi,  m l (G ,B)  is divisible by per (Seq (Gi ,B ,a ) )  and ma(G,B ) > 
thres(Seq(Gi,  B, a)). 

(ii) m2(G, B) to be the smallest positive integer such that, for every i 
in {1,..., p} and for every a in X such that a is frequent in L(Gi) and a is 

B-unbounded in Gi , m2(G, B) > i2 where i 2 is defined as in the statement 

of L e m m a  8. 

(iii) n(G, B) -= ml(G, B) " mz(G, B). 

LEMMA 10. Let G ---- (Z,  P, co) be a 0L system, let B be a nonempty subset 
of ~ such that B is numerically dispersed in G and let (Y = {G 1 ,..., G~} be the 
(m(G, B) • n(G, B))-decomposition of G. Let i ~ {1 .... , p} and let a be a letter 
in 27 such that a is frequent in L(Gi) and a is B-bounded in Gi • Then a is 
B-constant in L( Gi). 

Proof. This result follows directly from Lemmata  4, 5(ii), 5(vii), 5(viii), 
7, and the definition of n(G, B). 

LEMMA 1 1. Let G = (27, P, ~o) be a 0L system and let B be a nonempty 
subset of Z such that B is numerically dispersed in G. Then there exists a B-fitted 
decomposition of G. 

Proof. Let G and B satisfy the statement of the lemma. From Lemmata  5, 
7, 8, 9, 10, and the definition of n(G, B) it follows that the (m(G, B) • n(G, B))- 
decomposition of G is a B-fitted decomposition of G. 

Thus  Lemma  11 holds. 
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5. THE MAIN RESULT AND ITS APPLICATIONS 

In  this section we prove the main result of this paper which states that if 
L is an E0L language and B is numerically dispersed in L, then B is clustered 
in L. We also show some applications of this result. 

DEFINITION 13. Let  G = ( X , P ,  co) be a 0L system and let B be a 
nonempty  subset of Z'. A word x in L(G) is called B-dispersed in G if, and 
only if, #B(x) >~ 2 and every two occurrences in x of symbols from B are 
of distance larger than max(G). 

LEMMA 12. Let G -= (Z,  P, ~o) be a 0L system, let B be a nonempty subset 
of Z such that B is numerically dispersed in G and let f¢ ~ {G 1 .... , G~} be a 
B-fitted decomposition of G. Let i ~ {1,..., p} and let x be a word in L(G) such 
that x is B-dispersed in Gi .  Then, i f  D =- (x  o = ~o, x 1 ,..., x ,  = x) is a 
derivation of x in Gi , then, for every j in {0,..., r - -  1}, x~ does not contain an 
occurrence of a letter which is frequent in L(Gi) and B-unbounded in Gi • 

Proof. Let  G, B, Gi and x satisfy the statement of the lemma. Let  us 
assume, to the contrary, that D = (x 0 ~ ~o, x a ,..., xr - x) is a derivation 
of x in Gi,  such that for some f in {0,..., r - -  1}, x I contains an occurrence 
of a letter, say c, which is frequent in L(Gi) and B-unbounded  in Gi.  But 
then (recall a definition of a B-fitted decomposition), for every j ~> 1, 

Zj = {zj} for some zj >t- 2, where Seq(Gi ,  B, c) ~- Z1,  Z 2 , . . . .  
Thus  by Lemma 3, xr-1 contains an occurrence of a letter which is frequent 

in L(Gi) and B-unbounded  in Gi,  and this occurrence will contribute 
at least two occurrences in x~ of letters from B. These two occurrences, 
obviously, must  be of distance smaller than max(G) which contradicts the 
definition of x. 

Thus  Lemma 12 holds. 

LEMMA 13. Let G = (Z,  P, w)  be a 0L system, let B be a nonempty subset 
of  2J and/et N = {Ga ,... , G~}, be a B-fitted decomposition of G. Let i ~ {1,..., p}. 
1f for every positive integer n there exists a wordy n in L( Gi) such that #~(  y~) >~ n 
and yn is B-dispersed in Gi ,  then B is not numerically dispersed in L(Gi). 

Proof. Let  G, B and f~ = {G 1 ,..., G~} satisfy the statement of the 
lemma. Let  i E{1,.. . ,p} and let us assume that for every positive integer n 
there exists a word Yn in L(Gi) such that # 9 ( y n )  ~> n and y~ is B-dispersed 

in Gi.  
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For  each a in 27 such that a is nonfrequent in Gi, let bound (Gi, a) be the 

smallest positive integer larger than the maximal number  of occurrences of a 

in any word inL(Ci), and let t(a) = max{z: z E Z~ ~)} where Seq(Ci ,  B, a) = 
Z~ ~), z~a),.... Let  F = Y'.a~N(%) t(a) • bound(G/ ,  a), where N(Gi) denotes 
the set of all letters from 27 which are nonfrequent in G i . 

Let  n be larger than (max(G))2 • (#~(a0) and let x be a word in L(Gi) 
such that #B(x) > / n  and x is B-dispersed in Gi. 

Let  D = (x 0 = a~, x 1 ..... xr = x) be a derivation of x in Gi (note that by 

the choice of n, r • 3). Let  rio - #~(x0), /3a = #9(xl), . .- ,  fi~ = #B(Xr) • 
(We assume also that we are given a control sequence r of D). Let  s be an 

integer in { 2 , . ,  r} such that fir ~ /3r--1 ~'~ " '  "~ /3s > /3s--1 (such an s exists 
because of our choice of n). 

By Lemma 12, x,_ 2 does not contain occurrences of letters which are 
frequent in L(Gi) and B-unbounded  in G i .  Consequently 

fis-, = U~*-*) + U~ *-1) and /3, = Ufs)+ U~ ~) 

where 

U~ *-*) is the number  of such occurrences in x,_ x of letters from B which 
are contr ibuted from occurrences in Xs-2 of letters which are nonfrequent 

in L(Gi), 

U~ ~) is the number  of such occurrences in x, of letters from B which are 
contr ibuted from occurrences in Xs_ ~ of letters which are nonfrequent  in L(Gi), 

U~ *-1) is the number  of such occurrences in x,_ 1 of letters from B which 
are contributed from occurrences in x,_~ of letters which are frequent in 
L(Gi) and B-bounded  in Gi, and 

U~ ~) is the number  of such occurrences in x~ of letters from B which 
are contributed from occurrences in x,_ 2 of such letters which are frequent 
in L(Gi) and B-bounded  in Gi. 

Because f~ is B-fitted, U~ s-~) = U~ *), and by the definition ofF,  U~ ~-~) < F .  
Hence/3,  - - /3 ,_  a = U1 (*) - -  U~ *-1' < F. 

Thus  we have proved (recall that fis ~ fi,.) that  for n "large enough" if 
x is a word in L(Gi) such that  #B(X) >/ n and x is B-dispersed in Gi, then 
there exists a word ~ in L(Gi) (set g = x,_l) such that #B(x) - -  #B(2) < F 
where F is a constant dependent  on Gi only. 

Consequently B is not numerically dispersed in G i and Lemma 13 holds. 

LEMMA 14. Let K be a 6L language over an alphabet 2 and let B be a 
nonempty subset of Z. I f  B is numerically dispersed in K, then B is clustered in K. 
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Proof. Let K and B satisfy the statement of the lemma. Let  K = L(G) 
where G = (X, P, o J) is a 0L system. Let  N = {G 1 .... , G~} be a B-fitted 
decomposition of G (its existence is guaranteed by Lemma  11). By 
Lemma  5(ii), for each i in {1 ..... p}, either B is numerically dispersed in 
L(GI) or IL(a).B is finite, and for every j in {1 ..... p}, if IL(a ),~ is infinite, 
then B is numerically dispersed in L(Gj). 

Let s be in {1,..., p} and let IL(a).~ be infinite. So B is numerically dispersed 
in L(Gs). I f  we assume that B is not clustered in G8, then for every positive 
integer larger than 1 there exists a word Yn in L(Gi) such that #~(yn)  > / n  
and y~ is B-dispersed in Gi • But then, by Lemma 13, B is not numerically 
dispersed in L(G,);  a contradiction. 

Thus,  for every i in {1,...,p}, either Ir(a).~ is finite or B is clustered in 
r (a3 .  

But then, by Lemma 5(iii), B must also be clustered in L(G) and so if B is 
numerically dispersed in K then B is clustered in G, which proves the 
lemma. 

The  following result, which was proved in Ehrenfeucht and Rozenberg 
(to appear) turns out to be a very useful one for this paper. 

LEMMA 15. For every E O L  language L there exist a 0L language K and a 
coding ~b such that ~b(K) = L. 

We leave to the reader the easy proof of our next result. 

LEMMA 16. Let K and L be languages (over alphabets Z and V, respectively) 
and let ~b be a coding such that ~b(K) = L. Then 

(i) I f  B is a subset of V suck that B is numerically dispersed in L, then 
~b-l(B) is numerically dispersed in K, and 

(ii) I f  U is a subset of X suck that U is clustered in K, then ~b(U) is 
clustered in L. 

THEOREM. Let K be an E0L language over an alphabet X and let B be a 
nonempty subset of Z. I f  B is numerically dispersed in K, then B is clustered 
inK.  

Proof. This result follows directly from Lemmata  14-16. I t  should be 
clear to the reader that the Theorem may be used to prove that a considerable 
number  of languages are not E0L languages. This, by itself, fills in a gap 
in the developmental systems theory (for a discussion, see Herman,  1974, 
or Herman and Rozenberg, to appear). 
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We shall present now two examples of such application. 

EXAMPLE 3 (See Herman,  1974). The  languageL = {x e {a, b}*: #~(x) = 
2 n for some n >/0}  is not an E0L language. This  is so beeause {a} is 
numerically dispersed in L, but, at the same time, {a} is not clustered in L. 

EXAMPLE 4. Let  ¢ be a function from N to N such that, for every n 

in N ,  ¢(n) > / n .  Let  L¢ = { yoayla ""y~._layr: r = 2 ~ for some n >~ 0 and, 
for each i in {0 ..... r}, Yi e {b, c}* and lye ] = ¢(r)}. Then  L ,  is not an E0L 
language. 

Finally, let us discuss the "s t ructural"  character of the theorem. The  
theorem states the structural rather than numerical characterization of the 
subclass of E O L  languages. This  statement is not precise but  it may be 
illustrated by the following. Whereas it was proved in Example 3 that the 
language L = { x ~ { a , b } * : # ~ ( x ) = 2  ~ for some n >/0} is not an E0L 
language, the language f. = {a2~b'~: n, m >/0}  is generated by the E0L 

grammar <VN, VT, P, oJ) such that VN = {S}, V r = {a, b}, P = {S - +  a, 
S - - ~ A ,  S - + S b ,  a - , - a  2, b--*b}, oJ = S .  But [, results from L by an 
appropriate permutat ion of occurrences of letters in the words of L. Con- 
sequently, all "numerical  characteristics" (such as the set of lengths, the 
number  of occurrences of particular symbols, etc.) are the same for both 
languages and one of them is an E0L language, while the other is not an 
E0L language. 
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