The Number of Occurrences of Letters Versus Their Distribution in Some EOL Languages

A. Ehrenfeucht
Department of Computer Science, University of Colorado, Boulder, Colorado 30302
AND
G. Rozenberg
Department of Mathematics, Utrecht University, Utrecht-Uithof, The Netherlands

A characterization theorem is given for a class of developmental languages. The theorem binds together the number of occurrences of letters in the words of the given language with the distribution of these letters.

Introduction

This paper deals with a class of developmental languages. The theory of developmental systems and languages originated in the works of Lindenmayer (1968). This theory provided a useful theoretical framework within which the nature of cellular behavior in development can be discussed, computed and compared (see, e.g., Herman and Rozenberg, to appear, Lindenmayer, 1968, and Lindenmayer and Rozenberg, 1972). It turned out that developmental systems and languages are interesting and novel objects from the formal language theory point of view. Especially in comparison with Chomsky grammars and languages (see, e.g., Ginsburg, 1966) they provided a lot of insight into the basic problems of formal language theory.

An important subclass of developmental systems are the so-called EOL systems (see, e.g., Herman, 1974, or Herman, Lindenmayer, and Rozenberg), which were devised to allow descriptions of development which take into account the inaccuracy of our observations.

One of the basic open problems within the theory of EOL systems (and in fact within the whole theory of developmental systems) is the charac-
terization theorems that allow one, for example, to prove that some languages are not EOL languages (i.e., languages generated by the EOL systems).

This paper provides such a characterization for a subclass of EOL languages. The characterization theorem binds together the number of occurrences (in the words of the given E0L language) of letters from a given set of letters with the distribution of these letters.

The paper also discusses some applications of the main result.

1. Preliminaries

We assume the reader to be familiar with the basics of formal language theory (see, e.g., Ginsburg, 1966, whose notation and terminology we shall mostly follow). In addition to this, we shall use the following notation:
(i) N denotes the set of nonnegative integers and $N^{+}=N-\{0\}$. If n is an integer, then $\operatorname{abs}(n)$ denotes its absolute value.
(ii) If x is a word over an alphabet Σ, then $|x|$ denotes the length of x and $\operatorname{Min}(x)$ denotes the set of letters which occur in x. For a in Σ, $\# a(x)$ denotes the number of occurrences of the letter a in x and if B is a subset of Σ then $\#_{B}(x)=\sum_{a \in B} \#_{a}(x)$. If k is a positive integer, then x^{k} denotes x catenated k times with itself.
(iii) If A is a finite set, then $\# A$ denotes its cardinality. If $B \subseteq A$ and $\# B=1$ then B is called a singleton in A.
(iv) A coding is a letter to letter homomorphism. If h is a homomorphism from Σ^{*} into V^{*} and $L \subseteq V^{*}$ then $h^{-1}(L)=\left\{x \in \Sigma^{*}: h(x)=y\right.$ for some y in $L\}$.
(v) If $\tau=s_{1}, s_{2}, s_{3}, \ldots$ is a sequence of objects and $i_{1}, i_{2}, i_{3}, \ldots$ are such that $i_{1}<i_{2}<i_{3}<\cdots$, then $s_{i_{1}}, s_{i_{2}}, s_{i_{3}}, \ldots$ is called a subsequence of τ.
(vi) \varnothing denotes the empty set and Λ denotes the empty word.
(vii) If \mathscr{A} is a (nondeterministic) finite automaton, then $L(\mathscr{A})$ denotes its language.
(viii) If A is an ultimately periodic sequence (set) of nonnegative integers then thres (A) denotes the smallest integer j for which there exists a positive integer q such that, for every $i \geqslant j$, if i is in A then $(i+q)$ is in A. The smallest positive integer p such that, for every $i \geqslant \operatorname{thres}(A)$, whenever i is in A then also $(i+p)$ is in A, is denoted by $\operatorname{per}(A)$.

2. Definitions and Examples of E0L Systems

In this section we give basic definitions concerning developmental languages, which are relevant for this paper.

Definition 1. An E0L system is a construct $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$ such that
V_{N} is a finite alphabet (of nonterminal letters and symbols),
V_{T} is a finite nonempty alphabet (of terminal letters or symbols), such that $V_{N} \cap V_{T}=\varnothing$,
ω is an element of $\left(V_{N} \cup V_{T}\right)^{+}$(called the axiom of $\left.G\right)$,
P is a finite nonempty set (called the set of productions of G) each element of which is of the form $a \rightarrow \alpha$, where the symbol " \rightarrow " is not in $V_{N} \cup V_{T}, a$ is in $V_{N} \cup V_{T}$, and α is in $\left(V_{N} \cup V_{T}\right)^{*}$. Moreover, for every a in $V_{N} \cup V_{T}$ there exists a word α in $\left(V_{N} \cup V_{T}\right)^{*}$ such that $a \rightarrow \alpha$ is in P.

In the sequel we shall often write " $a \rightarrow_{P} \alpha$ " rather than " $a \rightarrow \alpha$ is in P." Also a production of the form $a \rightarrow \alpha$ is called a production for a in P.

Definition 2. An E0L system $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$ is called a 0 L system if, and only if, $V_{N}=\varnothing$. (In this case we write G as $\left\langle V_{T}, P, \omega\right\rangle$). 0L systems are investigated, for example, in Rozenberg and Doucet (1971).

Definition 3. Let $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$ be an E0L system.
(i) Let $x \in\left(V_{N} \cup V_{T}\right)^{+}$, say $x=b_{1} \cdots b_{t}$ for some b_{1}, \ldots, b_{t} in $V_{N} \cup V_{T}$, and let $y \in\left(V_{N} \cup V_{T}\right)^{*}$. We say that x directly derives $y($ in $G)$, denoted as $x \Rightarrow_{G} y$, if there exists a sequence π_{1}, \ldots, π_{t} of productions from P, such that, for every i in $\{1, \ldots, t\}, \pi_{i}=b_{i} \rightarrow \alpha_{i}$ and $y=\alpha_{1} \cdots \alpha_{t}$.
(ii) As usual, $\Rightarrow{ }_{G}^{+}$denotes the transitive closure of the relation \Rightarrow_{G} and $\stackrel{*}{\Rightarrow}_{G}$ denotes the reflexive and transitive closure of the relation \Rightarrow_{G}. If $x \stackrel{*}{\rightrightarrows}_{G} y$ then we say that x derives y in G.
(iii) A finite sequence $D=\left(x_{0}, x_{1}, \ldots, x_{r}\right)$ of words from $\left(V_{N} \cup V_{T}\right)^{*}$ such that, $r \geqslant 1$ and, for each i in $\{1, \ldots, r\}, x_{i-1} \Rightarrow_{G} x_{i}$, is called a derivation (of x_{r} from x_{0}) in G. If $x_{0}=\omega$, then D is called a derivation of x_{r} in G.
(iv) An infinite sequence $D=\left(x_{0}, x_{1}, \ldots\right)$ of words from $\left(V_{N} \cup V_{T}\right)^{+}$ such that, for each $i \geqslant 1, x_{i-1} \Rightarrow_{G} x_{i}$, is called an infinite derivation in G.
(v) If $D=\left(x_{0}, x_{1}, \ldots, x_{r}\right)$ is a derivation in G, then its control sequence
is any sequence $\tau=\left(T_{1}, \ldots, T_{r}\right)$ of subsets of P, such that, for each i in $\{1, \ldots, r\}, x_{i-1} \Rightarrow_{G} x_{i}$ "using" all and only productions from T_{i}.
(vi) For x in $\left(V_{N} \cup V_{T}\right)^{+}, y$ in $\left(V_{N} \cup V_{T}\right)^{*}$ and a positive integer r we write $x \Rightarrow_{\mathrm{G}}^{r} y$ if there exists a derivation $D=\left(x_{0}=x, x_{1}, \ldots, x_{r}=y\right)$ in G. We also write $x{ }_{G}^{0} x$, for every x in $\left(V_{N} \cup V_{T}\right)^{+}$.
(vii) $\max (G)$ is defined as $\max \left\{|\alpha|: a \Rightarrow_{P} \alpha\right.$ for some a in $V_{N} \cup V_{T}$ and α in $\left.\left(V_{N} \cup V_{T}\right)^{*}\right\}$.

Definition 4. Let $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$ be an E0L system. The language of G, denoted as $L(G)$, is defined by $L(G)=\left\{x \in V_{T}^{*}: \omega{ }^{*}{ }_{G} x\right\}$.

Definition 5. A language K is called an E0L language (0 L language) if, and only if, there exists an E0L system (0L system) G such that $L(G)=K$.

Remark 1. Given an EOL system $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$, a derivation $D=\left(x_{0}, \ldots, x_{r}\right)$ and its control sequence $\tau=\left(T_{1}, \ldots, T_{r}\right)$, the pair (D, τ), in general, does not tell us which productions are used to rewrite the particular occurrences of letters in the words x_{0}, \ldots, x_{r-1}. However (to avoid cumbersome notation and to keep the size of this paper decent), we shall often assume that the pair (D, τ) provides such information. This should not lead to confusion.

Remark 2. The properties we are interested in (in this paper) are trivial for finite languages, hence we consider only infinite languages. Thus in the sequel if we write "a language" (or "an E0L language") we mean an infinite one, unless explicitly stated otherwise. Also whenever we write "an E0L system" we mean one generating an infinite language.

Remark.3. Given an E0L system $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$ we shall sometimes consider P to be the "set of names for productions" rather than the set of productions itself. In this sense we can talk about the words over P, etc., and this should not lead to confusion.

We end this section with two examples of EOL systems.
Example 1. $G=\left\langle V_{N}, V_{T}, P, \omega\right\rangle$, where $V_{N}=\{S\}, V_{T}=\{a, b\}, P=$ $\left\{S \rightarrow a, S \rightarrow b, a \rightarrow a^{2}, b \rightarrow b^{3}\right\}$ and $\omega=S$, is an EOL system such that $L(G)=\left\{a^{2^{n}}: n \geqslant 0\right\} \cup\left\{b^{3^{n}}: n \geqslant 0\right\}$.

Example 2. $G=\langle\Sigma, P, \omega\rangle$, where $\Sigma=\{a, b\}, P=\left\{a \rightarrow(a b)^{2}, b \rightarrow \Lambda\right\}$ and $\omega=a b$, is a 0 L system such that $L(G)=\left\{(a b)^{2^{n}}: n \geqslant 0\right\}$.

3. Basic Notions and Their Properties

In this section we introduce basic notions describing the structure of 0 L languages we are interested in and we prove some properties of these notions.

Definition 6. Let L be a language over an alphabet Σ and let B be a nonempty subset of Σ. Let $I_{L . B}=\{n \in N:$ there exists a word w in L such that $\left.\#_{B}(w)=n\right\}$.
(i) B is numerically dispersed (in L) if, and only if, $I_{L, B}$ is infinite and for every positive integer k there exists a positive integer n_{k} such that, for every u_{1}, u_{2} in $I_{L, B}$, if $u_{1} \neq u_{2}, u_{1}>n_{k}$ and $u_{2}>n_{k}$ then $\operatorname{abs}\left(u_{1}-u_{2}\right)>k$.
(ii) B is clustered (in L) if, and only if, $I_{L, B}$ is infinite and there exist positive integers k_{1}, k_{2} such that $k_{1}>1, k_{2}>1$ and, for every word w in L, if $\#_{B}(w) \geqslant k_{1}$, then w contains at least two occurrences of symbols from B which are distant less than k_{2}.

Definition 7. Let L be a language over an alphabet Σ and let a be in Σ. The symbol a is said to be frequent (in L) if, and only if, for every positive integer n there exists a word w in L such that $\#_{a}(w)>n$; otherwise a is called nonfrequent (in L).

Definition 8. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ and let a be in Σ.
(i) We define a B-characteristic sequence of a (in G), denoted as $\operatorname{Seq}(G, B, a)$, as an infinite sequence Z_{1}, Z_{2}, \ldots of finite subsets of N such that, for each $i \geqslant 1$ and every nonnegative integer n, n is in Z_{i} if, and only if, $a \Rightarrow_{G}^{i} w$ for some w in Σ^{*} such that $\#_{B}(w)=n$.
(ii) $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$ is called unique if, and only if, for every $i \geqslant 1, \# Z_{i}=1$.
(iii) $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$ is called bounded if, and only if, there exists a constant C such that, for every $i \geqslant 1, n<C$ for every n in Z_{i}. In this case we also say that a is B-bounded (in G) and that C bounds $\operatorname{Seq}(G, B, a)$. We say that a is B-unbounded (in G) otherwise.
(iv) $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$ is called constant if, and only if, for each $i, j \geqslant 1, Z_{i}=Z_{j}$. In this case we also say that a is B-constant (in G).

Lemma 1. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0L system, let B be a nonempty subset of Σ and let a be a symbol in Σ. Let $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$ and let
$U(G, B, a)=\left\{i_{1}, i_{2}, \ldots\right\}$ be the set of positive integers such that, for every $j \geqslant 1, j$ is in $U(G, B, a)$ if, and only if, $Z_{j} \neq 0$. Then $U(G, B, a)$ is an ultimately periodic set.

Proof. Let $G, B, a, \operatorname{Seq}(G, B, a)$, and $U(G, B, a)$ be as in the statement of the lemma. Let $\mathscr{A}=\left\langle Q, V, \delta, q_{0}, F\right\rangle$ be a finite automaton such that $Q=\Sigma, V=P, q_{0}=a, F=B$, for every q, \bar{q} in Q and every v in V, $\bar{q} \in \delta(q, v)$ if, and only if, v is a production of the form $q \rightarrow \gamma_{1} \bar{q} \gamma_{2}$ for some γ_{1}, γ_{2} in Σ^{*}.

We leave to the reader the easy proof of the fact that, for every $j \geqslant 1$, $Z_{j} \neq\{0\}$ if, and only if, there exist a word y over V such that $|y|=j$ and $\delta\left(q_{0}, y\right) \cap F \neq \varnothing$. Hence, $U(G, B, a)=\{n \in N$: there exists a word y in $L(\mathscr{A})$ such that $|y|=n\}$.

But it is well known (see, e.g., Ginsburg, 1966, Theorems 2.1.2 and 2.1.3) that the set of lengths of a regular language is an ultimately periodic set and consequently Lemma 1 holds.

Definitron 9. Let $G=\langle\Sigma, P, \omega\rangle$ and let B be a nonempty subset of Σ. A B-uniform period of G, denoted as $m(G, B)$ is defined to be the smallest positive integer such that
(i) for every b in $\Sigma, m(G, B)>\operatorname{thres}(U(G, B, b))$, and
(ii) $m(G, B)$ is divisible by $\operatorname{per}(G, B, b)$, for every b in Σ, such that $U(G, B, b)$ is infinite.

Lemma 2. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a nonempty subset of Σ. If B is numerically dispersed in $L(G)$, then, for every symbol a which is frequent in $L(G), \operatorname{Seq}(G, B, a)$ is unique.

Proof. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a numerically dispersed (in $L(G)$) subset of Σ. Let a be a symbol from Σ which is frequent in $L(G)$.

Let us assume, to the contrary, that $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$ is not unique, meaning that, for some $i_{0} \geqslant 1, Z_{i_{0}}$ contains at least two nonnegative integers n_{1} and n_{2} (say $n_{2}>n_{1}$, so that $n_{2}>0$).

Now, let m be an arbitrary positive integer.
Let x be a word in $L(G)$ which containst occurrences of the letter a for some $t \geqslant m$ (recall that a is frequent in $L(G)$ and so such a word x exists).

Let $D=\left(x_{0}=x, x_{1}, \ldots, x_{i_{0}}\right)$ be a derivation of some word $x_{i_{0}}$ from the word x with a control sequence $\tau=T_{1}, \ldots, T_{i_{0}}$ which is such that each occurrence of a in x contributes n_{2} occurrences of symbols from B in $x_{i_{0}}$ (recall that $n_{2} \in Z_{i_{0}}$).

Let $\bar{D}=\left(x_{0}=x, \bar{x}_{1}, \ldots, \bar{x}_{i_{0}}\right)$ be a derivation of some word $\bar{x}_{i_{0}}$ from the word x with a control sequence $\bar{\tau}=\bar{T}_{1}, \ldots, \bar{T}_{i_{0}}$ which is such that exactly one occurrence of a in x contributes n_{1} occurrences of symbols from B in $\bar{x}_{i_{0}}$ (recall that $n_{1} \in Z_{i_{0}}$) and all other occurrences in x of the letter a as well as all occurrences in x of all other letters "behave" in exactly the same way as in the derivation D with the control sequence τ.

Thus \# $H_{B}\left(x_{i_{0}}\right)-\#_{B}\left(\bar{x}_{i_{0}}\right)=n_{2}-n_{1}$, where $\#_{B}\left(x_{i_{0}}\right) \geqslant t \cdot n_{2}$.
Consequently, there exists a positive integer k_{0} (put $k_{0}=n_{2}-n_{1}+1$) such that for every integer m there exist integers u_{1} and u_{2} larger than m (put $u_{1}=t n_{2}-\left(n_{2}-n_{1}\right), u_{2}=t \cdot n_{2}$ and notice that u_{2} and u_{1} are large enough if t is large enough) such that $u_{2}>u_{1}$ (note that $u_{2}-u_{1}=n_{2}-n_{1}$), u_{1} and u_{2} are in $I_{L(G), B}$ and $u_{2}-u_{1}<k_{0}$. Thus B is not numerically dispersed; a contradiction.

Hence $\operatorname{Seq}(G, B, a)$ must be unique and Lemma 2 holds.

Lemma 3. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a subset of Σ which is numerically dispersed in $L(G)$. Let a be a symbol from Σ such that a is frequent in $L(G)$ and a is B-unbounded in $L(G)$. Then, for every α in Σ^{*}, if $a \rightarrow_{P} \alpha$, then α must contain at least one occurrence of a B-unbounded letter.

Proof. Let G, B, and a satisfy the statement of the lemma. Let $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$.

Let $a \rightarrow_{P} \alpha$ and let us assume, to the contrary, that either $\alpha=A$ or $\alpha \neq \Lambda$ and each letter which occurs in α is B-bounded.

First, let us note that, if for every γ such that $a \rightarrow_{P} \gamma$ we would have that either $\gamma=\Lambda$ or $\gamma \neq \Lambda$ and every letter which occurs in γ is B-bounded, then a itself would be B-bounded; a contradiction.

Thus for some $\bar{\alpha}$ in Σ^{+}we have that $a \rightarrow_{p} \bar{\alpha}$ and $\bar{\alpha}$ contains an occurrence of a B-unbounded letter.

Let $\bar{G}=\langle\Sigma, \bar{P}, \omega\rangle$ be a 0 L system such that \bar{P} differs from P only in this that all productions for a that are different from $a \rightarrow \alpha$ are deleted. Then, obviously, $\operatorname{Seq}(\bar{G}, B, a)=\bar{Z}_{1}, \bar{Z}_{2}, \ldots$ is bounded (say for every $i \geqslant 1$, if $n \in \bar{Z}_{i}$ then $n<\bar{C}$ for some positive integer constant \bar{C} dependent on \bar{G} only).

As a is B-unbounded, for every positive integer C (in particular for \bar{C}), there exists an integer i_{C} such that $Z_{i_{C}}$ contains an integer larger than C. But, obviously, for each $i \geqslant 1, \bar{Z}_{i} \subseteq Z_{i}$, and consequently, for some $i_{0} \geqslant 1$ (set $i_{0}=i_{\bar{C}}$), $Z_{i_{0}}$ must contain at least two different integers (one smaller than \bar{C} and another equal to or larger than \bar{C}).

Consequently, $\operatorname{Seq}(G, B, a)$ is not unique which contradicts Lemma 2.
Thus, for every α in Σ^{*}, if $a \rightarrow_{p} \alpha$, then α must contain an occurrence of a B-unbounded letter. Hence Lemma 3 holds.

Definition 10. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and n a positive integer such that $n \geqslant 2$. Let $A(G, n)=\{x \in L(G)$: for some i in $\{0, \ldots, n-1\}$, $\left.\omega \Rightarrow{ }_{G}^{i} x\right\}$.
(i) The n-decomposition of G, denoted as $\operatorname{Dec}(G, n)$, is the set of all 0L systems of the form $\left\langle\Sigma, P^{(n)}, z\right\rangle$, where $z \in A(G, n)$ and $P^{(n)}=$ $\left\{a \rightarrow \alpha: a \Rightarrow{ }_{G}^{n} \alpha\right\}$. Each 0L system from $\operatorname{Dec}(G, n)$ is called a n-component of G.
(ii) A set $\left\{G_{1}, \ldots, G_{p}\right\}$ of 0 L systems is called a decomposition of G if, and only if, for some $n \geqslant 2,\left\{G_{1}, \ldots, G_{p}\right\}=\operatorname{Dec}(G, n)$.

We leave to the reader the obvious proof of the following result.
Lemma 4. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be its decomposition. Let n be a positive integer such that $n \geqslant 2$ and let, for i in $\{1, \ldots, p\}, \mathscr{G}^{(i)}=\left\{G_{1}^{(i)}, \ldots, G_{p_{i}}^{(i)}\right\}$ be the n-decomposition of G_{i}. Then $\bigcup_{i=1}^{p} \mathscr{G}^{(i)}$ is a decomposition of G.

The following lemma states a number of properties that follow directly from Definitions 6, 7, 8 and 10. As the proof of these properties is straightforward, we leave it to the reader. Some of these properties are so obvious and useful that they will be used in the sequel without directly quoting them.

Lemma 5. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and $\left\{G_{1}, \ldots, G_{p}\right\}$ be a decomposition of G.
(i) $L(G)=\bigcup_{i=1}^{p} L\left(G_{i}\right)$.
(ii) If B is a subset of Σ such that B is numerically dispersed in $L(G)$, then, for every i in $\{1, \ldots, p\}$, if $I_{L\left(G_{i}\right), B}$ is infinite, then B is numerically dispersed in $L\left(G_{i}\right)$, and for at least one j in $\{1, \ldots, p\}, B$ is numerically dispersed in $L\left(G_{j}\right)$.
(iii) If B is a subset of Σ such that, for every i in $\{1, \ldots, p\}, B$ is either clustered in $L\left(G_{i}\right)$ or $I_{L\left(G_{i}\right), B}$ is finite, then B is clustered in $L(G)$.
(iv) If $\left\{G_{1}, \ldots, G_{p}\right\}$ is a n-decomposition of G, B is a nonempty subset of Σ and a is in Σ, then, for each i in $\{1, \ldots, p\}, \operatorname{Seq}\left(G_{i}, B, a\right)=\bar{Z}_{1}, \bar{Z}_{2}, \ldots$ with $\bar{Z}_{j}=Z_{j \cdot n}$ for every $j \geqslant 1$ (where $\operatorname{Seq}(G, B, a)=Z_{1}, Z_{2}, \ldots$).
(v) If B is a nonempty subset of Σ and the letter a is B-bounded in G, then, for every i in $\{1, \ldots, p\}$, a is also B-bounded in G_{i}.
(vi) If the letter a is nonfrequent in $L(G)$, then, for each i in $\{1, \ldots, p\}$, a is also nonfrequent in $L\left(G_{i}\right)$.
(vii) If the letter a is frequent in $L\left(G_{i}\right)$ for some i in $\{1, \ldots, p\}$, then a is also frequent in $L(G)$.
(viii) If B is a nonempty subset of Σ and a is a symbol from Σ such that a is B-unique (B-constant) in G, then, for each i in $\{1, \ldots, p\}, a$ is B-unique (B-constant) in G_{i}.

Definition 11. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be a decomposition of G. Let B be a nonempty subset of Σ. \mathscr{G} is called a B-fitted decomposition of G if, and only if, for every i in $\{1, \ldots, p\}$ and for every a in Σ, if a is frequent in $L\left(G_{i}\right)$, then
(i) If a is B-bounded in G_{i}, then a is B-constant in G_{i}, and
(ii) If a is B-unbounded in G_{i}, then, for every $j \geqslant 1, Z_{j}=\left\{z_{j}\right\}$ for some $ঞ_{j} \geqslant 2$ (where $\left.\operatorname{Seq}\left(G_{i}, B, a\right)=Z_{1}, Z_{2}, \ldots\right)$.

The reader may easily notice that, Lemma 2 implies that if G is a 0 L system, B is numerically dispersed in $L(G), \mathscr{G}$ is a B-fitted decomposition of G and H is in \mathscr{G}, then if a is a symbol which is both, frequent in $L(H)$ and B-bounded in H, then $\operatorname{Seq}(H, B, a)=\{z\},\{z\}, \ldots$ where z is a nonnegative integer.

4. The Existence of B-Fitted Decompositions

In this section we prove that, for every 0 L system G and for every B which is numerically dispersed in $L(G)$, there exists a B-fitted decomposition of G.

Lemma 6. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a nonempty subset of Σ such that B is numerically dispersed in $L(G)$. Let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be a $m(G, B)$-decomposition of G. Let i be in $\{1, \ldots, p\}$ and let a be in Σ. If a is frequent in $L\left(G_{i}\right)$ and $\operatorname{Seq}\left(G_{i}, B, a\right)=Z_{1}, Z_{2}, \ldots$, then either $Z_{j}=\{0\}$ for every $j \geqslant 1$, or $Z_{j}=\left\{z_{i}\right\}$ where $z_{j} \neq 0$ for every $j \geqslant 1$.

Proof. Let G, B, and $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be as in the statement of the lemma. Let i be in $\{1, \ldots, p\}$ and let a be a symbol from Σ such that a is frequent in $L\left(G_{i}\right)$.

By Lemma 2 and Lemma $5(\mathrm{vii}), \operatorname{Seq}(G, B, a)$ is unique and hence, by Lemma 5(viii), Seq($\left.G_{i}, B, a\right)$ is unique.

By Lemma 1, $U(G, B, a)$ is ultimately periodic. Hence, by Lemma 5 (iv) and by the definition of $m(G, B)$, for every i in $\{1, \ldots, g\}$, if $\operatorname{Seq}\left(G_{i}, B, a\right)=$ Z_{1}, Z_{2}, \ldots, then, for every $j \geqslant 1, Z_{j} \neq\{0\}$ if, and only if, $Z_{1} \neq\{0\}$.

Thus Lemma 6 holds.

Lemma 7. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a nonempty subset of Σ such that B is numerically dispersed in G. Let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be the $m(G, B)$-decomposition of G. Let i be in $\{1, \ldots, p\}$ and let a be in Σ. If a is frequent in $L\left(G_{i}\right)$ and a is B-bounded in G_{i}, then $\operatorname{Seq}\left(G_{i}, B, a\right)$ is an ultimately periodic sequence.

Proof. Let G, B and $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ satisfy the statement of the lemma. Let i be in $\{1, \ldots, p\}$ and let a be a symbol from Σ such that a is frequent in $L(G)$ and a is B-bounded in G_{i}. Let $\operatorname{Seq}\left(G_{i}, B, a\right)=Z_{1}, Z_{2}, \ldots$.

By Lemma 6, either $\operatorname{Seq}\left(G_{i}, B, a\right)=\{0\},\{0\}, \ldots$ or $\operatorname{Seq}\left(G_{i}, B, a\right)$ consists of singletons different from $\{0\}$ only.

If $\operatorname{Seq}\left(G_{i}, B, a\right)=\{0\},\{0\},\{0\}, \ldots$ then obviously Lemma 7 holds.
Thus let us assume that $\operatorname{Seq}\left(G_{i}, B, a\right)$ consists of singletons different from $\{0\}$ only.

Let $D=\left(a=x_{0}, x_{1}, x_{2}, \ldots\right)$ be an infinite derivation in G_{i} such that, for each $i \geqslant 1, x_{i}$ contains at least one occurrence of a letter frequent in $L\left(G_{i}\right)$ such that its B-characteristic sequence consists of singletons different from $\{0\}$ only. (Obviously such a derivation exists.) Let, for $j \geqslant 1, Y_{j}$ be a subset of all such letters from $\operatorname{Min}\left(x_{j}\right)$ that their B-characteristic sequences consist of singletons different from $\{0\}$ only.

First, we shall prove that there exists a constant F such that, for every $j \geqslant 1, \#_{Y_{j}}\left(x_{j}\right)<F$. Let us put F to be a positive integer constant such that, for every $j \geqslant 1$ and every integer n, if n is in Z_{j} then $n<F$ (recall that a is B-bounded). Let us assume to the contrary, that, for some $j_{0} \geqslant 1$, $\#_{Y_{j_{0}}}\left(x_{j_{0}}\right) \geqslant F$. Thus $x_{j_{0}}$ has more than F occurrences of letters which are frequent in $L\left(G_{i}\right)$ and B-characteristic sequences of which consist of singletons different from $\{0\}$ only. (Recall Lemma 6 and the choice of Y_{j} for each $j \geqslant 1$.) Consequently, each such letter contributes at least one occurrence of an element from B to $x_{j_{0}+1}$ (and, in fact, to each next word in D), and so $\#_{B}\left(x_{j_{0}+1}\right)>F$ which contradicts the fact that $\operatorname{Seq}\left(G_{i}, B, a\right)$ is bounded by F.

Thus our claim holds.
Now, for $j \geqslant 1$, let \bar{x}_{j} denote the word resulting by erasing from x_{j} of all occurrences of all letters in $\operatorname{Min}\left(x_{j}\right)-Y_{j}$. Note that among all words of the form \bar{x}_{j}, for $j \geqslant 1$, there is only a finite number of different words (because none of these words is longer than F). Hence for some j_{1}, j_{2} such
that $j_{2}>j_{1}$ we have $\bar{x}_{j_{2}}=\bar{x}_{j_{2}}$. But note that, for each $j \geqslant 2, \bar{x}_{j}$ "is contained" in the contribution to x_{j} from x_{j-1}. This is so, because (obviously) an occurrence in x_{j} of a letter the B-characteristic sequence of which consists only of singletons different from $\{0\}$ may be contributed from an occurrence in x_{j-1} of a letter the B-characteristic sequence of which consists of singletons different from $\{0\}$ only.

Thus for some j_{1}, j_{2} such that $j_{2}>j_{1}$ we have $\bar{x}_{j_{2}}=\bar{x}_{j_{1}}$ and, for every g in $\left\{j_{1}, j_{1}+1, \ldots, j_{2}-1\right\}$, we have $\bar{x}_{g}=\bar{x}_{g+s\left(j_{2}-j_{1}\right)}$ for every $s \geqslant 0$.

But the "contributions to $\operatorname{Seq}\left(G_{i}, B, a\right)$ " from the words in the derivation D, depend (obviously) on the words \bar{x}_{j} (for $j \geqslant 1$) only, and by the above, these contributions form an ultimately periodic sequence of numbers different from 0 . However, (recall Lemma 6) the sequence $\operatorname{Seq}\left(G_{i}, B, a\right)$ consists of singletons only and so it is itself an ultimately periodic sequence.

Thus the lemma is proved.
Lemma 8. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ such that B is numerically dispersed in $L(G)$ and let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be a $m(G, B)$-decomposition of G. Let $i \in\{1, \ldots, p\}$ and let a be a symbol from Σ such that a is frequent in $L\left(G_{i}\right)$ and a is B-unbounded in $G_{i} . \operatorname{Let~} \operatorname{Seq}\left(G_{i}, B, a\right)=$ Z_{1}, Z_{2}, \ldots. Then for every positive integer C there exists a positive integer i_{C} such that, for every $j \geqslant i_{C}, Z_{j}=\left\{z_{j}\right\}$ where $z_{j}>C$.

Proof. Let $G, B, \mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}, G_{i}, a$ and $\operatorname{Seq}\left(G_{i}, B, a\right)$ satisfy the statement of the lemma.

As a is frequent in $L\left(G_{i}\right)$ and B-unbounded in $G_{i}, I_{L\left(G_{i}\right), B}$ is infinite. Then by Lemmata 2,5 (ii), 5 (vii), and 5 (viii), $\operatorname{Seq}\left(G_{i}, B, a\right)$ is unique, (say, for each $l \geqslant 1, Z_{l}=\left\{z_{l}\right\}$).

Let C be an arbitrary positive integer and let i_{C} be the smallest positive integer g such that $z_{g}>C \cdot \max (G)$.

Let $D=\left(a, x_{1}, \ldots, x_{i_{C}}\right)$ be a derivation in G_{i} of a word $x_{i_{C}}$ such that $\#_{B}\left(x_{i_{C}}\right)=z_{i_{C}}$. Let τ be a control sequence of D. Now, each occurrence of a letter from B in $x_{i_{C}}$ must be derived (in (D, τ)) from some occurrence in $x_{i_{C}-1}$ of a letter whose B-characteristic sequence in G_{i} consists of singletons different from $\{0\}$ only. Consequently (recall the choice of i_{C}) $x_{i_{C}-1}$ must have more than C occurrences of letters whose B-characteristic sequences in G_{i} consist of singletons different from $\{0\}$ only. Hence, one can "prolongate" the derivation D to an infinite derivation $\bar{D}=\left(a, x_{1}, \ldots, x_{i_{C}}, x_{i_{C}+1}, \ldots\right)$ such that, for each $g \geqslant i_{C}, \#_{B}\left(x_{g}\right)>C$.

But $\operatorname{Seq}\left(G_{i}, B, a\right)$ consists of singletons only, and so Lemma 8 holds.
The property stated in Lemma 8 carries over through decompositions
of OL systems in the following way. (We leave to the reader the obvious proof of the next result.)

Lemma 9. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ such that B is numerically dispersed in $L(G)$ and let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be a $m(G, B)$-decomposition of G. Let $i \in\{1, \ldots, p\}$, let a be a symbol from Σ such that a is frequent in $L\left(G_{i}\right)$ and a is B-unbounded in G_{i}. Let $\mathscr{G}^{(i)}=\left\{G_{1}^{(i)}, \ldots, G_{p_{i}}^{(i)}\right\}$ be a decomposition of G_{i} and let $j \in\left\{1, \ldots, p_{i}\right\}$. Let $\operatorname{Seq}\left(G_{j}^{(i)}, B, a\right)=Z_{1}, Z_{2}, \ldots$. Then for every positive integer C there exists a positive integer i_{C} such that, for every $j \geqslant i_{C}, Z_{j}=\left\{z_{j}\right\}$, where $z_{j}>C$.

Definition 12. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ such that B is numerically dispersed in G and let $\mathscr{G}=$ $\left\{G_{1}, \ldots, G_{p}\right\}$ be the $m(G, B)$-decomposition of G. We define
(i) $m_{1}(G, B)$ to be the smallest positive integer such that, for every i in $\{1, \ldots, p\}$ and for every a in Σ such that a is frequent in $L\left(G_{i}\right)$ and B-bounded in $G_{i}, \quad m_{1}(G, B)$ is divisible by $\operatorname{per}\left(\operatorname{Seq}\left(G_{i}, B, a\right)\right)$ and $m_{1}(G, B)>$ thres $\left(\operatorname{Seq}\left(G_{i}, B, a\right)\right)$.
(ii) $m_{2}(G, B)$ to be the smallest positive integer such that, for every i in $\{1, \ldots, p\}$ and for every a in Σ such that a is frequent in $L\left(G_{i}\right)$ and a is B-unbounded in $G_{i}, m_{2}(G, B)>i_{2}$ where i_{2} is defined as in the statement of Lemma 8.
(iii) $n(G, B)=m_{1}(G, B) \cdot m_{2}(G, B)$.

Lemma 10. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ such that B is numerically dispersed in G and let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be the $(m(G, B) \cdot n(G, B))$-decomposition of G. Let $i \in\{1, \ldots, p\}$ and let a be a letter in Σ such that a is frequent in $L\left(G_{i}\right)$ and a is B-bounded in G_{i}. Then a is B-constant in $L\left(G_{i}\right)$.

Proof. This result follows directly from Lemmata 4, 5(ii), 5(vii), 5(viii), 7 , and the definition of $n(G, B)$.

Lemma 11. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a nonempty subset of Σ such that B is numerically dispersed in G. Then there exists a B-fitted decomposition of G.

Proof. Let G and B satisfy the statement of the lemma. From Lemmata 5, $7,8,9,10$, and the definition of $n(G, B)$ it follows that the $(m(G, B) \cdot n(G, B))$ decomposition of G is a B-fitted decomposition of G.

Thus Lemma 11 holds.

5. The Main Result and Its Applications

In this section we prove the main result of this paper which states that if L is an EOL language and B is numerically dispersed in L, then B is clustered in L. We also show some applications of this result.

Definition 13. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system and let B be a nonempty subset of Σ. A word x in $L(G)$ is called B-dispersed in G if, and only if, $\#_{B}(x) \geqslant 2$ and every two occurrences in x of symbols from B are of distance larger than $\max (G)$.

Lemma 12. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ such that B is numerically dispersed in G and let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be a B-fitted decomposition of G. Let $i \in\{1, \ldots, p\}$ and let x be a word in $L(G)$ such that x is B-dispersed in G_{i}. Then, if $D=\left(x_{0}=\omega, x_{1}, \ldots, x_{r}=x\right)$ is a derivation of x in G_{i}, then, for every j in $\{0, \ldots, r-1\}, x_{j}$ does not contain an occurrence of a letter which is frequent in $L\left(G_{i}\right)$ and B-unbounded in G_{i}.

Proof. Let G, B, G_{i} and x satisfy the statement of the lemma. Let us assume, to the contrary, that $D=\left(x_{0}=\omega, x_{1}, \ldots, x_{r}=x\right)$ is a derivation of x in G_{i}, such that for some f in $\{0, \ldots, r-1\}, x_{f}$ contains an occurrence of a letter, say c, which is frequent in $L\left(G_{i}\right)$ and B-unbounded in G_{i}. But then (recall a definition of a B-fitted decomposition), for every $j \geqslant 1$, $Z_{j}=\left\{z_{j}\right\}$ for some $z_{j} \geqslant 2$, where $\operatorname{Seq}\left(G_{i}, B, c\right)=Z_{1}, Z_{2}, \ldots$.

Thus by Lemma 3, x_{r-1} contains an occurrence of a letter which is frequent in $L\left(G_{i}\right)$ and B-unbounded in G_{i}, and this occurrence will contribute at least two occurrences in x_{r} of letters from B. These two occurrences, obviously, must be of distance smaller than $\max (G)$ which contradicts the definition of x.

Thus Lemma 12 holds.
Lemma 13. Let $G=\langle\Sigma, P, \omega\rangle$ be a 0 L system, let B be a nonempty subset of Σ and let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$, be a B-fitted decomposition of G. Let $i \in\{1, \ldots, p\}$. If for every positive integer n there exists a word y_{n} in $L\left(G_{i}\right)$ such that $\#_{B}\left(y_{n}\right) \geqslant n$ and y_{n} is B-dispersed in G_{i}, then B is not numerically dispersed in $L\left(G_{i}\right)$.

Proof. Let G, B and $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ satisfy the statement of the lemma. Let $i \in\{1, \ldots, p\}$ and let us assume that for every positive integer n there exists a word y_{n} in $L\left(G_{i}\right)$ such that $\#_{B}\left(y_{n}\right) \geqslant n$ and y_{n} is B-dispersed in G_{i}.

For each a in Σ such that a is nonfrequent in G_{i}, let bound $\left(G_{i}, a\right)$ be the smallest positive integer larger than the maximal number of occurrences of a in any word in $L\left(C_{i}\right)$, and let $t(a)=\max \left\{z: z \in Z_{2}^{(a)}\right\}$ where $\operatorname{Seq}\left(C_{i}, B, a\right)=$ $Z_{1}^{(a)}, Z_{2}^{(a)}, \ldots$ Let $F=\sum_{a \in N\left(G_{i}\right)} t(a) \cdot$ bound $\left(G_{i}, a\right)$, where $N\left(G_{i}\right)$ denotes the set of all letters from Σ which are nonfrequent in G_{i}.

Let n be larger than $(\max (G))^{2} \cdot\left(\#_{B}(\omega)\right)$ and let x be a word in $L\left(G_{i}\right)$ such that $\#_{B}(x) \geqslant n$ and x is B-dispersed in G_{i}.

Let $D=\left(x_{0}=\omega, x_{1}, \ldots, x_{r}=x\right)$ be a derivation of x in G_{i} (note that by the choice of $n, r \geqslant 3$). Let $\beta_{0}=\#_{B}\left(x_{0}\right), \beta_{1}=\#_{B}\left(x_{1}\right), \ldots, \beta_{r}=\#_{B}\left(x_{r}\right)$. (We assume also that we are given a control sequence τ of D). Let s be an integer in $\{2, \ldots, r\}$ such that $\beta_{r} \leqslant \beta_{r-1} \leqslant \cdots \leqslant \beta_{s}>\beta_{s-1}$ (such an s exists because of our choice of n).

By Lemma 12, x_{s-2} does not contain occurrences of letters which are frequent in $L\left(G_{i}\right)$ and B-unbounded in G_{i}. Consequently

$$
\beta_{s-1}=U_{1}^{(s-1)}+U_{2}^{(s-1)} \quad \text { and } \quad \beta_{s}=U_{1}^{(s)}+U_{2}^{(s)}
$$

where
$U_{1}^{(s-1)}$ is the number of such occurrences in x_{s-1} of letters from B which are contributed from occurrences in x_{s-2} of letters which are nonfrequent in $L\left(G_{i}\right)$,
$U_{1}^{(s)}$ is the number of such occurrences in x_{s} of letters from B which are contributed from occurrences in x_{s-2} of letters which are nonfrequent in $L\left(G_{i}\right)$,
$U_{2}^{(s-1)}$ is the number of such occurrences in x_{s-1} of letters from B which are contributed from occurrences in x_{s-2} of letters which are frequent in $L\left(G_{i}\right)$ and B-bounded in G_{i}, and
$U_{2}^{(s)}$ is the number of such occurrences in x_{s} of letters from B which are contributed from occurrences in x_{s-2} of such letters which are frequent in $L\left(G_{i}\right)$ and B-bounded in G_{i}.

Because \mathscr{G} is B-fitted, $U_{2}^{(s-1)}=U_{2}^{(s)}$, and by the definition of $F, U_{1}^{(s-1)}<F$. Hence $\beta_{s}-\beta_{s-1}=U_{1}^{(s)}-U_{1}^{(s-1)}<F$.

Thus we have proved (recall that $\beta_{s} \geqslant \beta_{r}$) that for n "large enough" if x is a word in $L\left(G_{i}\right)$ such that $\#_{B}(x) \geqslant n$ and x is B-dispersed in G_{i}, then there exists a word \bar{x} in $L\left(G_{i}\right)$ (set $\bar{x}=x_{s-1}$) such that $\#_{B}(x)-\#_{B}(\bar{x})<F$ where F is a constant dependent on G_{i} only.

Consequently B is not numerically dispersed in G_{i} and Lemma 13 holds.

Lemma 14. Let K be a 6L language over an alphabet Σ and let B be a nonempty subset of Σ. If B is numerically dispersed in K, then B is clustered in K.

Proof. Let K and B satisfy the statement of the lemma. Let $K=L(G)$ where $G=\langle\Sigma, P, \omega\rangle$ is a 0 L system. Let $\mathscr{G}=\left\{G_{1}, \ldots, G_{p}\right\}$ be a B-fitted decomposition of G (its existence is guaranteed by Lemma 11). By Lemma 5(ii), for each i in $\{1, \ldots, p\}$, either B is numerically dispersed in $L\left(G_{i}\right)$ or $I_{L\left(G_{i}\right), B}$ is finite, and for every j in $\{1, \ldots, p\}$, if $I_{L(G), B}$ is infinite, then B is numerically dispersed in $L\left(G_{j}\right)$.

Let s be in $\{1, \ldots, p\}$ and let $I_{L\left(G_{s}\right), B}$ be infinite. So B is numerically dispersed in $L\left(G_{s}\right)$. If we assume that B is not clustered in G_{s}, then for every positive integer larger than 1 there exists a word y_{n} in $L\left(G_{i}\right)$ such that $\#_{B}\left(y_{n}\right) \geqslant n$ and y_{n} is B-dispersed in G_{i}. But then, by Lemma $13, B$ is not numerically dispersed in $L\left(G_{s}\right)$; a contradiction.

Thus, for every i in $\{1, \ldots, p\}$, either $I_{L\left(G_{i}\right), B}$ is finite or B is clustered in $L\left(G_{i}\right)$.

But then, by Lemma 5(iii), B must also be clustered in $L(G)$ and so if B is numerically dispersed in K then B is clustered in G, which proves the lemma.

The following result, which was proved in Ehrenfeucht and Rozenberg (to appear) turns out to be a very useful one for this paper.

Lemma 15. For every EOL language L there exist a 0 L language K and a coding ψ such that $\psi(K)=L$.

We leave to the reader the easy proof of our next result.
Lemma 16. Let K and L be languages (over alphabets Σ and V, respectively) and let ψ be a coding such that $\psi(K)=L$. Then
(i) If B is a subset of V such that B is numerically dispersed in L, then $\psi^{-1}(B)$ is numerically dispersed in K, and
(ii) If U is a subset of Σ such that U is clustered in K, then $\psi(U)$ is clustered in L.

Theorem. Let K be an E0L language over an alphabet Σ and let B be a nonempty subset of Σ. If B is numerically dispersed in K, then B is clustered in K.

Proof. This result follows directly from Lemmata 14-16. It should be clear to the reader that the Theorem may be used to prove that a considerable number of languages are not E0L languages. This, by itself, fills in a gap in the developmental systems theory (for a discussion, see Herman, 1974, or Herman and Rozenberg, to appear).

We shall present now two examples of such application.

Example 3 (See Herman, 1974). The language $L=\left\{x \in\{a, b\}^{*}: \not \#_{a}(x)=\right.$ 2^{n} for some $\left.n \geqslant 0\right\}$ is not an E0L language. This is so because $\{a\}$ is numerically dispersed in L, but, at the same time, $\{a\}$ is not clustered in L.

Example 4. Let ψ be a function from N to N such that, for every n in $N, \psi(n) \geqslant n$. Let $L_{\psi}=\left\{y_{0} a y_{1} a \cdots y_{r-1} a y_{r}: r=2^{n}\right.$ for some $n \geqslant 0$ and, for each i in $\{0, \ldots, r\}, y_{i} \in\{b, c\}^{*}$ and $\left.\left|y_{i}\right|=\psi(r)\right\}$. Then L_{ψ} is not an EOL language.

Finally, let us discuss the "structural" character of the theorem. The theorem states the structural rather than numerical characterization of the subclass of EOL languages. This statement is not precise but it may be illustrated by the following. Whereas it was proved in Example 3 that the language $L=\left\{x \in\{a, b\}^{*}: \#_{a}(x)=2^{n}\right.$ for some $\left.n \geqslant 0\right\}$ is not an E0L language, the language $\bar{L}=\left\{a^{2^{n}} b^{m}: n, m \geqslant 0\right\}$ is generated by the EOL grammar $\left\langle V_{N}, V_{T}, P, \omega\right\rangle$ such that $V_{N}=\{S\}, V_{T}=\{a, b\}, P=\{S \rightarrow a$, $\left.S \rightarrow A, S \rightarrow S b, a \rightarrow a^{2}, b \rightarrow b\right\}, \omega=S$. But \bar{L} results from L by an appropriate permutation of occurrences of letters in the words of L. Consequently, all "numerical characteristics" (such as the set of lengths, the number of occurrences of particular symbols, etc.) are the same for both languages and one of them is an EOL language, while the other is not an EOL language.

Received: October 12, 1973; Revised: April 12, 1974

References

Ehrenfeucht, A. and Rozenberg, G. (to appear), The equality of E0L languages and codings of OL languages, Internat. J. Comput. Math.
Ginsburg, S. (1966), "The Mathematical Theory of Context-free Languages," McGraw-Hill, New York.
Herman, G. (1974), Closure properties of some families of languages associated with biological systems, Inform. Contr. 24, 101-121.
Herman, G. and Rozenberg, G. (to appear), "Developmental Systems and Languages," North-Holland Publ. Company, Amsterdam.
Lindenmayer, A. (1968), Mathematical models for cellular interactions in development, J. Theoret. Biol. 18, 300-315.
Lindenmayer, A. and Rozenberg, G. (1972), Developmental systems and languages, Proc. of the 4th ACM Symp. on Theory of Comp.
Rozenberg, G. and Doucet, P. (1971), On OL languages, Inform. Contr. 19, 302-318.

