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An algorithm is presented for constructing from the adjacency matrix 
of a digraph the matrix of its simple n-sequences. In this matrix, the i, j entry, 
i ~ j ,  gives the number of paths of length n from a point v~ to a point vj; the 
diagonal entry i, i gives the number of cycles of length n containing v~. The 
method is then generalized to networks--that is, digraphs in which some value 
is assigned to each line. With this generalized algorithm it is possible, for a 
variety of value systems, to calculate the values of the paths and cycles of 
length n in a network and to construct its value matrix of simple n-sequences. 
The procedures for obtaining the two algorithms make use of properties of a 
line digraph--that is, a derived digraph whose points and lines represent the 
lines and adjacency of lines of the given digraph. 

In  research on such topics as cognition, learning, verbal behavior, 

communication, sociometry, and social interaction, empirical structures 

are often represented by digraphs (directed graphs) in which each point 

corresponds to an empirical enti ty and each directed line corresponds to 

an empirical relationship. A problem frequently encountered in working 

with digraphs is to find the number of ways one can go from one point to 

another, using a given number of lines, without passing through any point 

more than once. Thus, for example, in the context of communication research, 

one may want to know how many ways a message can go from one person 

to another through a network in exactly n steps while satisfying the require- 

ment tha t  no person hear the message more than once. Stated in the 

terminology of digraph theory, the problem is to find the number of paths 

of length n from one point to another. In  solving this problem, it is necessary 

to deal also with (directed) cycles. We say that  a point lies on a cycle of 

length n if it is possible to leave a point and then return to it in exactly n 

steps without passing through any other point more than once. 

I t  is well known that  if a digraph D contains no cycles, the number of 

paths of length n from a point v~ to a point v, is given by the i, j entry  of A ~, 

where A is the adjacency matrix of D. But  if D has any cycles, the number 

of paths of length n cannot be ascertained directly from Am. There have 

been several at tempts to overcome this limitation. Luce and Perry [4] showed 
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how to find the paths of length 3 in any digraph. Ross and Harary [6] extended 

t]he solution to lengths 4, 5, and 6 and presented an algorithm by which 

any formula for longer paths could eventually be obtained. However, the 

formula for length 6 is quite formidable and there seems to be little likelihood 

that a general solution is practicable by their method. Parthasarathy [5] 

has offered a solution in principle but its usefulness is limited by the great 

amount of calculation required. 

In this paper we again raise the problem and present a method for 

finding both the number of paths and cycles of any given length through 

a series of reasonably simple matrix operations. The crux of the solution 

lies in exploiting the properties of line digraphs as developed by IIarary 

and Norman [i]. We begin with a discussion of line digraphs and their 

relevance to the problem, then present a matrix method which capitalizes 

o11 the properties of line digraphs, and conclude by generalizing the method 

to networks in which each line has an assigned value. (For a systematic 

treatment of digraph theory, see Harary, Norman, and Cartwright [2].) 

Digraphs and Line Digraphs 

A directed graph (or digraph) is a non-empty set V of points and 

a prescribed subset of the set of all ordered pairs of the members of V. Each 

of these ordered pairs (v~ , vi) is called a line, which we denote by v~v; or 

by x ,  . The first member of the pair is called the first point of the line and 

the second member is called the second point. For any digraph we require 

tha t  there are no lines whose first and second points are the same and every 

pair of points v~ and vl has at  most one line v~v~ . 

A (point-line) sequence in a digraph is an alternating sequence of points 

and lines which begins and ends with a point and has the property tha t  

each line is preceded by its first point and followed by its second point. 

I f  L is a sequence v~, x~;, v ; ,  xik, vk, • • • , vm, xm., v . ,  we may denote L 

simply by indicating the order of occurrence of its points: L -- v~, v;,  v~, • • • , 

v~ , v. = L ,~  . . . . . .  A sequence is a path if all of its points are distinct. A 

cycle consists of a path from a point u to a point v together with the line vu. 

We say that  a sequence is simple if it is either a path or a cycle; all other 

sequences are redundant. The length of a sequence is the number of occurrences 

of lines in it. An n-sequence is a sequence of length n. We take a point to 

be a 0-path and a line to be a 1-path. 

The line digraph £(1)) of a digraph D is a digraph whose points correspond 

to the lines of D and whose lines are given by the rule: If  x ,  and x~. are 

lines of D, then a line is drawn in £(1)) from (the point corresponding to) 

x ,  to x~. if in D the second point of x~,. is the same as the first point of xm. 

(that is, v; = v~). Since £(D) is itself a digraph, we may  also form its line 

digraph 2(£(D)). We let 2.(2(i))) = 22(D), and in general 2(£"-1(D)) = 

£'(D). 



DORWIN CARTWRIGHT AN'D TERRY C. GLEASON 181 

Let L be a k-sequence of D. From the definition of £(D) we see that  L 

yields a (]¢ -- 1)-sequence in .~(D), a (k -- 2)-sequence in £2(D), and in 

general, a (k -- n)-sequence in ~'(D), for n _~ k. In particular, each k-sequence 

of D yields a line in ~k-~(D) and a point in 2k(D). These observations are 

illustrated by the digraphs shown in Fig. 1. The 2-path L~43 of D yields 

in 2(D) the line from xs4 to x43 and in 22(D) the point y543 • The 3-cycle 

L15~ of D yields in 2(D) the 2-path--x~,  xs2 , x ~ a n d  in 2~(D) the line 

from y~52 to Y~21 . And the redundant 3-sequence L . ~  of D yields in 2(D) 

the 2-path~x~ , x~ , x~:--and in 22(D) the line from y ~  to Y~2 • 

"Z. ( O ) : =  ~- = 
X43 X54 

D: 

vl 

X21 X21 

O x=5 "-x52 ^23 ^43 ^54 x l 5  " k52  

X51 *X51 

X23 

Y521 

2 ~ 121 
~.(o)~ 'r t2(o)-',~ -- - - 

523 s . 3  

Y515 
Fzouzm 1 

Y215 YI52 ¥523 

Since there is a one-to-one correspondence between k-sequences of D 

~nd lines in 2k-l(D), it is possible to ascertain the number of k-sequences 

from ~k-~(D). I t  is important to note that  if D has no cycles, then every 

k-sequence of D is a k-path. In this case, the k-paths of D correspond uniquely 

to the lines of 2k-l(D). But if D has any cycles of length less than k, some 
of the lines in £k-l(D) wilt correspond to redundant sequences. Since we 

are here interested only in simple sequences, we want a method for obtaining 

a modified digraph, analogous to 2k-~(D), in which each line corresponds 
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to a simple k-sequence of D, and we want to be able to distinguish between 

paths and cycles. We now describe such a method, leaving until later a 

detailed proof of its general applicability. 

I t  is evident that  every 2-sequence of a digraph is either a 2-path or a 

2-cycle. Let Z be a 2-cycle of D, as for example, the one in Figure 1 containing 

vj and v~ . Now there is a 2-sequence beginning and ending at  each of these 

points, each of which is u 2-cycle said to be rooted at the indicated point. 

The one, L51~ , is rooted at va and yields in £(D) the line from x~l to x15 • 

The other, L,5, , is rooted at  vl and yields the line from xl~ to xs, • Note 

tha t  these two lines form a 2-cycle in £(D). On the other hand, a 2-path in 

D yields one line in £(D) that  does not lie on a 2-cycle. We see, then, tha t  

each line in £(D) corresponds to a simple 2-sequence of D; it represents 

a 2-cycle of D if it lies on a 2-cycle, and it represents a 2-path otherwise. 

We want next to construct from £(D) a modified digraph, analogous 

to £~(D), whose lines correspond only to simple 3-sequences of D. Since 

a 3-sequence is simple if and only if it does not contain a 2-cycle, we may  

remove from ~3(D) all lines representing 2-cycles of D, namely, those lying 

oil a 2-cycle (without, however, removing the first and second points of 

these lines). We denote the resulting digraph by 22(D). Clearly, every line 

in 22(D) uniquely corresponds to a 2-path. Let us now form the line digraph 

of 22(D) and denote it by ~3J:)(D). Each line in ~32(2)(D) corresponds to two 

lines in ~32(D) that  have a point in common, which occurs if and only if the 

lines in 22(D) represent two 2-paths of D having a line in common. Two 

such paths, taken together, form a 3-path if and only if the first point of 

one is different from the last point of the other. Otherwise, they form a 

3-cycle. Thus, every line in 22 (2) (D) represents a simple 3-sequence of D. 

We saw above tha t  rooted 2-cycles of D correspond to lines tha t  he 

on_ a 2-cycle in 2(D). We now show that., in a similar way, each rooted 3-cycle 

of D yields a line in £<2~ (D) tha t  lies on a 3-cycle. Let  Z be a 3-cycle of D 

containing the points v~ , v~ , and v, . Clearly, there are three 2-paths of D 

of the form: L , , ,  Ljk~ , and L , ,  . Now, L , ,  and Lik~ , taken together, form 

a 3-cycle rooted at  v~. They have the line x+, in common and yield in £(2) (D) 

a line from y,k  to y;k~ . Similarly, Lik~ and L,+; form a 3-cycle rooted at  v; 

and yield a line from Yi,+ to y , ,  . Finally, Lk+; and L~;k form a 3-cycle rooted 

at  vk and yield a line from Yk+; to y~;, . I t  is clear, then, tha t  each 3-cycle 

of D yields three lines in £~(~)(D) which form a 3-cycle and each line of this 

3-cycle represents a rooted 3-cycle of D. Thus, the lines in £~(~)(/9) provide 

the desired information concerning the simple 3-sequences of D; each line 

lying on a 3-cycle represents a rooted 3-cycle of D and every other line 

corresponds to a 3-path. 
These observations are illustrated in Fig. 1. Clearly, there is a one-to-one 

correspondence between the 2-paths of D and the lines in 2:(D). There is, 

furthermore, a one-to-one correspondence between the simple 3-sequences 
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of D and the lines in 22 (2~ (D). Finally, we note that  in £2 (2~ (D) each line not 

lying on a 3-cycle corresponds to a 3-path of D whereas each line lying on 

a 3-cycle represents a rooted 3-cycle. 

The procedure just described can easily be generalized. We take as 

the inductive hypothesis tha t  there is a one-to-one correspondence between 

the simple n-sequences of D and the lines of ~n-le<~-l~D~J. Let 2~(~-~(D) be 

the subgraph of ~-~> ~_~ (D) obtained by removing the lines of all its n-cycles. 

Then each line in 2.(~-~(D) corresponds to an n-path of D. Let 

(n) 
2~ (D) -- 2(2~-~>(D)). 

Now each line in ~,(~)(D) corresponds to two n-paths of D having n - 1 

lines in common. Clearly, these two paths together form a simple (n + 1)- 

sequence of D. If  the first point of one of these paths is the same as the 

last point of the other, they combine to form an (n -{- 1)-cycle Z; and Z 

contains n -1- 1 rooted (n -t- 1)-cycles, each of which yields a line lying on 

an (n -k 1)-cycle in 2~(") (D). Any line in 2~ ("> (D) not lying on an (n -{- 1)-cycle 

must, therefore, correspond to an (n -t- 1)-path of D. 

We conclude, then, tha t  the lines of 2k(~_]~)(D) provide the desired 

information concerning simple k-sequences of D. That  is, each line lying 

on a k-cycle uniquely corresponds to a rooted k-cycle of D, and every other 

line uniquely corresponds to a k-path of D. In the remainder of this paper 

we show how this information may be obtained by matrix methods. 

Matrix Operations 

Let D be a digraph whose points are labeled v, ,  v2, • • • ,  v~. The adjacency 

matrix of D, A = A(D) ,  is a p X p matrix whose entries are a ,  = 1 if there 
is a line v~vi in D and a ,  = 0 otherwise. The matrix o] simple n-sequences 

o] D, S~ = S~(D), is also a p X p matrix whose entry s~? is the number of 

distinct n-paths from v~ to v~ when i ~ j, and whose entry s~ ~ is the number 

of n-cycles rooted at  v~ . Clearly, $1 = A. Given A, our problem is to find 

a series of matrix operations which will result in S . ,  2 _ n _<: p. 

In order to solve this problem we introduce the notion of the adjacency 

of two sequences of a digraph. If  L is a sequence of D, then the first point 

of L will be denoted a(L), and the last point will be denoted ~(L). Let L~ 

and L; be two sequences of D. We say that  L~ is n-adjacent to L~ if there is 

an n-path L. which is a subpath of both L~ and Li and which satisfies the 

conditions: ~(L.) = ~(L~) a, nd c~(L.) = a(Li) .  Now if L~ is a simple n-sequence, 

then clearly L~ = L. and L~ is a subpath of L; containing its first n lines. 

Similarly, if L; is a simple n-sequence, then L~ = L, and L~ is a subpath 

of L~ consisting of its last n lines. We saw above that  there is a line from 

L~ to L~ in £~(~> (D) if and only if L~ and L~ are n-paths of D having n - 1 

lines in common. In  the present terminology, this means that  each line 

from L~ to L~ in £~("~(D) corresponds to two n-paths L, and Li of D such that  



][84 PSYCHOMETRIKA 

L, is (n - 1)-adjacent to L; . In the following discussion, we are concerned 

with the adiucency of the simple sequences of a digraph D. 

Let  a be a square matrix whose rows and columns correspond to the 

simple n-sequences in D, for all n = 0, 1, • • • , p. We assume an ordering 0 of 

all simple sequences, and hence of the rows and columns of (~, which is 

subject only to the restriction that  every n-sequence precedes every 

(n + 1)-sequence. By 0. we shall mean 0 restricted to the simple n-sequences. 

We denote by A=, the submatrix of a whose rows correspond to simple 

m-sequences and whose columns correspond to simple n-sequences. Clearly, 

0'. can be expressed in terms of its submatrices as follows: 

- A o o  A o l  - .  • Aon . • • A o , -  

Alo A l l  " " " A l n  • " *  A l p  

Amo A m l . . .  A m ~ ' - .  A~, 

_A~o A~I . - -  A~  . . .  

The entries a (~n) of A. ,~  are given by the rules --ii  

A ~ -  

~! < n and Li is m-adjacent to L i , 

> n and Li is n-adjacent to L ; ,  
O(ran) _ ,  = 1 if = n, n > 0, and L~ and L; are n-paths such tha t  

L~ is (n -- 1)-adjacent to Li , 

n = 0 and the line v~vi is in D; 

otherwise, a~7 n~ = O. 

Note that  for a given ordering 0, the submatrix Aoo is the adjacency 

matr ix of D, and the entire matr ix a is well defined. We now show how the 

matrix S.  can be obtained from certain submatrices of a, leaving until  

later the actual construction of a itself. 

Consider the submatrix A0. for n > 0. I ts  i th row corresponds to the 

point vl in D, its kth column corresponds to the simple n-sequence L~,  and 

the entry a~ °n) = 1 if and only if v~ = a ( L k ) .  Likewise in the submatrix 

Ano , a,(~ -°) = 1 if and only if ~ ( L ~ )  = vi • Thus, in the product  A o n A . o  the 

term 

a~°n)a~? °) = 1 

if and only if Lk is a simple n-sequence from v, to v; . If  v~ = vi , Lk is an 

n-cycle rooted at  v; ; otherwise L~ is an n-path. Since the matrix (~ is defined 

so that  all the simple n-sequences in D are represented in the columns of A0~ 
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and the rows of A~o, we see immediately tha t  

Z (On) (nO) 
a ~  a k i  = m 

k 

if and only if there are m simple n-sequences f rom v, to vi (i.e., s~. ) = m). 

This essentially proves our first theorem. 

THEOREM 1. For all n > O, the matr ix  o] simple n-sequences is given 

by Sn = Ao.A~o . 

v 

V 

%i 
%! 
v5: 

Li5 

L23 

L~3 

L52 I 

L151 

L152 ! 

LI54 

L2t5 

L515 

L521 

L523 

L543 

L152t 

L1523 

L1543 

L2152 

L2t54 

L5215 

L2t543 

0 0 0 0 1  1 0 0 0 0 0 0  I I I 0 0 0 0 0  I I I 0 0 0  0 

I 0 1 0 0  0 1 1 0 0 0 0  0 0 0 1 0 0 0 0  0 0 0 1 1 0  I 

A00:00000 AoI:O000000 A02:00000000 A03:000000 A04:0 

00100 000 I000 00000000 000000 0 

I tOlO 0000111 00001111 O00001 0 

0 0 0 0 1  0 0 0 0 1 1 1  1 1 1 0 0 0 0 0  t 1 1 0 0 0  0 

1 0 0 0 0  1 0 0 0 0 0 0  0 0 0 1 0 0 0 0  0 0 0 1 1 0  t 

0 0 t 0 0  0000000 00000000 000000 0 

A10:00t00 A t t : 0000000  A12:00000000 AI3:000000 At4:0 

t 0 0 0 0  1 0 0 0 0 0 0  0 0 0 0 1 0 0 0  0 0 0 0 0 0  Oi 

0 1 0 0 0  0 1 1 0 0 0 0  0 0 0 0 0 1 1 0  0 0 0 0 0 1  O' 

00010 0001000 00000001 000000 0 

I 0 0 0 0  0 0 0 0 1 0 0  0 0 0 0 0 0 0 0  000000  0 

0 1 0 0 0  0 0 0 0 0 1 0  0 0 0 0 0 t t 0  1 1 0 0 0 0  0 

00010 0000001 00000001 001000 0 

0 0 0 0 t  1 0 0 0 0 0 0  O1100000  0 0 0 1 t 0  t 

A20:00001 A21:1000000 A22:00000000 A23:000000 A24:0 

1 0 0 0 0  0 t 0 0 0 0 0  0 0 0 1 0 0 0 0  0 0 0 0 0 1  0 

00100 0010000 00000000 000000 0 

00100 000 t 0 0 0  0 0 0 0 0 0 0 0  000000  0 

1 0 0 0 0  0 1 0 0 0 0 0  0 0 0 0 0 t 0 0  0 0 0 0 0 0  0 

0 0 1 0 0  0 0 1 0 0 0 0  0 0 0 0 0 0 t 0  0 0 0 0 0 0  0 

00100 0 0 0 1 0 0 0  0 0 0 0 0 0 0 1  000000  0 

A30:01000 A31:0000010 A32:01000000 A33:000000 A34:0 

00010  0 0 0 0 0 0 1  0 0 1 0 0 0 0 0  0 0 t 0 0 0  1 

0 0 0 0 t  1 0 0 0 0 0 0  0 0 0 1 0 0 0 0  0 0 0 0 0 0  0 

A40:00t00 A 4 t : 0 0 0 t 0 0 0  A42:00000001 A43:001000 A44:0 

FIGURE 2 
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Fig. 2 gives the matr ix  a for the digraph D of Fig. 1. For  convenience, 

each row is labeled so as to identify the corresponding simple sequence 

and, of course, the kth row and the kth column correspond to the same 

simple sequence. Thus, for example, the ent ry  a~  2) = 1 indicates tha t  v2 is 

the first point of L2~5 and the entry  a4(~ °) = 1 means tha t  v5 is the last  point  

of L2~s . 

Upon multiplying the appropr ia te  submatriees of Fig. 2, we obtain the  

following matrices which give the number  of n-paths  and n-cycles, for each n, 

in the digraph of Fig. 1. 

Ao2A~o = Sz = 

Ao3A3o = $35 = 

Ao~A~o = $4 = 

-1 1 0 1 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 2 0  

-1 0 2 0  

0 1 0 I 

0 0 0 0 

0 0 0 0 

0 0 0 0 

-0 0 0 0 

0 0 1 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 
n 

1 

0 1 , 

0 

1 

0- 

0 

0 , 

0 

1 

0- 

0 

0 

0 

0 

The  only nonzero entries on the main diagonal of $2 are s~ ) = s~(] ) = 1. 

This  tells us tha t  D has only one 2-cycle and tha t  it contains vl and v5 • 

The  ent ry  ~°(2) = 2 means tha t  there are two 2-paths f rom v5 to va , and 

inspection of D shows these to be L~4~ and L5~3 . In  Sa the entries on the 

main diagonal indicate tha t  D has one 3-cycle containing vl , v2 , and vs . 

The  remaining nonzero entries give the number  of 3-paths from v~ to v; . 

Finally, $4 reveals tha t  D has only one 4-path and tha t  it goes from vz to v3. 

We have seen t ha t  the matr ix  S.  can be obtained from the submatr ices  

Ao~ and A,o of (L Before describing how the entire matr ix  a can be constructed 

from the adjacency matr ix  Aoo, we need to establish a number  of s tructural  

relations among the submatrices of a .  
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We begin by considering A.. and A ..... 1 • The next theorem, concerning 

the adjacency of simple sequences in a digraph, shows that the unit entries 

of these two submatrices are related in a particular way. 

THEOREM 2. In  any digraph, the number o] ordered pairs of n-paths 

such that the first is (n - 1)-adjacent to the second is equal to the number o] 

ordered pairs consisting o] a simple n-sequence lollowed by a simple (n + 1)- 

sequence such that the first is n-adjacent to the second. 

PROOF. Let L~ and Li be any two n-paths such that L, is (n - 1)- 

adjacent to Li • Clearly, there is an (n + 1)-sequence, Lg , which begins 

at  a(L~) and contains the line from a(L~) to a(L+) and the path L+ . Since 

all points of L~ and of L~ are distinct, L~ is simple. Moreover, there is just 

one (n + 1)-sequence that contains both L, and L~. Now since a(L,) = c~(Lo) 

and Lo contains L~ , it follows that L~ is n-adjacent to L~ . Thus, for each 

ordered pair, L, and L; , there is a unique ordered pair, L~ and L~ , such 

that L~ is n-adjacent to L~. 

Now assume that there exists an n-path L~ which is n-adjacent to the 

simple (n + 1)-sequence Lo . Let Lh be the first line of Lo and let L~ be the 

subsequence of Lo from ~(Lh) to ~(L~). Since the points of L, , with the 

possible exception of a(L,) and ~(Lo), are distinct, L~ is an n-path. Moreover, 
L, and Li have a common (n -- 1)-path L . .  Since c~(L~) - - - -  a(Li) 
and ~(L,) = co(L,), it follows that L, is (n -- 1)-adjacent to Li • There can 

be only one such pair, L~ and L ; ,  since any simple (n + 1)-sequence contains 

exactly one pair of n-paths. [] 

RecM1 that (by definition) the entry a~. ") = 1 indicates that the n-path 

L, is (n -- 1)-adjacent to the n-path L i ,  and the entry a~[. ' '+" = 1 indicates 

that the simple n-sequence L~ is n-adjacent to the simple (n + 1)-sequence L i .  

The following result thus follows immediately from Theorem 2. 

COI~OLLtd~Y 2a. The number o/ unit entries in A. .  equals the number 

o] unit entries in A.,.+~ . 

I t  is readily apparent that for each simple (n + 1)-sequence in D there 

is exactly one n-path that is n-adjacent to it. In other words, each column 

in A . . . .  ~ contains exactly one unit entry, and we may conclude that the 

number of columns in A,,~+I equals the number of unit entries in A.~ . We 

see, then, that there is a one-to-one correspondence between the unit entries 

in A,.  and the simple (n + l)-sequences of D. Hence any ordering, 0~+~ , 

of one of these induces an ordering of the other. 

Let us assume now that the r X r matrix A.. is known, for some n. 

By this assumption, there is an ordering 0. of the simple n-sequences of D 

and hence of the corresponding rows and columns of a. Let us arbitrarily 

order the unit entries of A.. by 0.+1 • The submatrix A~.~+~ can then be 

obtained from A~. in the following way. 

Construction 1. If the kth unit entry, relative to 0~÷~ , of A~ occurs 
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in its i th  row, then A~.~.~ is obtained by letting its kth column be the r X l 

vector which has 1 in its i th  place and O's elsewhere. 

Clearly this construction satisfies the definition of A . . . .  ~ , for its rows 

and columns are ordered by 0~ and 0.+1 respectively and there is a 1 in the 

i, k entry  of the constructed matrix if and only if the n-path L~ is n-adjacent 

to the simple (n + 1)-sequence Lk.  

The matrix A~.I .~ can be constructed from A~  in a similar way, By 

an argument analogous to tha t  in the proof of Theorem 2 it can be shown 

tha t  the number of unit  entries in A.. is the same as the number of refit 

entries in A,+~., and there is exactly one unit  entry in each row of A..~ .~ . 

We may, then, employ the same ordering 0~+~ as above and construct A..~ ,. 

from A.~.  

Construction 2. If  the kth unit  entry, relative to 0~+~ , of A. ,  occurs in 

its j th  column, then A.+I ,. is obtained by letting its kth row be the 1 X r 

vector which has 1 in its j th  place and O's elsewhere. 

By this construction, there is a 1 in the k, j entry of the obtained matrix 

if and only if the simple (n + 1)-sequence L,  is n-adjacent to the n-path L; . 

Thus, the definition of A.+~., is satisfied. 

(The submatrices under consideration contain information relevant 

to our earlier discussion of line digraphs. The submatrix A~  contains the 

adjacency matrix of £~')(D), as can be seen by comparing Figs. 1 and 2. 

And if the transpose of a matrix M is denoted M', then A~o + Ao'~ is obtained 

from the incidence matrix of D by replacing every nonzero entry  by + 1. 
:Likewise, A~÷~.~ + A~' ~.~ contains the incidence matrix of £~(~)(D) as a 

submatrix.) 

These two constructions may  be illustrated by Fig. 2. The uni t  entry 

a.2(~ 2) indicates tha t  L15~ is 1-adjacent to Ls_.~ . We let 0~ be the ordering of 

the unit  entries of A2~ obtained in the following way. Start  with the first 

:row and read from left to right, noting the order of occurrence of unit  entries; 

go to the second row and read from left to right, and continue to note the 

order of occurrence of unit  entries; continue this procedure through the 

last row. We see tha t  a~(~ 2) is the first unit  entry. Thus, the first column 

of A2a has a 1 in its second place and zeros elsewhere. Similarly, the first 

row of A~ has a 1 in its sixth pIaee and zeros elsewhere. The unit  entry 

a~ 3~ means that  L ~  is 2-adjacent to a simple 3-sequence, namely, L,5~ . 

And the entry ,~3~ ~6 means tha t  L~52~ is 2-adjacent to a 2-path, namely, L521 . 

We next consider how the matrix A. .  is related to A . . . .  ~ and A._~ .~ . 

By  definition, the rows and columns of A~, correspond to the simple 

n-sequences in D, and a~. =) = 1 if and only if L~ and L;  are n-paths and L, 
is (n -- 1)-adjacent to L ; .  In  the product A . . . .  ~A=_~ . . ,  the rows and columns 

also correspond to the simple n-sequences in D, and each i, j entry is given by 

a~':'~-'~ a~ t-I ,.,. 
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Now, a ( . . . .  ~)n ("-~'") - 1 if and only if L° is an (n - 1)-path such t ha t  L,  - ' i e  ~ ° i  - -  

is (n -- 1)-adjacent to L. and L. is (n - 1)-adjacent to L~ , or equivalently 

L~ is (n --  1)-adjacent to L~ . Since for any  pair, L~ and L; , there can be 

only one L.  which satisfies the above conditions, every ent ry  in A . . . .  ~A._~ ,. 

is either 0 or 1. Thus  the only difference between A . . . .  ~A._I,. and A. .  is 

tha t  uni t  entries in the former represent the (n - -  1)-adjacency of two simple 

n-sequences whereas in the la t ter  they  represent the (n -- 1)-adjacency of 

two n-paths.  Hence if in A . . . .  ~ and A._~ .~ we change to 0 all the unit  entries 

involving n-cycles and denote the resulting matrices by  B ..... j and B._~ , . ,  

then  A. .  is obtained by  forming the product  B . . . .  ~B._~ , . .  These observations 

consti tute a proof of the next  theorem. (Since the uni t  entries in B., ._,  

and B._~,. represent only n-paths,  use of these matrices has the effect of 

~._, (D).) removing n-cycles f rom ("-~ 

T~EOREM 3. For all n > 1, the matrix A . .  is the product 

A ~  = B . . . .  1B.-1.~. 

The  next theorem shows tha t  B . . . .  a and B._~ ,. can be obtained by  

matr ix  operations which identify the unit  entries involving n-cycles in A., ._I 

and A._a , . .  We rely on two matr ix  operations not  previously used: (a) the 

transpose of M, denoted M',  and (b) the element-wise product  M X N, 

where both  M and N have  r rows and c columns and the i, j en t ry  of M × N 

is given by  m. .n~ i  • 
Since our definition of a digraph precludes 1-cycles, it is immediate 

tha t  Alo = B~0 and Aoa = Bol • 
T~EOaE~ 4. For all n >__ 2, the matrices B.,._~ and B._~ ,. are given 

by the equations 

B . . . .  , = A . . . .  ~ - [A . . . .  ~ X (A._~,oAo.)'], 

and 

PROOF. 

given by  

B._~,. - A._~.. - [A._,, .  × (A.oAo,.-~)']. 

A ' Consider first the matr ix  (A.-~,o o.) ,  whose entries are 

( ~  a(n-~'°)a(°'"h ~ 
i e  e l  I " 

e 

Now, a~: -L°) = 1 if and only if the simple (n --  1)-sequence L~ is 0-a~ljacent 

to the 0-sequence L. , tha t  is co(L~) = L . .  And co ~) a . , '  = l if and only ff L,  

is 0-adjacent to the simple n-sequence L~ , t ha t  is, a(L~) = L° . Clearly, 

there can be a t  most  one point  L° satisfying both  these conditions. Hence, 

every entry  in (A~_~ .oAo~)' is either 0 or 1, and each unit  entry,  i, ], indicates 

tha t  a(L~) = a(L,~). By definition, -~i °-( . . . .  1) - - 1 if and only if  L,  is 

(n - t ) -ad]acent  to L; , t ha t  is, co(L,) = o~(L;). Since the transpose 
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of (A~-1.0A0,) has the same number of rows and columns as A~-I ,~, we may  

form the element-wise product of these matrices to obtain the matrix given 

by the bracketed term in the first equation of the theorem. Now, the i, j 

en t ry  of this matrix is 1 if and only if oc(L,) = o~(L~) and o~(L,) = o~(Li) 

or, equivalently, ~(L~) -- o~(L~). Since L~ is a simple n-sequence, it  follows 

tha t  L~ is an n-cycle. Thus, each i, j unit  ent ry  in this matrix corresponds 

to an n-cycle L~ tha t  is (n -- 1)-adjacent to an (n - 1)-sequence L i  . Upon 

subtracting this matrix from A . . . .  ~ , we obtain a matr ix satisfying the 

definition of B . . . .  1 . 

A similar argument establishes the second equation of the theorem. [] 

Up to this point we have considered how the submatrices A.~ , which 

lie on the main diagonal of a,  are related to submatrices immediately adjacent  

to the main diagonal. We now show tha t  any submatrix A ~  , m # n, is 

related in a particular way to certain other submatrices of a .  The  next  

two lemmas concerning the adjacency of sequences in a digraph provide a 

basis for establishing these relationships. 

LEMM& I. Let  Lo , LI  , . . .  , L ,  be a series of sequences such that L .  i s  

an  (m + e)-sequence, ]or all e = O, 1, . . .  , r. I]  L ,  is (m + e)-adjacent to 

L,+~ , ]or all e = O, 1, • • • , r --  l, then Lo is m-adjacent  to L ,  . 

PROOf. If  Lo is m-adjacent to L~ and LI is (m + 1)-adjacent to L2 , 

then L~ must be an (m + 1)-path containing Lo . But  since L~ is contained 

in L2 and a(Lo) = a(L~) = a(L2) ,  we see tha t  Lo is m-adjacent to L~.  Now, 

if Lo is m-adjacent to  L,_~ and L,_~ is (m + r -- 1)-adjacent to L , ,  then L,_~ 
must  be an (m + r -- 1)-path contained in L. Since 

a(L0) -- a(L,_~) -- a(L,),  

it follows that  Lo is m-adjacent to L, . [] 

The next lemma is in the nature  of a converse to Lemma 1. 

LEMMA 2. Le t  Lo be an  m - p a t h  and  L ,  a s imple  n-sequence. I ]  Lo is  

m-adjacent  to L , ,  then there exists  a un ique  series o] sequences Lo , L~ , . . .  , L ,  

such that L .  is  (m + e)-adjacent  to L , .~  , [or all e = O, 1, . . .  , r - -  1. 

PlmOF. For  any  e --- 0, 1, . - .  , r let L,+~ be the (m + e)-subpath of L,  

for which a(L~) = a(L,) .  Since L, is contained in L,+t and a ( L , )  = a(L,+~),  

L, is (m + e)-adjacent to L,÷~ . Thus the paths L,  form a series L o ,  L ~ ,  • • • , 

L, . Tha t  this series is unique follows from the fact tha t  L° is the 

only (m + e)-subpath of L, for which a(L°)  = a(L~).  [] 

THEOREM 5. For a n y  m < n, 

(I) A , ~  = A~. ,~+~A,,÷, . ,~+2. . .  A~+~.,, 

(2) A,~ = A . . . .  1An-l.n-2 - . .  A,~+~,,~. 

PROOF. The entries of the matrix A . . . .  ~A,~+~,,,+~ . . .  A,,_~,~ are 

composed of products of the form ~ -( . . . .  ~,(~+~.~+2)~I~ ' . .  ~'('-~'~) . Clearly 
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this product  mus t  be 0 or 1. I f  it equals 1, then there is an n-sequence L~ 

in D such tha t  L~ is m-adjacent  to the (m -k 1)-sequence Lt • Likewise, 

Lf is (m -b 1)-adjacent to the (m -b 2)-sequence in Lo . This series continues 

until we come to the (n -- 1)-sequence Lh which is (m -b n - 1)-adjacent 

to the simple n-sequence L; . By  Lemma 1, L~ is m-adjacent to L; . By 

Lemma 2, the series described in the above product  is unique. Thus the i, ] 

en t ry  of Am,~+~A~+~ ,~+2 " • • A,+~ ,, is either 0 or 1, and ff it is 1, men'~ aii("") = 1. 

i ~  (vnn) I a ,  = 1, then L~ is m-adjacent  to L j .  By  Lemma 2 we may  construct 

a series L~ , L1 , L2 , - ' "  , L.  , . . .  , L; such tha t  L. is (m -1- e)-adjaeent to 

L,+~ Thus .(..,.,÷~).(m÷1,~,÷2) (.-x,.) • ~ ..~ . . .  a,i = 1, and shace this series is unique 

the i, j entry  of A , , , , , + I A , , . 1  .,,+2 " ' "  A , _ j  ,, is 1. 

This establishes the val idi ty of s ta tement  (1) of the theorem. A similar 

a rgument  holds for s ta tement  (2). [] 

I t  will be recalled tha t  Theorem 1 shows tha t  the matr ix  S, can be 

obtained from the submatrices Ao, and A,o . The  following corollary of 

Theorem 5 therefore provides information useful in finding S , .  

COROLLARY5a. F o r  a n y  n = 2, 3,  . . .  , p ,  

(1) Ao. = A o , . - 1 A . - 1 , . ,  

(2) A.o = A . . . . .  A . . . .  o. 

P r o @  By Theorem 5, 

A o .  = A o l A l ~  " "  A . - 2 , . - 1 A . - 1 , . .  

But  

A o l A 1 2  . . .  A . - 2 , . - 1  = A o , . - 1 .  

This establishes (1), and a similar a rgument  establishes (2). [] 

We summarize the above material  and the constructions involved by 

the following algorithm. 

A l g o r i t h m  1. Let  D be a digraph and 0. be an arbi t rary  ordering of 

the simple n-sequences of D. Then the matr ix  S,  of simple n-sequences of 

D, for n > 0, can be obtained by  the following procedure. 

1. Order the points of D by  0o and construct  Aoo • 

2. Order the unit  entries of Aoo by  01 and construct Aol and A10 • 

3. Construct  All by  the formula 

A~I  = A l o A o l .  

Steps 4-7 give a reeursive procedure for finding A , , ,  n = 2, 3, • • • , p. 

4. Order the uni t  entries of A._I .._~ by  0. and construct  A._, . .  and A . . . .  ~. 

5. Construct  As. and A.o by  the formulas 

Ao. = Ao,._,A.-1,. ,  

A.o = A . . . .  1A.-1,o. 
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6. Construct Bn-1 .~ and B . . . .  ~ by the formulas 

B~-, ,n  = An- , .n  - [A,,-1. .  × (A~oAo,n- , ) ' ] ,  

B . . . .  , = A . . . .  , - [A . . . .  ~ × (A._,.oAo.)']. 

7. Construct A,,.  by the formula 

A..  = B . . . .  1B.-1... 

8. If Ann = [0] or n = p, terminate the procedure. Otherwise, re turn 

to step 4. 

9. Construct S, from the results of step 5 by the formula 

S .  = A o . A . o  

Clearly, Step 1 of this algorithm is simply the customary way of 

constructing the adjacency matrix of a digraph. Steps 2 and 4 are justified 

by Corollary 2a, together with Constructions 1 and 2. Steps 3 and 7 make 

use of Theorem 3. Step 5 is justified by Corollary 5a. Step 6 results from 

Theorem 4. And, finally, S tep  9 is given by Theorem 1. 

As noted above, the matrix (~ of Figure 2 is obtained from the digraph 

of Fig. 1. In  constructing a, we have used a standard procedure for the 

ordering 0.÷1 of the unit  entries of A . . ,  for all n > 0, as follows. Star t  with 

the first row and read from left to right, noting the order of occurrences of 

unit  entries; go to the second row and read from left to right and continue 

to note the order of occurrence of unit entries; continue similarly through 

the last row. For  completeness, we have presented all submatrices of a,  

but  not  all of these are required for finding the matr ix S.  of simple n-sequences 

of D. In  fact, the algorithm yields only submatrices of (~ lying on the first 

row (that  is, Ao.), the first colulim (A.o), the main diagonal (A..), and the 

diagonals adjacent to the main diagonal (A~,n+~ and A~+I ,n). 

In  using the algorithm to obtain S. for even moderately large digraphs, 

Step 6 involves considerable calculation. Our final theorem shows tha t  

under certain conditions this step may  be eliminated. 

THEOREM 6. I1 the n u m b e r  o] nonzero rows  i n  Ao ,  i s  less than n,  then 

A., ,  = A . . . .  ,A,,-1,~. 

PRooF. The entries of Ao. indicate which points in D are the first 

points of the simple n-sequences corresponding to the columns of Ao. • I f  

t:here is a k-cycle in D for k >_ n, then there must be at  least n points which 

are the first points of simple n-sequences. Thus if the number of nonzero 

rows is less than n, there can be no k-cycles in D for all k _> n. 

tience, B . . . .  , = A . . . .  ~ and Bn_, ,~ = A._, , . ,  and the equation of the theorem 

follows from Theorem 3. [] 
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Some Related Matrices 

Once the matr ix  S~ of simple n-sequences of a digraph is obtained for 

each n, i t  is relatively easy to construct other useful matrices.  We now briefly 

discuss some of these. 

The matrix o] simple sequences of a digraph D, S(D), is a p X p matr ix  

whose entry  s ,  is the number  of distinct paths  (of any  length) in D from 

v~ to v~ when i ~ j, and whose ent ry  s ,  is the number  of cycles containing v~. 

Clearly, then, we have 

E S~ -= S(D). 

The distance ]tom v, to v~ , denoted d ,  , is the length of a shortest  pa th  

f rom v~ to v ; .  I f  there is no pa th  f rom v~ to v i ,  we let d ,  = co. The  distance 

matrix of D, denoted N(D), is a p X p matr ix  whose entries are the distances 

d ,  . The following s ta tements  are readily established. 

1. Eve ry  diagonal ent ry  d ,  of N(D) is 0. 

2. d ,  = co if there is no en t rys~:  ) ~ 0 i n S ~ , f o r n _ <  p -  1. 

(n) 
3. Otherwise, d ,  is the smallest value of n such tha t  s~ ~ 0. 

To  construct the distance matr ix  N(D) for the digraph of Fig. 1, we 

begin by  entering O's on the main diagonal. Next,  we transfer  the unit  entries 

in Aoo to N(D). Then we enter  2's in all emp ty  locations of N(D) whenever 

there is a nonzero entry  in $2 • The  next step is to enter 3's in all empty  

locations whenever there is a nonzero entry  in Sa . Since each nondiagonal 

en t ry  in $4 is 0, we complete N(D) by  entering ~ in the remaining e m p t y  

locations. The  resulting matr ix  is 

- 0  

!1 0 1 3 

¢O 0 O0 

1 2 1 

1 

N ( D )  = o~ 

O0 

L 1  

A detour ]rom v, to vl is a pa th  of max imum length f rom v, to v, . The  

detour matrix of D is a p X p matr ix  E(D) = [e,], where e ,  = ~ if there 

is no pa th  from v~ to v; and otherwise e~; is the length of a detour from v~ to vi • 

To  construct E(D) we use the following immediate  observations. 

1. Every  diagonal ent ry  e~i is 0. 

2. e,~ ~ if there is no r . ~ ,  ~ 0 i n S ~ , f o r n  ~ p - -  1. 

3. Otherwise, e~. is the max imum integer n such tha t  .~(~ -~i ~ 0. 
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A Generalization o] the Method 

An (irreflexive) network N is a digraph together with an assignment 

of some value to each of its lines. Such a value, for example, may be 

a probability, an integer, or a positive or negative sign. Thus, the value of 

a line may  represent the probability of going directly from one state 

to another, the cost of traveling directly from one place to another, or the 

signed quality of affection of one person for another. (For a discussion of 

various interpretations of networks, see Harary,  Norman, and Cartwright 

([2], ch. 12 and 13).) Given a network with a particular value system for 

its lines, the question arises as to how to assign values to its sequences. 

If, for example, the values assigned to the lines of a network are 

probabilities, it is customary to define the value of a sequence from v, to v; 

as the product of the values of its lines, which if the values are independent 

is the probability of going from v, to v; via this sequence. And if there are 

several sequences from v~ to vi , we add the values of these sequences to 

obtain the probability of going from v~ to vi by any of them. 

Or, if the values of a network represent costs, the value of a sequence 

would be obtained by summing the values of its lines to give the cost of 

traveling along the entire sequence. Now, if there were several sequences 

from v~ to v; and one wanted to know the minimum cost of traveling from 

v, to v ; ,  one would find the minimum value of all these sequences. 

In  this section, we present a generalization of Theorem 1 which, for 

a variety of value systems, allows one to determine some function of the 
wdues of all simple n-sequences in a network. 

We begin by presenting a generalized arithmetic, whose specific meaning 

will depend upon the value system of the network in question. For any 

network there must be a rule of combination whereby the lines of a sequence 

are used to form the  value of a sequence. We call this generalized multipli- 
cation and denote it by (i). Thus, if t and t' are the values on the lines of 

a 2-sequence, to t '  would be the value of the sequence itself. Likewise, if 

there are several sequences between two points, there must be some way 

of assigning a value which represents the set of all such sequences. Such 

an assignment is called generalized addition and is denoted by @. Thus, 

if t and t' are the values of two sequences from v~ to v; , their generalized 
sum is t @ t'. 

We assume tha t  these operations satisfy the following conditions. 

First, they are associative and commutative. Second, there is an identity 

element 1, with respect to generalized multiplication, which follows the 

mile 

(1) t o i = t.  

Third, there is an identity element {J, with respect to generalized addition, 



DORWIN C A R T W R I G H T  AND TERRY C. GLEASON 195 

which follows the rule 

(2) t ® ii = t. 

Finally, we have the condition 

(3) t ® (}= ~J. 

In  using this arithmetic, we shall make use of the generalized product  of 

two matrices A QB. By  A QB we shah mean the matrix whose i, j entry is 

given by the expression 

. . . .  ~-~k-1 a~®bki. (4) (a,IQblj) 0 (a,2Qb2~) (~ 0 (a,rQb.i) "" ~'" 

The value matrix of a network N is the matrix, M(N)  = M, whose 

entry  m~i is the value of the line from v, to v~ if such a line is in N and () 

otherwise. We illustrate the use of our generalized arithmetic for two rather  

different value systems• Consider first a network whose values are costs. 

]n  this case, the ent ry  m ,  of the value matrix is the cost of traveling directly 

from v, to v~ if this is possible. If this is not  possible, m ,  = ¢o. Suppose 

tha t  we want  to find the minimum cost of traveling from v~ to v; in n steps. 

Using a procedure introduced by Hasse [3], we use the operation of ordinary 

addition for generalized multiplication, and we use the procedure of taking 

the minimum value of a set of values for generalized addition. Thus, in this 

specification of our generalized arithmetic, the identi ty element ~j is ¢o, 

and 1 is 0. Now if we form the product  M (2) M = M t21, we get 

. = ( m , 1 0  m~3 O (m,~ o m~3 ® " -  ® (m,~ O ms,) 

= rain (m,1 -b m a t  , m , 2  + m2; , " "  , m~ + m~i), 

which gives the minimum cost of traveling from v~ to v; in 2 steps, and in 

general M l"l gives the minimum costs for n steps. As a second example, 

consider a network whose values are probabilities. Now we use ordinary 

multiplication for Q, ordinary addition for O ,  and we use 0 and 1 for the 

identi ty elements (J and 1, respectively. With these operations m~. ~ gives 

the probabili ty of going from v, to v; by any sequence of length n. I t  is clear 

tha t  various specifications of our generalized arithmetic may  be employed, 

depending upon the nature of the value system of a network. 

We continue to develop our generalization by introducing three new 

matrices. First, we have the value matrix o] simple n-sequences M(S , )  whose i, j 

entries are the generalized sums of the values of all the simple n-sequences 

from v~ to v; in N. Second F , ,  1 <: n _< p, is a square matrix whose diagonal 
• x ( ~ )  

entraes ] .  are the values of the-~mple n-sequences L , ,  relative to the ordering 

O. , and whose off-diagonal entries #") . ;  are ~). Finally, G. , 1 < n < p, is a 
i 

square matrix whose diagonal entries g~,".) are the values of the last line of 

the simple n-sequences L. , relative to the ordering 0, , and whose entries 

g~.) are 0. 



1 q 6  :PSYCHOMETR[KA 

If we are given tile value matrix M for a network N ,  we can readily 

obtain the adjacency matrix A ( N )  by changing every (j to 0 and letting 

all other values equal 1. We can then construct the matrix a for the underlying 

digraph of the network N. In the following discussion, we need to-modify (i 

as follows: Let Jfm. be the matrix obtained from A~. by replacing each 

oc, currence of 0 by (J and each occurrence of 1 by 1. The importance of this 

modification will soon be apparent. 

Now suppose tha t  F .  and G~ are known and let 

(5) H .  = ? i . .  e ¢ ~  . 

By the definition of ® we have 

(6) .~,i = ,~ (~) gki(")" 
k 

But  by the definition of (7,  there is only one value of k such tha t  ~") 

Hence 

h(n) ..(n.) (.) (7) . - , i  = a .  ® g .  . 

If "'("") = 1, then h~," ) a,~ = g~.) . Consequently the last line of the (n + 1)~ 

sequence formed by the n-paths L~ and L~ has the value g~i • Clearly if 

d~-") = ~J, then L ,  is not (n -- 1)-adjacent to L, , and the entry h~. ) = ~j, 
reflects this fact. 

Now let 

(8) T.,  = F.  @ H . .  

Again applying the definition of (D we have 

](nn) ~ 4(n) i~(~) 
(9) - , i  = _ _  ~,k ® , o h i .  

k 

BY definition of F .  there is only one value of k such tha t  ]~) ~ 0. Hence 

by (9) and (7) we get, 

t(~ -) = f!? ) h¢-) 
(10) -, . . . .  ® - , i  

. .  (2) d~7 "> Q g i ,  • 

We have seen before tha t  g~7 ) is the value of the last line of the n-pat~ Li 

and hence the value of the last line of the simple (n + 1)-sequence formed 

by L~ and L~ . Likewise, 1~:. ) is the value of the n-path of L~ and hence the 

v%lue of the first n lines of the larger sequence. Thus the value of the simple 

(n -t- 1)-sequence corresponding to d~. ") = 1 is the product 

1~: .) e a~ .°, o a~?.' = I~? ) e i e d ?  (11) 
=/~?' e d?'. 

Consequently we see that  T~. is a kind of generalization of A . . .  
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These results give us a means of constructing the matrices F.+~ and: 

G~+1 from T=. and H . .  Assume that F . ,  G. ,  and A~ are known. From these 

matrices we can calculate T.= and H~ according to (5) and (8). Once these 

matrices are obtained, we then order their non-i) entries by O.+~ . Then F.+t 

may be constructed from T.~ in the following way. 

Construction 3. If the kth non-(j entry of T.~ , relative to 0.+~ , is t, 

then F.+~ is obtained by letting its kth row have the value t in its kth place 

and (J elsewhere. 

The matrix G.+I may be constructed from H~ by a similar procedure, 

as follows. 

Construction 4. If the kth non-(J entry of H~ , relative to 0~+t , is t, 

then G=+~ is obtained by letting its kth row have the value t in its kth place 

and {J elsewhere. 

We are now able to state our generalization of Theorem 1. 

THEOREM 7. For any n > 2, the value matrix o] simple n-sequences is 

given by 

M(S . )  = Xo. (3 F. ® X . o .  

])ROOf. By definition, the i, j entry of ]~o. ® F. is 

,.(On) 

k 

Since 1~.~ = () for a]l/~ # j, the above expression becomes simply 

.,(on) ~¢(n) 
aii 0 :ii • 

Thus, )1o. Q F. (3 ~.o has as its i, j entry 

.. (On) ..(nO} 
a~, 0 jk(2 ) O a, ;  , 

k 

which may be rewritten 

Clearly, 

..(On) .,(nO) 
I~2 > ® a , ~  ® a ~ i  

k 

a ~  ® ks = 

if and only if there is a simple n-sequence from v~ to v~ in N (Theorem 1). 

Hence, the i, j entry of 

X o . ® F . ®  X.o 

is the generalized sum of the values of the simple n-sequences from v, to vi 

inN.  [] 
In conclusion, we present an algorithm for finding the value matrix 
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of simple n-sequences of a network. This algorithm is stated in terms of our 

generalized arithmetic. In specific applications one must, of course, choose 

appropriate interpretations for the operations of (2) and • and for the 

identity elements (j and 1. This algorithm makes use of certain steps of 

Algorithm 1 and employs both binary matrices and value matrices. 

Algorithm 2. Let N be a network and 0, be an arbitrary ordering of 

the simple n-sequences of N. Then the value matrix M(S,) of simple 

n-sequences of N, for n > 0, can be obtained by the following procedure. 

1. Order the points of N by t~o and construct A oo and M. 

2. Use step 2 of Algorithm 1. 

2a. Order the non-lJ entries of M by 01 and construct FI using 

Construction 3. Note that F~ = G~ . 

3. Use step 3 of Algorithm I. 

Steps 3a-7 give a recursive procedure for finding A . . ,  n -- 2, 3, --- , p. 

3a. Convert A.-1 ,,-~ to Jl,-i .,-~ • 

3b. Construct H,-1 by the formula 

H.-1 = )~,-i,.-1 ® G._I . 

3c. Construct T~_, ,._~ by the formula 

T.-1..-1 = F,-1 E) H.-1 • 

4. Use step 4 of Algorithm 1. 

4a. Order t he  non-(J entries of T._,.._, by 0, and construct F.  using 
Construction 3. 

4b. Order the non-0 entries of H.-I by 0. and construct G. using 
Construction 4. 

5. Use step 5 of Algorithm 1. 

5a. Convert A0. and A.o to J~0. and Ji.o • 
6. Use step 6 of Algorithm 1. 

7. Use step 7 of Algorithm 1. 

8. If A.. = [0] or n = p, terminate the procedure. Otherwise, return 
to step 3a. 

9. Construct M(S.) from the results of steps 5a and 4a by the formula 

M(So) = 2;o. 0 F.  0 i f .o .  

Discussion 

The algorithms presented here are useful in obtaining information 

about a variety of structural properties that are based on nonredundant 

sequences. The matrix S. of simple n-sequences of D, which is obtained 

by Algorithm 1, gives the number of n-paths from v~ to vi and the number 

of n-cycles containing v~ . Of speciaI interest are the matrices S~1 and So , 

where p is the number of points in D, for one can ascertain from these matrices 
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respectively the number of complete paths and the number of complete 

cycles in D. From the matrices S~, for n _~ p, one can construct the matrix S 

of simple sequences which gives the number of paths and cycles of any 

length in D, the distance matrix which gives the length of a shortest path 

from v~ to vi , and the detour matrix which gives the length of a longest 

path from vi to v; . One can also ascertain the length of a shortest cycle 

and of a longest cycle in D. 

Algorithm 2 is applicable when values are associated with the lines of 

a digraph. If these values are probabilities, the matrix M(S~), when obtained 

by use of the appropriate arithmetic, gives the probability of going from 

v~ to v~ along a path of length n. And if n is tile distance from vi to v~, the 

i, j entry is the probability of going from v~ to v; in the smallest possible 

number of steps. When the values of lines are costs, one can obtain a matrix 

M(S~) whose i, j entry gives the cost of a cheapest simple sequence of length 

n from v, to vi • From the matrices M(S~), for n < p, it is possible to ascertain 

the least cost of any path from v~ to v; and of any cycle containing v~ . With 

suitable modifications, similar irfformation can be obtained concerning 

paths and cycles of m~ximal cost. Finulty, we note that Algorithm 2 can be 

used when positive or negative signs are assigned to lines. In this case, the 

i, j entry of M(S=) indicates the number of positive and of negative paths 
of length n from v~ to v; . Such fifformatiou is useful in the study of the path 

balance of a structure as developed by Harary, Norman, and Cartwright [2]. 

The major practical limitation of these algorithms lies in the fact that  

the rows and columns of the generated matrices correspond to simple 

sequences of D. Hence, if D has a great many simple sequences of given 

length, the resulting matrix is large. We have prepared computer programs 

which can quickly process digraphs containing up to 5,000 simple sequences 

of a given length. However, the ttrsk remains to develop procedures for 

larger numbers of simple sequences. 
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