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THE NUMBER OF PLANAR CENTRAL CONFIGURATIONS
IS FINITE WHEN N − 1 MASS POSITIONS ARE FIXED

PETER W. LINDSTROM

Abstract. In this paper, it is proved that for n > 2 and n 6= 4, if n−1 masses
are located at fixed points in a plane, then there are only a finite number of
n-point central configurations that can be generated by positioning a given
additional nth mass in the same plane. The result is established by proving
an equivalent isolation result for planar central configurations of five or more
points. Other general properties of central configurations are established in
the process. These relate to the amount of centrality lost when a point mass
is perturbed and to derivatives associated with central configurations.

1. Introduction

Central configurations are initial positions of masses that lead to special families
of solutions of the n-body problem. If the masses are released with zero velocity
from a central configuration, the particles move toward the center of gravity in such
a way that the configuration collapses homothetically to a collision singularity.
Planar central configurations with the appropriate initial velocities can also give
rise to other special solutions where the particles travel in elliptical orbits and the
configuration remains similar to the initial configuration throughout the motion.
For these and other reasons central configurations have been studied extensively.
See Moeckel [5] and Saari [8] for detailed introductions to the subject.

Results pertaining to how many central configurations exist have appeared over
the time period from Euler [2], Lagrange [3], and Moulton [7] to the present. Smale
[9] recently described eighteen great problems for the next century. Sixth in his list,
assembled at the request of V. I. Arnold on behalf of the International Mathematical
Union, is the question of whether, for each set of n positive masses, the number
of nonequivalent planar central configurations is finite. The present paper was
motivated by embedding this question in a sequence of successively more difficult
ones. Making use of Definition 2.4, it is seen that Smale’s sixth problem is equivalent
to the last (k = n− 2) in the following sequence of finiteness questions.

Finiteness Questions (FQ). For k = 1, 2, . . . , n − 2, if n − k positive masses
are located at fixed points in a plane, is it always true that only a finite number
of n-point central configurations can be generated by positioning k additional given
positive masses in the same plane?

The answer to his question is known for n = 3, but not for any greater value. In
this case, if two mass locations are fixed, there are exactly five three-point planar
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central configurations that can be generated by positioning the third mass in the
same plane. Three of these are collinear and the other two are in the form of an
equilateral triangle. For n = 4, a partial answer has been obtained by Moeckel [6].
He proved that the set of mass 4-tuples for which the answer is “no” must have
measure zero. For n > 3, it appears that the answers to FQ were also unknown for
all values of k less than n − 2. In this paper we give an affirmative answer when
k = 1 and n is greater than 4.

In the process of proving this result we also prove some general theorems re-
lated to derivatives and derivative matrices that are associated with planar central
configurations.

2. Definitions and strategy

Planar central configurations arise in the context of the planar Newtonian n-
body problem which deals with the motion of n particles (point-masses) in the
plane whose motion is governed by Newton’s second law via the forces determined
by the Newtonian potential.

Let the mass of the jth particle located at Xj = [ xjyj ] be denoted by mj >

0. The motion is governed by mjẌj = [
∂U
∂xj
∂U
∂yj

], where U ≡ U(X1, X2, . . . , Xn) =∑
(i,j)
i<j

mimj
|Xi−Xj | is the Newtonian potential.

For convenience we will assume
∑n

j=1mj = 1, and will denote Ẍj , the accel-

eration of the jth particle, by Aj , and the center of mass by CM = [
∑n
j=1 mjxj∑n
j=1 mjyj

].
Qj = CM −Xj will denote the vector from Xj to CM .

Definition 2.1. Notation. A planar configuration G = {X1, X2, . . . , Xn;m1,m2,
. . . ,mn} of n point masses is a choice of distinct positions X1, X2, . . . , Xn ∈ R2

and positive masses m1,m2, . . . ,mn ∈ R1.

Definition 2.2. A planar configuration G is called a central configuration, if there

is a positive number λ, such that for j = 1, . . . , n, 1
mj

[
∂U
∂xj
∂U
∂yj

] = λQj .

From Newton’s second law it follows that a planar configuration is central if
there exists a positive λ such that for j = 1, . . . , n, Aj = λQj . It can be shown that
if λ exists, then it is given by λ = U

I , where I =
∑n
j=1 mj |Qj |2, is the moment of

inertia of the configuration about the center of mass.

Definition 2.3. For the planar configuration {X1, X2, . . . , Xn;m1,m2, . . . ,mn},
we say that the point-mass located at Xk possesses the centrality property if Ak −
λQk = 0 where λ = U

I .
Using this definition we can describe a planar central configuration as one in

which each point-mass possesses the centrality property.
As far as the n-body problem is concerned there is no need to distinguish between

planar central configurations that differ by translation or rotation. Also, if they
differ only by scale it is sensible to view them as equivalent because under a homo-
thetic collapse the larger would collapse through the smaller. Hence equivalence of
planar central configurations is defined as follows:

Definition 2.4. Two planar central configurations are equivalent, if it is true that
when both are translated so that each has the origin as its center of mass, then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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one can be transformed into the other by an expansion or contraction of the plane
followed by a rotation about the origin.

An obvious strategy for showing that only a finite number of planar central
configurations can be generated by augmenting a given n − 1 point configuration
with an additional mass located at a variable point [ xnyn ] is to view the n vector
equations defining the central configuration as representing 2n curves in an (xn, yn)
plane, and then to try and directly show that there are only a finite number of
points at which all the curves intersect. The intersection points of the curves can
be shown to be intersection points of curves represented by high degree polynomials
in the variables xn, yn. So it must be shown that generally these curves have no
component in common. This direct approach appears to be quite difficult given the
freedom in assigning mass values and in choosing the fixed n− 1 mass locations.

Our approach, though less complete, fails only in the case n = 4. Basically we
use linearization and establish an equivalent “one-point” isolation result for planar
central configurations of five or more points. We show that if the positions of all
but one of the masses in a planar central configuration are held fixed, then there is
a neighborhood of the position of the remaining nth mass, such that if this mass is
moved to some other position in that neighborhood, then the resulting configuration
is no longer central.

The isolation result is developed using

Djn =

[
∂pj1
∂xn

∂pj1
∂yn

∂pj2
∂xn

∂pj2
∂yn

]
,

where Pj = Aj − λQj = [ pj1pj2 ] and Pj is viewed as a function of Xn. Having a
particular form for this derivative matrix, the isolation result follows quickly in
the case when the mass to be perturbed is situated at the center of mass. In the
other cases, the configuration is rescaled and repositioned so that the mass to be
perturbed is situated at the origin and the center of mass is at (1, 0). It is then
shown that were the isolation result false, the other n−1 points of the configuration,
via the singularity of the matrices Djn, j = 1, . . . , n− 1, would reside on a planar
curve (we call it the singularity locus) determined solely by I and λ. In addition,
null spaces, associated with each of these points on the singularity locus, would
have a nonzero intersection. The crux of the paper lies in the proof that such a
nonzero intersection is impossible when n > 4.

Although it may if the masses are suitably restricted, the interesting case of
n = 4, does not generally yield to our approach. The fact that it does suggests
further investigation of four-point central configurations having one mass at the
origin and the other three on a singularity locus.

In the final section of this paper, we use the results that were developed to answer
the finiteness question to prove that a slight perturbation in the position of any
single point-mass in a planar central configuration of more than 4 points destroys
the centrality property for at least n− 4 of the nonperturbed masses.

3. The derivative of Pj = Aj − λQj at a central configuration

In this section, we fix X1, X2, . . . , Xn−1 and m1,m2, . . . ,mn and for notational
clarity use Z = [ z1

z2 ] to represent the variable nth mass position. Thus we will
be working with the configuration G(Z) = {X1, X2, . . . , Xn−1, Z;m1,m2, . . . ,mn}.
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Xn will be reserved to represent a position Z for which G(Z) is a central configu-
ration.

We view Pj , j = 1, . . . , n − 1; I, U, λ = U
I , and CM as functions of the variable

point Z, and use F ′(Z) to denote the k×2 Jacobian matrix of a function F : R2 →
Rk. A(Z) will denote the acceleration of the mass at Z, and Q(Z) = CM (Z)− Z,
the vector from Z to the center of mass. Our objective is to find a useful expression
that characterizes the Jacobian matrix of Pj when Z = Xn. To avoid confusion
with the moment of inertia, the 2× 2 identity matrix will be denoted by E.

Lemma 3.1. I ′(Z) = −2mnQ
T (Z).

Proof. On writing CM (Z) = [ c1(z1)
c2(z2) ], we have

I(Z) =
n−1∑
j=1

mj [(xj − c1(z1))2 + (yj − c2(z2))2]

+mn[(z1 − c1(z1))2 + (z2 − c2(z2))2].

Using c′1(z1) = mn gives

∂I

∂z1
= −2mn

n−1∑
j=1

mj [(xj − c1(z1))] +mn(z1 − c1(z1))

 + 2mn(z1 − c1(z1))

= 2mn(z1 − c1(z1)).

Similarly, ∂I
∂z2

= 2mn(z2 − c2(z2)). Thus

I ′(Z) = −2mn[(c1(z1)− z1), (c2(z2)− z2)] = −2mnQ
T (Z).

Lemma 3.2. When Z = Xn and the configuration G(Z) is central, λ′(Z) =
3mnλ(Z)
I(Z) QT (Z).

Proof. λ′(Z)= I(Z)U ′(Z)−U(Z)I′(Z)
I2(Z) . Since U ′(Z)=mnA

T (Z) and A(Z)=λ(Z)Q(Z)
when Z = Xn,

λ′(Z) =
I(Z)U ′(Z)− U(Z)I ′(Z)

I2(Z)
=
mnλ(Z)
I(Z)

QT (Z) +
2mnU(Z)
I2(Z)

QT (Z)

=
3mnλ(Z)
I(Z)

QT (Z).

In the next lemma, Vj(Z) = Xj − Z, j = 1, . . . , n − 1, will denote the vector
from Z to Xj , and, for T ∈ R2, Hj(T ) will denote the representation in the usual
basis of the projection of T on Vj(Z). Also, we will make use of the following:

i) If Y (Z) = g(Z)F (Z), where g : R2 → R1 and F : R2 → R2, then for T ∈
R2 Y ′(Z)T = g(Z){[F ′(Z)]T }+ {[g′(Z)]T }F (Z).

ii) V ′j (Z) = −E.
iii) (|Vj(Z)|k)′ = −k|Vj(Z)|k−2V Tj (Z).

Lemma 3.3. For T ∈ R2 and j = 1, 2, . . . , n− 1, A′j(Z)T = mn
|Vj(Z)|3 (T − 3Hj(T )).
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Proof. Aj(Z) = W −mn|Vj(Z)|−3Vj(Z) where W is constant. Thus, using i), ii),
and iii) with g(Z) = |Vj(Z)|−3 and F (Z) = Vj(Z), we have

A′j(Z)T = −mn(−|Vj(Z)|−3T + {3|Vj(Z)|−5V Tj (Z)T }Vj(Z))

=
mn

|Vj(Z)|3 (T − 3Hj(T )).

Let Bj(Z) = λ(Z)Qj(Z).

Lemma 3.4. For T ∈ R2, when Z = Xn and the configuration G(Z) is central,
B′j(Z)T = mnλ(Z)(T + 3

I(Z) (QT (Z)T )Qj(Z)), j = 1, 2, . . . , n− 1.

Proof. Using Q′j(Z) = mnE, Lemma 3.2, and i) with g(Z) = λ(Z) and F (Z) =
Qj(Z) yields

B′j(Z)T = λ(Z){mnT }+
{

3mnλ(Z)
I(Z)

QT (Z)T
}
Qj(Z)

= mnλ(Z)
(
T +

3
I(Z)

(QT (Z)T )Qj(Z)
)
.

Proposition 3.1. For T ∈ R2, when Z = Xn and the configuration G(Z) is cen-
tral,

P ′j(Z)T =
−3mn

|Vj(Z)|3

{
Hj(T ) +

λ(Z)|Vj(Z)|3
I(Z)

(QT (Z)T )Qj(Z)

−
(

1− λ(Z)|Vj(Z)|3
3

)
T

}
,

j = 1, 2, . . . , n− 1.

Proof. Lemmas 3.3 and 3.4 yield

P ′j(Z)T =
mn

|Vj(Z)|3 (T − 3Hj(T ))−mnλ(Z)
(
T +

3
I(Z)

(QT (Z)T )Qj(Z)
)

=
−3mn

|Vj(Z)|3

{
Hj(T ) +

λ(Z)|Vj(Z)|3
I(Z)

(QT (Z)T )Qj(Z)

−
(

1− λ(Z)|Vj(Z)|3
3

)
T

}
.

4. One-point isolation: The distinguished point at the center of mass

For n > 3, we show that if Xn is the center of mass of the planar central
configuration G(Xn), then there is a neighborhood of Xn, such that if Z 6= Xn is
in the neighborhood, then G(Z) is not central.

Proposition 4.1. If G(Xn) is a planar central configuration and {G(Zk)} is a
sequence of planar central configurations for which Zk 6= Xn and Zk → Xn, then
there is a unit vector T ∈ R2, independent of j, such that for j = 1, . . . , n − 1,
P ′j(Xn)T = 0.

Proof. Let ∆Zk = Zk −Xn. With no loss it can be assumed that ∆Zk
|∆Zk| → T . Now

since Pj(Xn+ ∆Zk) = Pj(Xn) = 0, P ′j(Xn) ∆Zk
|∆Zk| = Pj(Xn+∆Zk)−Pj(Xn)

|∆Zk| + o(∆Zk)
|∆Zk| =

o(∆Zk)
|∆Zk| → 0. Thus, in the limit, P ′j(Xn)T = 0.
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Theorem 4.1. If Xn is the center of mass of the planar central configuration
G(Xn), then for any unit vector T ∈ R2 there exist at most two distinct values
of j less than n for which P ′j(Xn)T = 0.

Proof. Since Xn is the center of mass, Q(Xn) = 0. Thus if j < n and P ′j(Xn)T = 0,
it follows from Proposition 3.1 that{

Hj(T )−
(

1− λ(Xn)|Vj(Xn)|3
3

)
T

}
= 0.

Thus, 1−λ(Xn)|Vj(Xn)|3
3 is an eigenvalue of the projection operator corresponding to

Hj , and hence is 0 or 1. Since 1−λ(Xn)|Vj(Xn)|3
3 < 1, it must equal 0. Hence Xj is on

a circle of radius 3

√
1

λ(Xn) centered at Xn. Additionally, the radius vector Vj(Xn)
from Xn to Xj is perpendicular to T . The result follows from the fact that there are
only two possible positions on the circle for Xj for which T can be perpendicular
to Vj(Xn).

The next corollary is used in the final section to establish a general property of
directional derivatives related to central configurations. For this purpose a change
of notation is useful. Only for this corollary, Corollary 5.1, and then as described
in the last section we will use the following assumptions and notation.

Definition 4.1. Notation and assumptions for n variable particles. It will be as-
sumed that X1, X2, . . . , Xn are variable positions of n particles in a plane having
positive masses m1,m2, . . . ,mn. X will denote the point

X1

X2

...
Xn


in R2n, and X0 will equal 

X10

X20

...
Xn0


where Xi0 is a particular position of the ith particle. λ,Aj , Qj , and Pj ; j =
1, 2, . . . , n, will be viewed as functions of X , and DPj(X0) will denote the 2 × 2n
derivative matrix of Pj(X) evaluated at X0. For any unit vector T ∈ R2, T 0

j will
denote 

X10

X20

...
Xj0 + T

...
Xn0


−X0.

Corollary 4.1. If Xn0 is the center of mass of the planar central configuration
{X10, X20, . . . , Xn0;m1,m2, . . . ,mn}, then for any unit vector T ∈ R2, there exists
at most two distinct values of j, 1 ≤ j < n, for which Limh→0+

|Pj(X0+hT 0
n)|

h = 0.
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Proof. Since Pj(X0) = 0, Limh→0+
|Pj(X0+hT 0

n)|
h = 0 yields DPj(X0)T 0

n = 0. In
the notation used prior to this corollary this means P ′j(Xn0)T = 0. With G(Xn)
replaced by {X10, X20, . . . , Xn0;m1,m2, . . . ,mn}, the result follows from Theorem
4.1.

Theorem 4.2. If n > 3 and Xn is the center of mass of the planar central config-
uration G(Xn), then there is a neighborhood of Xn such that if Z 6= Xn is in the
neighborhood, then G(Z) is not central.

Proof. If such a neighborhood did not exist, there would be a sequence of planar
central configurations {G(Zk)} for which Zk 6= Xn and Zk → Xn. From Propo-
sition 4.1, there would then exist a unit vector T ∈ R2 for which P ′j(Xn)T = 0,
j = 1, 2, . . . , n− 1, and this would contradict Theorem 4.1.

5. One-point isolation: The zero-one case

In this section we assume the central configuration G(Xn) is in “zero-one” form,
meaning that the distinguished point Xn is located at the origin and the center of
mass of the configuration is one unit to the right at (1, 0). Thus in proving isolation
for a zero-one central configuration, we will be taking Z near 0. Note that Vj(0) is

the vector from 0 to [ xjyj ]. We will therefore denote its length by rj =
√
x2
j + y2

j .
Also, for conciseness of notation, we will use λ in place of λ(0), and I in place of
I(0). We begin by obtaining the matrix P ′j(Z) when Z = 0.

Proposition 5.1. For the planar central configuration G(0), with center of mass
at (1, 0),

P ′j(0) =
−3mn

r3
j

x2
j

r2
j

+
λr3
j (1−xj)
I − 1−λr3

j

3
xjyj
r2
j

xjyj
r2
j
− λr3

j

I yj
y2
j

r2
j
− 1−λr3

j

3

 .
Proof. We note that Vj(0) = Xj and hence that Hj(T ) is the projection of T on
Xj. Thus from Proposition 3.1,

P ′j(0)
[
1
0

]
=
−3mn

r3
j

{
1
r2
j

[
x2
j

xjyj

]
+
λr3
j

I

(
QT (0)

[
1
0

])
Qj(0)−

(
1− λr3

j

3

)[
1
0

]}
.

Using Qj(0) = [ 1−xj
−yj ] and Q(0) = [ 1

0 ] gives

P ′j(0)
[
1
0

]
=
−3mn

r3
j

x2
j

r2
j

+ λr3
j (1−xj)
I − 1−λr3

j

3

xjyj
r2
j
− λr3

j

I yj

 .
Also,

P ′j(0)
[
0
1

]
=
−3mn

r3
j

{
1
r2
j

[
xjyj
y2
j

]
+
λr3
j

I

(
QT (0)

[
0
1

])
Qj(0)−

(
1− λr3

j

3

)[
0
1

]}

=
−3mn

r3
j

 xjyj
r2
j

y2
j

r2
j
− 1−λr3

j

3

 ,
and the result follows.
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According to Proposition 4.1, if one-point isolation were not to hold when G(Xn)
is in zero-one form, then P ′j(0) would be singular. For this reason we examine the
matrix that appears in the previous proposition with the goal of gaining insight
into its null space as a function of X = [ xy ], I, and λ. We’ll let

S(X ;λ, I) =

[
x2

r2 + λr3(1−x)
I − 1−λr3

3
xy
r2

xy
r2 − λr3

I y y2

r2 − 1−λr3

3

]
, where r =

√
x2 + y2.

N(X ;λ, I) will denote the null space of S(X ;λ, I).

Definition 5.1. The singularity locus is the set of nonzero X for which S(X ;λ, I)
is singular.

The next proposition gives a polar representation of the singularity locus. When
the point [ xy ] is represented in polar form the angle measured from the positive x
axis will be denoted by φ.

Proposition 5.2. The singularity locus is symmetric with respect to the x axis and
equal to the set of points whose polar coordinates, (r, φ), satisfy −3λ2 cos(φ)r7 +
(I + 3)λ2r6 + 3λ cos(φ)r4 + (6 + I − 9 cos2(φ))λr3 − 2I = 0, where r > 0, and
0 ≤ φ < 2π.

Proof. The singularity locus is determined by

Det

[
x2

r2 + λr3(1−x)
I − 1−λr3

3
xy
r2

xy
r2 − λr3

I y y2

r2 − 1−λr3

3

]
= 0.

Symmetry with respect to the x axis follows from the fact that the value of the
determinant is unchanged when y is replaced by −y.

On expanding, multiplying through by 9I, and using x = r cosφ, y = r sinφ,
x2

r2 = cos2 φ, and xy
r2 = sinφ cosφ, we get −3λ2 cos(φ)r7 +(I+3)λ2r6 +3λ cos(φ)r4 +

(6 + I − 9 cos2(φ))λr3 − 2I = 0.
With one exception, the null space of S(X ;λ, I) is one dimensional. The excep-

tion, as proved in the next lemma, occurs when λ = 1
(I+1)3 . In this case, illustrated

by Figure 5.1, there is exactly one point on the singularity locus at which it is not
one dimensional. The point is [

3

√
1
λ

0

]
which is the linking point of components which, as illustrated by Figure 5.2, are
unconnected when λ 6= 1

(I+1)3 . It should be noted that Figures 5.1 and 5.2 are
incomplete in that the component on the right is unbounded and can be shown to
have x = 1 + I

3 as a vertical asymptote. We also note that the elliptical portion of
the locus is not symmetric with respect to the y axis.

Lemma 5.1. If X is on the singularity locus, N(X ;λ, I) = R2 if and only if
λ = 1

(I+1)3 and X = [ I+1
0 ] = [ 3

√
1
λ

0
].

Proof. If λ = 1
(I+1)3 and X = [ I+1

0 ], computation gives S(X ;λ, I) = 0. Conversely,
if S(X ;λ, I) = 0, then since the upper right entry is 0, either x or y must be 0.
But if x is 0, y must be 0 in order that the lower left entry is 0. As a consequence,
since X cannot equal [ 0

0 ], we must have y = 0. Further, since the lower right entry
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Figure 5.1. The singularity locus for λ = 1
64 , I = 3

Figure 5.2. The singularity locus for λ = 1
64 , I = 3.5

is 0, λr3 = 1. Then, since x2

r2 = 1, and the upper left is 0, x must equal I + 1, and
so, λ = 1

r3 = 1
x3 = 1

(I+1)3 .

The characterization of N(X ;λ, I) will depend upon whether X is on the x axis,
the y axis, or on neither axis.

Lemma 5.2. i) If λ 6= 1
(I+1)3 , there are exactly three points on the singularity locus

corresponding to y = 0. They are [± 3
√

1
λ

0
] and [ η(λ,I)

0
], where η(λ, I) is the positive

root of the polynomial ζ(r;λ, I) = λ
I r

4 − λ(1
I + 1

3 )r3 − 2
3 .

If λ = 1
(I+1)3 , then [ 3

√
1
λ

0
] and [ η(λ,I)

0
] are identical, and there are exactly two

points on the singularity locus corresponding to y = 0.
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ii) There are exactly two points on the singularity locus corresponding to x = 0.
They are [

0
± 3
√

1
λ ( I

3+I ) ].

Proof. i) When y = 0, Det(S(X ;λ, I)) = (1 + λr3(1−x)
I − 1−λr3

3 )(− 1−λr3

3 ) =
(1−λr3

3 )(λr
3x
I − { 1

I + 1
3}λr3 − 2

3 ). Since x can equal ±r, the first factor makes
the determinant zero when x = [± 3

√
1
λ

0
]. While the second factor is nonzero (for

positive r) when x = −r, and it is zero when x = r, where r is the sole posi-

tie root of ζ(r;λ, I). This root is equal to 3

√
1
λ if and only if 0 = ζ( 3

√
1
λ ;λ, I) =

λ
I ( 1

λ)4/3 − λ(1
I + 1

3 )( 1
λ) − 2

3 = 1
I ( 3

√
1
λ − 1 − I), which is the case if and only if

λ = 1
(I+1)3 .

ii) When x = 0,

Det(S(X ;λ, I)) =
[
λr3

I
−
(

1− λr3

3

)][
2 + λr3

3

]
=

1
3

[
λr3

(
3 + I

I

)
− 1
] [

2 + λr3

3

]
.

The only y for which the determinant equals zero are those for which λr3 = I
3+I .

This gives y = ± 3

√
1
λ( I

3+I ).

When X is on the singularity locus and N(X ;λ, I) 6= R2, K(X ;λ, I) will denote
the slope of the line that constitutes N(X ;λ, I).

Proposition 5.3. Let x = [ xy ] be on the singularity locus. Then

i) if x 6= 0 and y 6= 0, K(X ;λ, I) is finite and given by

K(X ;λ, I) =
y

x

[
3 + I

I

] [( I
3+I )− λr3

1− λr3

]
.

ii) if x = 0, K(X ;λ, I) = y
2+I , where y = ± 3

√
1
λ( I

3+I ).

iii) if x = − 3

√
1
λ and y = 0, N(X ;λ, I) is spanned by [ 0

1 ], and K(X ;λ, I) is
undefined.

iv) if x = 3

√
1
λ , y = 0, and λ 6= 1

(I+1)3 , N(X ;λ, I) is spanned by [ 0
1 ], and

K(X ;λ, I) is undefined.
v) if x = η(λ, I), y = 0, and λ 6= 1

(I+1)3 , (where η(λ, I) is as defined in
Lemma 5.2), K(X ;λ, I) = 0.

Proof. i) Assume X = [ xy ] is on the singularity locus, x 6= 0 and y 6= 0. From
Lemma 5.1, y 6= 0 implies N(X ;λ, I) 6= R2. Multiplying the bottom row of
S(X ;λ, I) by x

y and subtracting the result from the top row yields the matrix

S1(X ;λ, I) =

[
λr3

I −
1−λr3

3
x
y

(
1−λr3

3

)
xy
r2 − λr3

I y y2

r2 − 1−λr3

3

]
.

If λr3 = 1, then Det(S(X ;λ, I)) = Det(S1(X ;λ, I)) = y2

Ir2 6= 0. But this is not
possible, and thus λr3 6= 1. Since S1(X ;λ, I) and S(X ;λ, I) have identical row and
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null spaces, S1(X ;λ, I) is singular, but not the zero matrix. Now its upper right
entry is nonzero, and so its top row spans its row space. Hence[

−xy
(

1−λr3

3

)
λr3

I −
1−λr3

3

]
is a basis for its null space. Thus K(X ;λ, I) is finite and given by

K(X ;λ, I) =

(
λr3

I −
1−λr3

3

)
−xy

(
1−λr3

3

) =
y

x

[
3 + I

I

]
(

I
3+I

)
− λr3

1− λr3

 .
ii) Assume X = [ xy ] is on the singularity locus and x = 0. From Lemma 5.1,

x = 0 implies N(X ;λ, I) 6= R2. Now the bottom row of S(X ;λ, I) satisfies [xyr2 −
λr3

I y y2

r2− 1−λr3

3 ] = [−λr3

I y 2+λr3

3 ]. Since the row on the right is not the zero row,

it spans the row space of S(X ;λ, I). Therefore K(X ;λ, I) = (λr
3
I y)

( 2+λr3
3 )

= 3λr3y
I(2+λr3) =

y
2+I . The complete result follows by using Part ii) of Lemma 5.2.

iii) From Lemmas 5.1 and 5.2 it is seen that X = [− 3
√

1
λ

0
] is on the singularity

locus and N(X ;λ, I) 6= R2. For this X , the top row of S(X ;λ, I) is nonzero and

equal to [1 + (1+ 3
√

1
λ )

I 0]. Thus N(X ;λ, I) is spanned by [ 0
1 ].

iv) From Lemmas 5.1 and 5.2, with λ 6= 1
(I+1)3 , it is seen that X = [ 3

√
1
λ

0
] is on

the singularity locus and N(X ;λ, I) 6= R2. For this X , the top row of S(X ;λ, I) is
equal to [ (I+1− 3

√
1
λ

)

I 0 ] and is nonzero. Thus N(X ;λ, I) is spanned by [ 0
1 ].

v) From Lemmas 5.1 and 5.2, with λ 6= 1
(I+1)3 , it is seen that X = [ η(λ,I)

0
]

is on the singularity locus and N(X ;λ, I) 6= R2. Also, Lemma 5.2, Part i) gives

η(λ, I) 6= 3

√
1
λ when λ 6= 1

(I+1)3 . So for the given X the bottom row of S(X ;λ, I)

is equal to [0 − (1−λ(η(λ,I))3

3 )] and is nonzero. Thus N(X ;λ, I) is spanned by [ 1
0 ]

and K(X ;λ, I) = 0.
According to Proposition 4.1, were one-point isolation not to hold when G(Xn)

is in zero-one form, then the points X1, X2, . . . , Xn−1 would all be located on the
singularity locus. Additionally, there would exist a unit vector T which would be
contained in

⋂n−1
j=1 N(Xj;λ, I).

Our goal is to show this is impossible when n > 4. Thus our next step is to
determine an upper bound on the number of points on the singularity locus for
which a given unit vector T can be contained in each of the corresponding null
spaces. We will divide the task into cases. We begin with horizonal and vertical
unit vectors.

Proposition 5.4. Given any λ, I > 0,
i) if T = [ 0

1 ], there are exactly two X on the singularity locus for which T ∈
N(X ;λ, I),

ii) if T = [ 1
0 ], there are at most three X on the singularity locus for which

T ∈ N(X ;λ, I).

Proof. i) If λ 6= 1
(I+1)3 , Lemma 5.1 implies that N(X ;λ, I) is one dimensional for

all X on the singularity locus. In this case, Proposition 5.3 gives the slope of the
line that constitutes N(X ;λ, I). The result follows from the fact that K(X ;λ, I) is
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undefined if and only if X = [± 3
√

1
λ

0
]. Again using Lemma 5.1 and Proposition 5.3,

if λ = 1
(I+1)3 , it is seen that N(X ;λ, I) is two dimensional when X = [ 3

√
1
λ

0
] and,

in the one dimensional cases, K(X ;λ, I) is undefined if and only if X = [− 3
√

1
λ

0
].

So in any case, for any λ, I > 0, T ∈ N(X ;λ, I), if and only if X = [± 3
√

1
λ

0
].

ii) First, let X be on the x axis. From Lemma 5.2, if λ 6= 1
(I+1)3 , there are

three such X . According to Proposition 5.3, the only one of the these for which
K(X ;λ, I) = 0, is X = [ η(λ,I)

0
]. If λ = 1

(I+1)3 , there ae two such X , X = [± 3
√

1
λ

0
].

N(X ;λ, I) is two dimensional when X = [ 3
√

1
λ

0
] and K(X ;λ, I) is undefined when

X = [− 3
√

1
λ

0
]. Thus, in any case, there is exactly one point on the x axis for

which T ∈ N(X ;λ, I). Now, if X is not on the x axis, Proposition 5.3 reveals that

K(X ;λ, I) = 0 if and only if x 6= 0 and λr3 = ( I
3+I ). Substituting r = 3

√
( I

3+I ) 1
λ

into the equation of the singularity locus (as given in Proposition 5.2) and solving

for cos(φ) gives cos(φ) = 0 and cos(φ) = ( 1
3+I ) 3

√
( I

3+I ) 1
λ . Since x 6= 0, the solution

cos(φ) = 0 does not corresponding to a point on the singularity locus at which

K(X ;λ, I) = 0. The solution cos(φ) = ( 1
3+I ) 3

√
( I

3+I ) 1
λ corresponds to at most two

points on it (one in the first and one in the fourth quadrant) where K(X ;λ, I) = 0.

However, it may not correspond to any points if ( 1
3+I ) 3

√
( I

3+I ) 1
λ > 1. So in total

there are at most three points on the singularity locus for which T ∈ N(X ;λ, I).
Determining the upper bound in the cases in which T is neither vertical nor

horizontal requires greater effort. A new parameter k will be used. It represents
the slope of T , defined to equal t2

t1
when T = [ t1t2 ] and t1 6= 0. In the subsequent

analysis k will be taken to be positive. The results for k < 0 will follow from those
established for k > 0.

The upper bound we seek equals the maximum number of points common to
two polar loci. The polar equations used in defining the loci are

Polar Equation 1 (PE1): r = 3

√
I

λ(3+I) (Ω(φ))1/3, where

Ω(φ) =
sin(φ)− k cos(φ)

sin(φ)−
(
kI

3+I

)
cos(φ)

.

Polar Equation 2 (PE2): r = Θ(φ), where

Θ(φ) =
(3 + I − Ik2) cos(φ) sin(φ) + k(3 + 2I) sin2(φ)− k(I + 1)

sin(φ)− k cos(φ)
.

PE1 is obtained by using the formula for K(X ;λ, I) that appears in Proposi-
tion 5.3 Part i). K(X ;λ, I) is replaced by k, y by r sin(φ), and x by r cos(φ), and
then the equation is solved for r, where it is assumed that sin(φ) 6= 0 and cos(φ) 6= 0.

PE2 is obtained by using the formula for the singularity locus as given in Propo-
sition 5.2 together with PE1. (The latter yields λr3 = I

(3+I)Ω(φ).) Making the
following replacements in the singularity locus formula and then solving for r re-
sults in PE2: λ2r7 by r( I

(3+I)Ω(φ))2, λ2r6 by ( I
(3+I)Ω(φ))2, λr4 by r( I

(3+I)Ω(φ)),
and λr3 by I

(3+I)Ω(φ).
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Thus, if X = [ xy ] is on the singularity locus, where x 6= 0, y 6= 0, and T ∈
N(X ;λ, I) is a unit vector with slope k, then X satisfies PE1 and PE2, where
r =

√
x2 + y2 is positive in each of the equations. The two polar loci (Locus A and

Locus B), for which we seek an upper bound on the number of points in common,
are given by PE1 and PE2 over the intervals on which both yield a positive value
of r. The next lemma gives the intervals. The loci are defined after the lemma.
The following angles will be used:

φ1 = arctan

(
−3− I + Ik2 +

√
8k2 + (3 + I + Ik2)2

2k(2 + I)

)
,

φ2 = arctan

(
−3− I + Ik2 −

√
8k2 + (3 + I + Ik2)2

2k(2 + I)

)
+ π,

φ3 = arctan

(
−3− I + Ik2 +

√
8k2 + (3 + I + Ik2)2

2k(2 + I)

)
+ π,

φ4 = arctan

(
−3− I + Ik2 −

√
8k2 + (3 + I + Ik2)2

2k(2 + I)

)
+ 2π.

Lemma 5.3. i) For 0 ≤ φ < 2π and k > 0, Ω(φ) is defined and positive if and
only if one of the following conditions hold: 0 ≤ φ < arctan( kI

3+I ); arctan(k) < φ <

arctan( kI
3+I ) + π; arctan(k) + π < φ < 2π.

ii) For 0 ≤ φ < 2π and k > 0, Θ(φ) is defined and positive if and only if one of the
following conditions hold: 0 ≤ φ < φ1; arctan(k) < φ < φ2; φ3 < φ < arctan(k)+π;
φ4 < φ < 2π.

iii) For 0 ≤ φ < 2π and k > 0, Ω(φ) and Θ(φ) are both defined and positive if
and only if one of the following conditions hold: 0 ≤ φ < arctan( kI

3+I ); arctan(k) <
φ < φ2; φ4 < φ < 2π.

Proof. i) The sign changes of Ω(φ) occur at points where either the numerator or
denominator is 0. These are determined by either tan(φ) = k or tan(φ) = kI

3+I . An
examination of the sign of Ω(φ) between successive points at which there is a sign
change gives the result.

ii) The sign changes of Θ(φ) occur at points where either the numerator or
denominator is 0. The denominator is 0 when φ = arctan(k) or φ = arctan(k) +
π. Since the numerator is nonzero when cos(φ) = 0, we can find its zeros by
dividing through by cos2(φ) and setting the result to 0. This equation can be
written as β(tan(φ)) = 0, where β is a polynomial which given as a function of
t is β(t) = k(2 + I)t2 + (3 + I − Ik2)t − k(1 + I). The solutions are tan(φ) =
−3−I+Ik2±

√
8k2+(3+I+Ik2)2

2(2+I)k . Since the plus sign yields a positive value for tan(φ)
and the minus sign a negative value for tan(φ), the solutions in terms of φ, 0 ≤ φ <
2π, are, in increasing order of magnitude, φ1, φ2, φ3, φ4.

To insert the denominator zeros in this sequence, we use the fact that k >
−3−I+Ik2+

√
8k2+(3+I+Ik2)2

2k(2+I) . This is seen from the relations

(2k2(2 + I)− (−3− I + Ik2))2 = ((3 + I + Ik2) + 4k2)2

= (3 + I + Ik2)2 + 8k2(Ik2 + 3 + I) + 16k4 > (3 + I + Ik2) + 8k2.
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Figure 5.3. PE1 (solid curve), PE2 (dashed curve); λ = 1, I =
1, k = 1

Thus 0 < φ1 < arctan(k) < φ2 < φ3 < arctan(k) + π < φ4 < 2π. Since the
numerator and denominator zeros are all simple there is a sign change of Θ(φ) at
each zero. Combining this with Θ(0) = I + 1 > 0 yields the result.

iii) We use the fact that kI
3+I <

−3−I+Ik2+
√

8k2+(3+I+Ik2)2

2k(2+I) , which is seen from

the relations 2k2I(2+I)
3+I − (−3 − I + Ik2) = (3 + I + ( I+1

3+I )Ik2) < 3 + I + Ik2 <√
8k2 + (3 + I + Ik2)2. From this it follows that arctan( kI

3+I ) < φ1 and arctan( kI
3+I )

+ π < φ3. Hence 0 < arctan( kI
3+I ) < φ1 < arctan(k) < φ2 < arctan( kI

3+I ) + π <

φ3 < arctan(k) + π < φ4 < 2π, and the intervals on which both functions are
defined and positive follow from those in parts i, ii.

In light of Part iii of the previous lemma we define the loci as the points in the
plane determined by the following relations:

Locus A. r = 3

√
I

λ(3+I) (Ω(φ))1/3; arctan(k) < φ < φ2 or φ4 < φ < arctan( kI
3+I )

+ 2π.

Locus B. r = Θ(φ); arctan(k) < φ < φ2 or φ4 < φ < arctan( kI
3+I ) + 2π.

For λ = 1, I = 1, k = 1, Figure 5.3 illustrates the loci by presenting plots of PE1
and PE2 over the φ intervals, respectively given in parts i, ii of the previous lemma,
for which the r values are positive. The plots necessarily have been truncated for φ
near the singular values. The angles in degrees are approximately arctan(k) = 45◦,
arctan( kI

3+I ) = 14.04◦, φ1 = 24.58◦, φ2 = 124.46◦, φ3 = 204.58◦, φ4 = 304.46◦.
Note that Locus A is a subset of of the solid curve and Locus B a subset of the

dashed curve. Note also that X = 0 is not common to the two loci.
The number of intersections of the two loci on arctan(k) < φ < φ2 will be found

by showing that r as defined in Locus A is increasing, and r as defined in Locus B
is decreasing.

Lemma 5.4. For any k, I > 0, Ω′(φ) > 0 on the interval arctan(k) < φ < φ2.
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Proof. The result follows from the fact that Ω′(φ) = 3k
(3+I)(sin(φ)− Ik

3+I cos(φ))2 > 0.

Lemma 5.5. For any k, I > 0,Θ′(φ) < 0 on the interval arctan(k) < φ < φ2.

Proof. In the formula for Θ(φ), replace sin2(φ) by 1−cos(2φ)
2 and sin(φ) cos(φ) by

sin(2φ)
2 . Differentiate by the quotient rule and then divide the numerator of the

derivative by cos(φ) cos(2φ). Express this quotient in terms of tan(φ) and multiply
the result by cos(φ) cos(2φ) where cos(2φ) is expressed in terms of tan(φ). Com-
bine expressions and obtain Θ′(φ) = sec(φ)

(k−tan(φ))2(1+tan2(φ))Q(tan(φ)), where Q is a
polynomial, which when given as a function of t is

Q(t) = k(k2I − 2)− k2(5 + 3I)t+ k(4 + 3I)t2 − (3 + I + 2k2)t3.

Since the zeros ofQ′(t) are (4+3I)k±
√
−k2(29+18I+30k2+18Ik2)

3(3+I+2k2) and are both nonreal, it
follows that Q is a decreasing function of t for all t. From Q(k) = −2k(k2 +1)2 < 0
it then follows that Θ′(φ) < 0 for arctan(k) < φ < π

2 . The singularity at π
2

in the above representation of Θ′(φ) is removable and Θ′(π2 ) = −(3 + I + 2k2).
To show Θ′(φ) < 0 when π

2 < φ < φ2 we need to show Q(t) > 0 for −∞ <

t <
−3−I+Ik2−

√
8k2+(3+I+Ik2)2

2k(2+I) . Since Q is positive for large negative t and is

decreasing, we need only show Q(−3−I+Ik2−
√

8k2+(3+I+Ik2)2

2k(2+I) ) > 0. This will be

true if Q(−3−I+Ik2−(3+I+Ik2)
2k(2+I) ) = Q( −3−I

k(2+I) ) > 0. Since in the evaluation of Q at
t = −3−I

k(2+I) the cubic and quadratic terms are positive, it need only be shown that
k(k2I − 2) − k2(5 + 3I)( −3−I

k(2+I) ) > 0. But this is true because the product of the
left side of the inequality and 2+I

k is equal to (2 + I)Ik2 + 11 + 12I + 3I2.
The number of intersections on φ4 < φ < arctan( kI

3+I ) + 2π will be shown to be
bounded above by two. This will be accomplished by showing that r as defined in
Locus A has a positive second derivative and r as defined in Locus B has a negative
second derivative.

Lemma 5.6. For any k, I > 0, the function r(φ) = (Ω(φ))1/3 has a positive second
derivative on the interval φ4 < φ < arctan( kI

I+3 ) + 2π.

Proof. According to part iii) of Lemma 5.3, Ω(φ) is defined and positive on this
interval. We can express the second derivative of r as r′′(φ) = Ω(φ)Ω′′(φ)− 2

3 (Ω′(φ))2

3(Ω(φ))5/3 .
By performing some extensive manipulation, after differentiating with Ω(φ) in
the form Ω(φ) = tan(φ)−k

tan(φ)−( kI
3+I )

, it can be shown that Ω(φ)Ω′′(φ) − 2
3 (Ω′(φ))2 =

6k(3+I)2R(tan(φ))
((3+I) tan(φ)−Ik)4 where R is a polynomial, which when given as a function of t is
R(t) = (1 + t2)(−k(1 + I)t2 + (−3 − I + Ik2)t + (2 + I)k). The second factor in

R(t) is positive between its real zeros which are −3−I+Ik2±
√

8k2+(3+I+Ik2)2

2k(1+I) . But
−3−I+Ik2−

√
8k2+(3+I+Ik2)2

2k(1+I) = (2+I
1+I ) tan(φ4) < tan(φ4) and

−3− I + Ik2 +
√

8k2 + (3 + I + Ik2)2

2k(1 + I)
= (

2 + I

1 + I
) tan(φ1) > tan(φ1) >

kI

3 + I
.

Hence R(tan(φ)) is positive in the interval φ4 < φ < arctan( kI
I+3 ) + 2π and the

result follows.
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Lemma 5.7. For any k, I > 0, Θ(φ) has a negative second derivative on the in-
terval φ4 < φ < arctan( kI

I+3 ) + 2π.

Proof. Extensive manipulation reveals that Θ′′(φ) = cos(φ)w(tan(φ))
(k−tan(φ))3 . w(t) =

(t− k)2β(t)− 4(k+ k3)(t2 + 1)2 and β(t) is the polynomial defined in Part ii of the
proof of Lemma 5.3. From the proofs of Parts ii, iii of this same lemma it is seen that
the two distinct real roots of β(t) = 0 are t = tan(φ1) and t = tan(φ4) and that β(t)
is negative when t is between these roots. Further, 3π

2 < φ4 < arctan( kI
I+3 ) + 2π <

φ1 + 2π < arctan(k) + 2π < 2π + π
2 . Thus, if φ4 < φ < arctan( kI

I+3 ) + 2π, then
tan(φ4) < tan(φ) < tan(φ1), k− tan(φ) > 0, cos(φ) > 0, and β(tan(φ)) < 0. Hence
w(tan(φ)) < 0 and therefore Θ′′(φ) < 0.

Proposition 5.5. For any k, I, λ > 0, Locus A and Locus B have at most three
points in common.

Proof. Lemmas 5.4 and 5.5 imply that h(φ) = 3

√
I

λ(3+I) (Ω(φ))1/3−Θ(φ) is a strictly

increasing function of φ on the interval arctan(k) < φ < φ2. Since Ω(arctan(k)) = 0,
Θ(φ) → +∞ as φ → (arctan(k))+, Ω(φ2) > 0, and Θ(φ2) = 0, h takes on both
positive and negative values on this interval. Hence the loci have exactly one point
in common when φ is in the interval arctan(k) < φ < φ2.

Lemmas 5.6 and 5.7 imply that h′′(φ) > 0 on the interval φ4 < φ < arctan( kI
I+3 )+

2π. Hence h can have at most two distinct zeros on this interval. Thus the loci
have at most three points in common.

Proposition 5.6. For any λ, I > 0 and any unit vector T , there are at most three
X on the singularity locus for which T ∈ N(X ;λ, I).

Proof. The cases in which T is horizontal or vertical are covered by Proposition 5.4.
When T is a nonvertical unit vector with slope k 6= 0 we break the proof into cases:

Case a): k > 0.
Let X = [ xy ] and assume T ∈ N(X ;λ, I).
Subcase i) x 6= 0, y 6= 0: According to the definition of the loci, X is on both

Locus A and Locus B.
Subcase ii) x = 0: Since k > 0, according to Lemma 5.2 Part ii and Propo-

sition 5.3 Part ii, X = [
0

+ 3
√

1
λ ( I

3+I ) ] and k = + 3
√

1
λ

( I
3+I )

2+I
. Taking φ = π

2 and

r = + 3

√
1
λ( I

3+I ), it is seen that X is on both Locus A and Locus B.
Subcase iii) y = 0: It follows from Lemma 5.1, Lemma 5.2 Part i, and Proposi-

tion 5.3 Parts iii, iv, v that λ = 1
(1+I)3 and X = [ I+1

0 ] = [ 3
√

1
λ 0 ]. In this case, the

polar coordinates, (r, φ), of X are ( 3

√
I
λ , 0). Since 3

√
1
λ = 3

√
I

λ(3+I) (Ω(0))1/3, X is

on Locus A. Also, since 3

√
1
λ = I + 1 = Θ(0), X is on Locus B.

So whenever k > 0 and T ∈ N(X ;λ, I), X is common to both Locus A and
Locus B. The result follows from Proposition 5.5 which states that at most three
such X exist.

Case b) k < 0: Let X = [ xy ] and assume T ∈ N(X ;λ, I). Set X∗ = [ x
−y ] and

let T ∗ be a unit vector with slope −k > 0. According to Proposition 5.2, X∗ is
on the singularity locus. From Lemmas 5.1, 5.2 and Proposition 5.3 it follows that
T ∗ ∈ N(X∗;λ, I). From Case a) there are at most three such X∗ and hence for
k < 0 there are at most three X for which T ∈ N(X ;λ, I).
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The notation of Definition 4.1 is used in the following corollary.

Corollary 5.1. If Xn0 = 0 and {X10, X20, . . . , Xn0;m1,m2, . . . ,mn} is a zero-one
form planar central configuration, then for any unit vector T ∈ R2, there exists at
most three distinct values of j, 1 ≤ j < n, for which Limh→0+

|Pj(X0+hT 0
n)|

h = 0.

Proof. If the limit is 0, DPj(X0)T 0
n = 0. In the “non-Definition 4.1 notation” this

means P ′j(Xn0)T = 0. Hence Xj0 is on the singularity locus and T ∈ N(Xj0;λ, I)
and the result follows from Proposition 5.6.

Proposition 5.7 (One-Point Isolation; Zero-One Form). If n > 4 and G(Xn) is a
zero-one planar central configuration, there is a neighborhood of Xn = 0, such that
if Z 6= Xn is in the neighborhood, then G(Z) is not central.

Proof. If such a neighborhood did not exist there would exist a sequence of planar
central configurations {G(Zk)} for which Zk 6= Xn and Zk → Xn = 0. Hence,
according to Proposition 4.1 and the definitions associated with the singularity
locus, there would exist a unit vector T for which T ∈ N(Xj ;λ, I), j = 1, 2, . . . , n−1.
I > 0 is the moment of inertia of G(Xn) about the center of mass (1, 0), and
λ = U

I > 0, where U is the Newtonian potential of G(Xn). But, since n − 1 > 3,
the existence of n − 1 distinct Xj for which T ∈ N(Xj;λ, I) would contradict
Proposition 5.6. Hence, such a neighborhood exists, and the proposition is proved.

6. The main results

In this section we prove the general one-point isolation theorem and then use it
to prove that only a finite number of planar central configurations can be generated
by augmenting a given n − 1 point planar configuration with an additional mass.
We also gather results used in these proofs to state general results about directional
derivatives and derivative matrices at central configurations. Finally, we use these
to describe how much destruction of the centrality property must occur when a
single point in a central configuration is perturbed.

Theorem 6.1 (One-Point Isolation). If n is greater than 2 and not equal to 4, and
if G(Xn) is a planar central configuration of n points, then there is a neighborhood
of Xn, such that if Z 6= Xn is in the neighborhood, then G(Z) is not a planar
central configuration.

Proof. If n = 3, the result follows from the fact that there are exactly 5 Z for which
G(Z) is a central configuration.

In light of Theorem 4.2, when n is greater than 4, it is only necessary to consider
the case in which the distinguished point Xn is not the center of mass. In this
case, if such a neighborhood did not exist, then, because the central configuration
property is maintained by translation, rotation, or change of scale, there would
exist a zero-one planar central configuration of more than 4 points for which one-
point isolation did not hold. Since this would contradict Proposition 5.7, such a
neighborhood exists and the theorem is proved.

It should be noted that the finite number stated in the next theorem may in fact
be zero. Examples in which this occurs can be created by tightly clustering proper
subsets of the n− 1 points. See Buck [1].

Theorem 6.2. Let n be greater than 2 and not equal to 4, and let X1, X2, . . . , Xn−1

be distinct fixed points in a plane at which are located nonzero masses m1,m2,
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. . . ,mn−1. Then, given an nth mass mn > 0, there are only a finite number of Z in
the same plane, distinct from X1, X2, . . . , Xn−1, at which one may locate this addi-
tional mass and thereby make the n-point configuration G(Z) = {X1, X2, . . . , Xn−1,
Z;m1,m2, . . . ,mn−1,mn} central.

Proof. Assume there were an infinite number of Z in the same plane which would
make G(Z) a planar central configuration. It follows that there would then ex-
ist a sequence Y1, Y2, Y3, . . . of distinct points in this plane which had the prop-
erty that the corresponding planar configurations G(Yi) were central and which
also satisfied at least one of the following three conditions: i) the sequence is
bounded and contains a subsequence which converges to an Xn that is distinct from
X1, X2, . . . , Xn−1, ii) the sequence is bounded and contains a subsequence which
converges to one of the Xj, j = 1, 2, . . . , n− 1, iii) the sequence is unbounded. The
proof consists of considering the three cases corresponding to conditions i, ii, and
iii, and showing that in each case such a sequence Y1, Y2, Y3, . . . cannot exist.

Case i): Let Z1, Z2, Z3, . . . be a subsequence with the property that Zk → Xn

and G(Zk) is central. Using the notation of Section 2, G(Z) is central when A(Z)−
λ(Z)Q(Z) = 0 and Pj(Z) = 0, j = 1, 2, . . . , n− 1. Since the expressions on the left
side of these equalities are continuous functions of Z at Z = Xn, it follows that
G(Xn) is central. But then Zk → Xn and G(Zk) central contradicts Theorem 6.1.
Hence condition i in conjunction with the centrality of the configurations G(Yi) is
impossible.

Case ii): Let Z1, Z2, Z3, . . . be a subsequence with the property that Zk → Xj

and G(Zk) is central, where j is some fixed integer between 1 and n − 1. Since
rk = |Zk −Xj| → 0, it follows that |Aj(Zk)| ∼ mn

r2
k

, U(Zk) ∼ mnmj
rk

, and I(Zk)→
I∗ 6= 0 (since n > 2). Further, |Qj(Zk)| → C∗ < ∞, and thus for large k,
|λ(Zk)Qj(Zk)| < 2(C∗+1)(mnmj+1)

I∗rk
< mn

2r2
k
< |Aj(Zk)|. This contradicts the fact

that Pj(Zk) = 0 for all k. Hence condition ii in conjunction with the centrality of
the configurations G(Yi) is impossible.

Case iii) Let Z1, Z2, Z3, . . . be a subsequence with the property that |Zk| → ∞
and G(Zk) is central. With M =

∑n−1
j=1 mj and rk = |Zk|, we have I(Zk) ∼

M(1 −M)r2
k, U(Zk) → U∗ 6= 0 (since n > 2), |A(Zk)| ∼ M

r2
k

, and |Q(Zk)| ∼ Mrk.

Hence λ(Zk) ∼ U∗

M(1−M)r2
k

and |λ(Zk)Q(Zk)| ∼ U∗

(1−M)rk
. Thus when k is large

|A(Zk)| < |λ(Zk)Q(Zk)|. Since this contradicts the centrality of G(Zk), condition
iii in conjunction with the centrality of the configurations G(Yi) is impossible.

One-point isolation can be viewed as a consequence of each of the remaining
theorems in the paper. These are of interest apart from the theorem. They capture
more completely the results that led to it and ultimately to the proof of Theorem 6.2.

In Theorems 6.3, 6.4, 6.5, and 6.6 the notation and assumptions of Definition 4.1
will be used. If F (X) : R2n → R2 and T ∈ R2 is a unit vector, we define the
directional derivative at X0 of F with respect to Xj in the direction T to be

Limh→0+
F (X0+hT 0

j )−F (X0)

h . It will be denoted by Dj,TF (X0).

Theorem 6.3. If n > 4 and the planar configuration {X10, X20, . . . , Xn0;m1,m2,
. . . ,mn} is central, then for any k, 1 ≤ k ≤ n, and any unit vector T ∈ R2, there
exist at most three distinct values of j, 1 ≤ j ≤ n, and different from k, for which
Dk,TPj(X0) = 0.
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Proof. For consistency with previous results we begin by reindexing the particles
so that the kth is denoted as the nth and the nth as the kth. So with no loss we
need only establish the result for k = n.

Case i: Xn0 is not the center of mass.
In is case there is a transformation H which transforms {X10, X20, . . . , Xn0;m1,

m2, . . . ,mn} to zero-one form. H consists of a translation which moves Xn0 to the
origin, followed by a rotation R about the origin which puts the center of mass
of the translated configuration on the positive x axis, and then finally followed by
a scale change which multiplies distances by a factor of c > 0 and results in the
center of mass being located at [ 1

0 ]. Using X̃j to denote H(Xj), it follows that
X̃n0 = 0 and the configuration {X̃10, X̃20, . . . , X̃n0;m1,m2, . . . ,mn} is central and
in zero-one form. The transformation also causes X0 + hT 0

n to be transformed to
X̃0 + h̃T̃ 0

n , where X̃0 is obtained from X0 by replacing Xi0 by X̃i0, T̃ = R(T ), and
h̃ = ch.

Since |Pj(X̃0 + h̃T̃ 0
n)| = 1

c2 |Pj(X0 + hT 0
n)|, if j < n and Dn,TPj(X0) = 0,

then 0 = Limh→0+
Pj(X

0+hT 0
n)−Pj(X0)
h = Limh→0+

Pj(X
0+hT 0

n)
h , and consequently

Limh̃→0+
|Pj(X̃0+h̃T̃ 0

n)|
h̃

= 1
c3 Limh→0+

|Pj(X0+hT 0
n)|

h = 0. From Corollary 5.1, there

are at most three distinct j less than n for which Limh̃→0+
|Pj(X̃0+h̃T̃ 0

n)|
h̃

= 0. Hence
there are at most three distinct j less than n for which Dn,TPj(X0) = 0.

Case ii: Xn0 is the center of mass.
As in Case i, if j < n and Dn,TPj(X0) = 0, then Limh→0+

|Pj(X0+hT 0
n)|

h = 0.
From Corollary 4.1, there are at most two distinct j less than n for which this
limit can hold. Hence there are at most two distinct j less than n for which
Dn,TPj(X0) = 0. This completes the proof.

Selecting four of the n particles for special consideration, which with no loss we
assume to be the first four, we define

P (X ; 4) =


P1(X)
P2(X)
P3(X)
P4(X)

 .
P (X) will be defined by

P (X) =


P1(X)
P2(X)

...
Pn(X)

 .
DP (X0) will denote the 2n × 2n derivative matrix of P (X) evaluated at X0 and
DP (X0; 4) the 8× 2n derivative matrix of P (X ; 4) evaluated at X0. In each of the
derivative matrices, columns 2k−1 and 2k correspond respectively to differentiation
with respect to xk and yk, where Xk = [ xkyk ].

Theorem 6.4. Whenever n > 4, k > 4, and the planar configuration {X10, X20,
. . . , Xn0;m1,m2, . . . ,mn} is central, columns 2k−1 and 2k of the derivative matrix
DP (X0; 4) are independent.
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Proof. If they were not independent, there would exist a unit vector T such that
DP (X0; 4)T 0

k = 0. This would imply Dk,TPj(X0) = 0, j = 1, 2, 3, 4, contradicting
Theorem 6.3.

Theorem 6.5. For 1 ≤ k ≤ n, whenever n > 4 and the planar configuration
{X10, X20, . . . , Xn0;m1,m2, . . . ,mn} is central, columns 2k − 1 and 2k of the de-
rivative matrix DP (X0) are independent.

Proof. Choose k and reindex the configuration so that kth mass becomes the fifth
mass. It follows from the previous theorem that in the derivative matrix associated
with the reindexing the subcolumns consisting of the upper 8 rows of the 9th and
10th columns are independent and hence the entire columns are independent. Thus
columns 2k − 1 and 2k of the original derivative matrix DP (X0) are independent.

The final theorem states that a slight perturbation in the position of any single
point-mass in a planar central configuration of more than 4 points destroys the
centrality property for at least n− 4 of the nonperturbed masses.

Theorem 6.6. There exists a disk centered at each point mass in a planar central
configuration of more than 4 points such that if that mass alone is perturbed and
moved from the center of the disk to some other point in the disk, then the centrality
property is destroyed for at least n− 4 of the unperturbed masses.

Proof. Let the central configuration be {X10, X20, . . . , Xn0;m1,m2, . . . ,mn}. As-
sume the mass to be perturbed is located at Xn0. If such a disk did not exist,
there would exist a sequence {Ti} of unit vectors in R2 and sequences {hi} and
{ji, ki, li, ni} such that i) hi → 0, ii) 1 ≤ ji < ki < li < ni < n, and iii) when the
mass located at Xn0 is moved to Xn0 + hiTi the unperturbed masses located at
Xji , Xki , Xli , Xni possess the centrality property. By considering convergent subse-
quences, it can be assumed that Ti → T , and ji = j1, ki = k1, li = i1, and ni = n1.
With

T 0
i,n =



X10

X20

...
Xj0

...
Xn0 + Ti


−X0,

we have 0 = Pj1(X0 + hiT
0
i,n) = Pj1(X0 + hiT

0
i,n) − Pj1 (X0) = DPj1(X0)hiT 0

i,n

+ o(hi) = DPj1(X0)hiT 0
n + DPj1(X0)hi(T 0

i,n − T 0
n) + o(hi). Consequently, 0 =

DPj1(X0)T 0
n+εi, where εi → 0. Thus 0 = DPj1(X0)T 0

n = Dn,TPj1 (X0). Since this
is also true when j1 is replaced by either k1, l1, or n1, we arrive at a contradiction
based upon Theorem 6.3.
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