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THE NUMBER OF T2-PRECOMPACT GROUP TOPOLOGIES
ON FREE GROUPS

DIETER REMUS

ABSTRACT. It is shown that every free group F admits exactly 22 Th-

precompact group topologies. Those topologies can even be chosen to be finer

than the finite-index topology on F.

1. Introduction. J. 0. Kiltinen has proven in [12] that every infinite abelian

group G admits 22 Hausdorff group topologies, the maximum number possible.

K. P. Podewski, in turn, has confirmed this result in [13]. Without making use of

the quoted result, it is differently proven in [2, 14, 15] that, in Kiltinen's statement,

"Hausdorff" may be substituted by "T2-precompact." (A topological group is said

to be T2-precompact (by some authors: totally bounded) if it is Hausdorff and

precompact with respect to its left (right) uniformity. It is well-known that this

property is fulfilled if and only if the topological group is (topologically) isomorphic

to a dense subgroup of a compact group.)

The question that suggests itself is whether there exist classes of nonabelian

groups for which correspondent statements are valid. The existence of infinite

nonabelian groups which are not nondiscretely topologizable to become Hausdorff

topological groups has already been established in [1, 3, 6, 16]. Pertaining to

the raised question, the author has proven that there exist 22 Hausdorff group

topologies on every free group F [14, (5.7), p. 85].

Using only in the abelian case one of the results mentioned above, it is shown in

this paper that there exist exactly 22 T2-precompact group topologies on every

free group F (Theorem 1). In Theorem 2 one intensifies this result, making use

of the methods applied in the proof of Theorem 1. Theorem 2 states that the T2-

precompact group topologies in question can always be chosen to be finer than the

finite-index topology. (The latter topology is Hausdorff from [5, pp. 128-129] and

therefore T2-precompact.)

For further results concerning the topologizability of groups, see [3, §9].

2. Notation and conventions. Algebraically isomorphic groups will be iden-

tified. Except for this convention, notations from the theory of abelian groups have

been taken from [4]. In particular, r(G) means the rank of an abelian group G. \X\

denotes the cardinality of a set X and tx the discrete topology on X. Let r be a

topology on X. When possible, (X, t) will be shortened to X.

Let (bG,br), resp. b:G —► bG, be the Bohr-compactification of a topological

group (G, t) or the corresponding Bohr-homomorphism, resp. (cf. [8, Chapter V,

§4]). Let GT be the character group of a topological group G. For details on

Pontrjagin duality see [7]. For topological groups G and H, one writes G = H if
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some function from G onto H is both a group isomorphism and a homeomorphism.

Z, Q, R stand for the integers, the rationals, the reals, respectively. T denotes the

torus group endowed with the usual compact topology.

The end of each proof is indicated by the symbol D.

3. Results. The proof of Theorem 1 is carried out by using four lemmas. In

[14] Lemmas 1 and 2 are shown in full detail. But for the reader's convenience, the

proofs of the two lemmas will be outlined here.

LEMMA 1 [14, (3.9), p. 69]. Let G be a locally compact abelian group. Then

the lattice LA(G) of closed subgroups of G is anti-isomorphic to the lattice LA(G~)

of closed subgroups of CT.

PROOF. For H G LA(G?) let A{GT, H) be the annihilator of H in CT[7, (23.23)].

A(GT,H) is a closed subgroup of GT, because of [7, (23.24)(c)]. Now consider the

function F:LA(G) -> LA((T), defined by F(H) = A(CT,H) for every H G LA(G).
Making use of [7, (24.9), (24.10)], it is easy to see that F is an anti-isomorphism of

lattices.    D

In the following PK(G) denotes the complete lattice of (not necessarily Haus-

dorff) precompact group topologies on a group G, hA(bG,bTo) means the lattice

of closed normal subgroups of (bG,bT¿,), the Bohr-compactification of (G,t¿¡), and

e is the identity of bG.

LEMMA 2 [14, (3.7), p. 67]. For every group G there exists a function <£': PK(t7)

—» LA(£>67, otq) which is an anti-isomorphism of lattices. If (G,t¿.) is maximally

almost periodic, then $' maps the T2-precompact group topologies on those closed

normal subgroups N ofbG, satisfying b(G) f~l TV = {e}.

PROOF. Recall that only a sketch of the proof will be given. In [14, (3.6), p.

63] the following Proposition (*) is shown:

PROPOSITION (*). Let H be a group and T\, t2 group topologies on H with

t2 Ç ri. Furthermore, let (bH,bri) be the Bohr-compactification of (H,ti) and

b:H —> bH the corresponding Bohr-homomorphism. Then there exists exactly one

closed normal subgroup N of bH in such a way that (bH/N,br^) is the Bohr-

compactification of(H,r2) and-KNob the corresponding Bohr-homomorphism—br^

denoting the quotient topology on bH/N, and Tr¡^:bH —> bH/N being the canonical

epimorphism. If (H,t\) is maximally almost periodic, then (H,t2) is maximally

almost periodic if and only if the condition b(H) (1N = {e0/f} holds—e¡,H denoting

the identity of bH.

Now let r be a group topology on G. By applying Proposition (*) for H = G,

Ti = Tq, and 72 = r one gets exactly one closed normal subgroup $(r) of (bG, 6r¿)

with the property that bG/$(r), endowed with the quotient topology, is just the

Bohr-compactification of (G,t). Thus one has defined a function $ between the

lattice of group topologies on G and the lattice LA(6C7, br^).

Recall that b denotes the Bohr-homomorphism from (G,Tq) into (bG,br¿;). For

K G LA(bG,brQ) let ^(K) be the initial topology on G in respect of the homo-

morphism ttk ° b from G into bG/K, furnished with the quotient topology, where

■ïïk'- bG —> bG/K means the canonical epimorphism.
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Let $' be the restriction of $ to the lattice PK(G). Then it is proven in [14,

pp. 65-67] that ($', Í') is a Galois connection between the complete lattices PK(C7)

and LA(bG, bT¿¡), which are also the correspondent sets of closed elements. Using a

well-known result about Galois connections, one gets the first part of the assertion.

Finally, apply the last part of Proposition (*) to complete the proof.    G

From [9, Proposition 2.1] one immediately gets

LEMMA 3. Let G be a compact group, Zq(G) the component of the identity in

the center of G, G' the closure of the commutator group of G and C the component

of zero in G/G'.  Then there exists a continuous epimorphism f: ZqG —► C.

From [8, Satz 5.4.3, p. 128] one easily derives

LEMMA 4. Let G be a topological group, bG its Bohr-compactification and G',

resp. b'G, the closure of the commutator groups of G, resp. bG. b(G/G') denotes

the Bohr-compactification of G/G'. Then b(G/G') = bG/b'G.

THEOREM 1.   Every free group F admits 22     T2-precompact group topologies.

PROOF. Let m be the free rank of F. The corresponding free abelian group is

Fa := 0mZ. Knowing Z~= T and using [7, (23.22)], one gets Fa = Tm. (Z and

Fa are endowed with the discrete topology.) From T = Q/Z © R (cf. [4, p. 105])

one derives that H :— Rm is a torsion-free, divisible subgroup of Fa. Now [4, p.

105] and r(H) = \H\ (cf. [14, (2.16), p. 45]), i.e. r(H) = Sllfl, imply H = ©2|J,, Q.

By providing H and Fa with the discrete topology, one gets from [7, (24.11)] that

iï~is topologically isomorphic to a quotient group U of (Fa)~  Now [10, p.   36]

assures that (FQ)Äis the Bohr-compactification bFa of Fa. Moreover, U = (£a)2

from [7, (23.22), (25.4)], where £a denotes the a-adic solenoid for a = (2,3,...)—

see [7]. Since Ea is connected, one infers that U is also connected. As U is a

quotient group of bFa, there exists a continuous open epimorphism g:bFa —> U.

Let C denote the component of zero in bFa. Then [7, (7.12)] and the compactness

of bFa imply g(C) = U.

That If = H follows from the duality theorem. An abelian group of infinite

rank r possesses exactly 2r subgroups [4, Exercise 8, p. 86]. As r(H) — 2'/r',

U^ovms 22 subgroups. From Lemma 1 derives that U has 22 closed subgroups;

using g(C) = U the same is true for C.

By providing F with the discrete topology, Lemma 4 implies bFa = bF/b'F. Let

ZobF be the component of the identity in the center ZbF of bF. Then, because of

Lemma 3, there exists a continuous epimorphism /: ZobF —► C. Therefore, ZobF

has at least 22 closed subgroups. As ZobF Ç ZbF, those are closed normal

subgroups of bF in addition (ZobF is closed in ZbF, which is closed in bF).

One may assume that m > 1. (In the case m = 1 the result is known because

F = Z.) Since (F, tf) is maximally almost periodic (cf. [8, p. 180]) and the center

of F is trivial, Lemma 2 applies to give the assertion.    D
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In Lemma 2 the finite-index topology r on a group G is mapped to a closed

normal subgroup N := $'(r) of (öG,6tq). One has

LEMMA 5.   N is the component of the identity in (bG,bro).

PROOF. Following the construction in [14], (bG/N,br^) is—br^ denoting the

correspondent quotient topology—the Bohr-compactification and thus the

Hausdorff-completion of (G,t). t and hence br^ is a linear topology. (A group

topology r on a group G is called linear if there exists a fundamental system of

neighbourhoods of the identity for r consisting of subgroups of G.) Therefore,

(bG/N, br^) is totally disconnected. Let C denote the component of the identity

in (bG,br£). Then from [7, (7.12)], one infers C Ç N.

[7, (7.3)] implies that bG/C is totally disconnected in the quotient topology

bTq . Consequently, br^ is linear, using [7, (7.7)]. Lemma 2 gives a precompact

group topology p on G corresponding to C. (bG/C,bTq) represents the Bohr-

compactification and therefore also the Hausdorff-completion of (G,p). Hence p is

linear and thus p Ç r. Lemma 2 implies C D N, finally C = N.    Q

Now one can prove

THEOREM 2. Every free group F admits 22 T2-precompact group topologies

finer than the finite-index topology on F.

PROOF. Notations are as in Theorem 1. Let èni1 denote the component of the

identity in bF. In the proof of Theorem 1 it has been shown that 22 closed

normal subgroups of bF are contained in ZobF. Now from ZobF Ç boF one gets

the assertion applying Lemmas 2, 5. (Note that the finite-index topology on a free

group is Hausdorff.)    G

REMARKS, (a) Using results from [9], concerning free compact groups, Theorem

1 can be proven for free groups of infinite rank in an alternate way.

(b) The T2-precompact group topologies from the Theorems 1 and 2 can be

considered as being pairwise not topologically isomorphic. This can be shown in

the same way as in [11, Theorem 2.4].
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