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1. Certain physical problems involving the steady state temperature dis-
tribution in a material bounded by two infinite parallel planes lead to the
problem of determining those positive numbers N for which the boundary value
problem

(1.1) w() + M@ =0, 0=/=1, «0) =u@l) =0,

has a positive solution u(f). Here f is a given function characteristic of the
material, and f(w) > 0 for all w > 0 [2, 4, 6]. Some properties of the positive
solutions of (1.1) have been given by Joseph [5] and by Keller and Cohen [7].

The purpose of this paper is to obtain information on the values of X for which
(1.1) has positive solutions, and to determine the behavior of the solutions as A
varies (see Theorems 3.1 and 3.2). One of the principal results is that when
f(w) is a convex function of w, with f(0) > 0, then (1.1) has, for each A > 0,
either zero, one, or two positive solutions on the interval (0, 1). For such f,
we shall determine a number g4, = 0 and prove the existence of a number \* = u,
such that, if g, = 0, then A* > 0 and (1.1) has two solutions for 0 < A < A¥
one for A = A*, and none for A > 3*;if 0 < u; < N*, then (1.1) has one solution
for 0 < A = uyand A = N¥ two for u; < N < M\* and none for A > N\*if 0 <
g = A* < +4 =, then (1.1) has one solution for 0 < A < A* and none for A = \*;
and if y; = 4 =, then A\* = -+ » and (1.1) has solutions for all A > 0. We shall
give a necessary and sufficient condition for \* > u, .

The first step in our analysis of (1.1) will be to reduce the problem of solving
(1.1) to a quadrature. This will give an explicit expression for the values of A
for which (1.1) has solutions as a function of the maximum value |[u|| of the
corresponding solution %(f) of (1.1), and information concerning the behavior
of the maximum {|u[| of the solutions of (1.1) as X\ varies is obtained from this
expression. The results concerning the number of solutions when f is convex
are obtained directly from (1.1).

* This research was done while the author held a National Defense Education Act Title IV
Fellowship. Portions of this paper are contained in a thesis submitted to the California Institute
of Technology in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
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2. We consider the nonlinear eigenvalue problem (1.1), where all functions
f considered in connection with (1.1) are assumed to be non-negative continuous
functions on the interval [0, r) for some r, 0 < r £ 4 o, with f(w) > 0 for
0 < w < r. We wish to determine those values of A (“eigenvalues’’) for which
(1.1) has non-negative not identically zero solutions (we shall refer to these
briefly as positive solutions) and to determine the behavior of these solutions
as functions of A. Since we are interested only in positive solutions of (1.1),
we assume f is extended to a continuous non-negative function on (— =, r).
We may assume A > 0, since if A £ 0, then no solution of (1.1) may have a
positive maximum on (0, 1) and therefore (1.1) has no positive solutions. On
the other hand, all nonzero solutions of (1.1) for A > 0 are strictly positive
and have exactly one maximum on (0, 1) [13, Chapter 1].

Let ¢, be the point at which some solution u(¢) of (1.1) assumes its maximum
{lu|| = u(t). Then w'(t) = 0 on [0, i) and w'(t) < 0 on [t , 1]. Thus (1.1) may
be integrated as follows: Let F(w) = [% f(v) dv; then

@D O+ NF@®) = (D,

R dw
@ = | = R 0SS b

(2.2) u(t) d
_ vz _ w
a (2N _/; [F(ull) — Fw)]’ Lhst=s1.

Setting t = &, and u(t) = ||u||, we see that {, = % and u(f) = u(l — ¢); that is,

any solution of (1.1) is symmetric about the point ¢ = %. The problem (1.1)
is therefore equivalent to

(2.3) u’(f) + Mu@) =0, 0=t=13i u@=u(3=0.
Joseph [5] has studied an equivalent problem with the boundary conditions
w'(0) = u(1) = 0,

The equations (2.2) may be used to construct the solutions of (1.1) or (2.3).
For any number p ¢ (0, r), define A by

2 _ o2 dw oz [ dv
@4 AT =2 f FG) — Fao)]” = 2 "fo [F() — F(an)]”
(cf. (2.2)). Then the equation

f L dw
o [F(p) — Fw)]"*

defines a one-to-one relation between t and ufor0 £ ¢t < fand0 = u = p
such that £ = 0iff u = 0 and t = % iff u = p. The function u(t) so defined is
easily seen to be twice differentiable and to satisfy (2.3).

The integral in (2.4) is improper at the upper limit w = p. Near this limit,
F behaves like F(w) = F(p) + f(o)(w — p) + o(w — p), so the integral is con-
vergent if f(p) > 0. The last integral in (2.4) can be written as

12N =
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/2 dv 1 v .
fo 7o) — @l + fuz [Fo) — F(o0)]'"**

the first integral here clearly defines a continuous funetion of pfor 0 < p < 1,
while the fact that f(w) has a positive minimum on any closed subinterval of
(0, ) implies that the second integral is uniformly convergent and hence defines
a continuous function of p for 0 < p < r. Thus we obtain:

Theorem 2.1. For any number p e (0, 1), there exist exactly one number \,;{p}
and one (non-negative) function u{p} on [0, 1] which satisfy (1.1) and |ju{p}|| = p;
Mip} is a continuous function of p.

The next result shows that, for a fixed A, different solutions of (1.1) must
take on different values at all points of the interval (0, 1). This result is critical
for the proofs of Lemmas 3.1 and 3.2 below.

Theorem 2.2. Let u, and u, be two distinct solutions of (1.1) for a fixed A > 0.
Then either u,(t) < us(t) for all te (0, 1), or ux(f) < w, () for all te (0, 1).

Proof. By Theorem 2.1, ||ui|| = ||us]|; suppose |Juil] < [|u,|]. Since F is
strictly increasing, F([|u.||) < F(||u.|]). Since %/(0) #= u5(0) (by equation (2.1)),
either u,(f) < u,(f) for 0 < ¢ = 1, or there is a smallest number ¢, 0 < ¢ < %,
such that u;(c) = u.(c); but this contradicts (2.2) (with f{, = }). Thus w.(t) <
u;(?) for 0 < ¢ = %, and by symmetry u;(f) < u.(f) for0 < ¢ < 1. Q.E.D.

The following comparison theorem is obvious from equation (2.4):

Theorem 2.3. Suppose that fi(w) = fo(w) for we [0, r). Then N\, {p} = \.{p}
for 0 < p < r. If, additionally, f1(ws) < fa(wo) for some w, e [0, 1), then N\, {p} >
Mo} forwy < p <.

Various theorems concerning the continuous dependence of the eigenvalues
Ar{p} on the function f in equation (1.1) can be obtained from the representation
(2.4) for N\,{p}; we mention without proof the following simple result:

Theorem 2.4. Letf, g,f1,fa,fs, «** be continuous functions on [0, r), 0 <
r £ + o, which are positive on (0, r), and let h be locally integrable on (0, 7).
Suppose that {f.(w)} converges to f(w) almost everywhere on (0, r) and that g(w) =
o) = h(w) for 0 £ w < r. Then {\.{p}} converges to {\{p}} for each pe (0, ).

The behavior of A\, {p} for large p and for small p may be obtained from equa~
tion (2.4) and the corresponding behavior of f(w). Since the function f is fixed
in each of the following theorems, we write A{p} in place of A\, {p}. We recall
that f is assumed to be continuous on [0, r) and positive on (0, r), with 0 <
rs o,

Theorem 2.5. Suppose that either r < + and 0 < lim inf,.,- (r — w)-
Jw) £ + o orr = 4+ and limy—se f(wW)/w = + . Then lim,., Mp} = 0.
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Proof. 1If r = + «, then given any number M > 0, there is a positive num-
ber R such that f(w) > Mw for R < w. Thus, if 2R < p, then

FGo) = F) = [ 16)do 2 3M(* - w)
for R = w < p, and
Fo) = Fe) = [+ [ 10 @z 168~ B 2 3MR?

for 0 < w £ R. From equation (2.4), whenever 2R < p,

o = [ 2 = ) L o+ [ )

2\ 1
@)
Hence lim,,. AMp} = 0.

If r < + o, there are positive numbers B < r and k such that f(w) = k*/(r —w)
for B < w < r. Thusif R < p < r, equation (2.4) implies that

] _ ~1/2 0 _ -1/2
A (o} gf (kzm"———l-%) dw+f <k2 1nf———“’) dw
/] - R

r r— p

1162
x'”ze’dx}ao as p—r —,

= {REOT + ¢ - 5

where £(p) = In (r — R) — In (r — p). This completes the proof.
The following theorem is proved similarly:

Theorem 2.6. Suppose that either r < + » and 0 < lim sup,-,- f(w)/(r —
W) < +® orr =+ and limyye f(w)/w = 0. Then lim,.., AMp} = + .

If f(w) has the asymptotic form mw" as w — + «, then we are able to specify
more precisely the asymptotic behavior of A{p} as p — + =:

Theorem 2.7. Supposer = + » and f(w) ~ mw" as w — -+ o for some real
number s and positive number m. Then N{p} ~ (:2/m)p'™* as p — + =, where

1 1/2
2!/2 f [11_+vf+,] v, s —1
0

T, =
2T (B) = @M, s=—L

In particular, if lim,... f(w)/w = m, then lim,... A{p} = =°/m. (Observe
that ©*/m is the first eigenvalue of the linear problem

o'(t) + ume(t) =0, 0=t=1,
?(0) = o(1) = 0.
Cf. Krasnosel’skit [9, p. 208].)
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Proof. Simple algebraic transformations of equation (2.4) yield

1 2 1/2 ! dv . =a)/2
(2'5) ["Zm)‘{p}] / - m/ pj; [F(p) - F(pv)]l/Z - p( Y

ll4s |V a0z [ l: 145 ]1/2 L+ v, )" — 1
fo [1 - v““] @ -/; 1 -9 T K

for s ¢ —1, where

- sf [f(6) — mw'] dw
m p1+s(1 _ vl+a) ¢

We will show that the last integral in (2.5) converges to zero as p — + .
Suppose first that s > —1. Since

lim [L@ — m:l = 0,
1+ v
we have for 0 = v < 4, using 'Hospital’s Rule,

. 1+s ? _ o 7
lim fy(p, )] < lim s [ ) — mu'| ds = 0

|
1-+s

»
.mpl+c(1 . vl+,) ‘/;' w dw = 0

uniformly in ». It follows that the last integral in equation (2.5) converges to
zero a8 p — —+ «, and therefore equation (2.5) implies

1 1/2
@.6) lim (mp A ()] = [ [%_J-’L] dv
0

P+ v

v(p,v) =

uniformly inv; for } £ » £ 1,

{f(w) — mw’

],

v
o

lim [y(p,v)| £ hm sup

ot

for s > —1.
Suppose next that s < —1.
For any R > 0 and p = 2R,

f fw) — mw'| dw {’f(w)
@7 14 R Ta———— = sup L m :ng}——-eg
if BR/p = v =1 Slmllarly, v(p, v) can be bounded uniformly in p and v for
pZ2Rand 0 < v £ 1. Given ¢ > 0, we choose R so large that

(l—l-e)”2 lf i

(1 — ¢ )1/2 1+a 1/2 < 2
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and then choose By, = 4R so large that
R ( 1+s )”2 1+ v, )] — 1
osup{ 1 e 1+ v, »)1'*

-
Then, if we write the last integral in (2.5) as the sum of an integral from 0
to B/R, and one from R/R, to 1,

{1+ )"2 [L + v(p, )I"* ~ 1
‘/; (1 1+s [1 + 7(p’v)]1/2 dv = ¢

-
for p = R, . Thus equation (2.5) implies that equation (2.6) holds also for
s < —1. The proof for s = —1 is similar. Q.E.D.

:0<v =%, P%ZR}é%-

Our next theorem obtains bounds on A{p} resulting from a comparison of f
with a linear function mw. The result is of particular interest if m =
lim,—+o f(w)/w (¢f. Theorem 2.7 and Theorem 2.12).

Theorem 2.8. Let me (0, + ). If r = + « and there is a constant n > 0
such that f(w) — mw = qw™ (or £ —nqw™") for all sufficiently large w, then
Mp) < #2/m (or > °/m, respectively) for all sufficienily large p. If 1 £ —+
and f(w) — mw = 0 (or < 0) for all w £ [0, r), then Mp} < »°/m (or = =°/m,
respectively) for 0 < p < r;Mp} = =°/m for some p > 0 if and only if f(w) = mw
for all w = p.

Proof. If f(w) — mw = 0 or = 0 for all w, then the last sentence of the
theorem follows from Theorem 2.3.
Suppose that f(w) —mw = qw™* for w = R. We will use equation (2.5) with

s=1.Let Mz=max {|f(w) —mw|:0 £ w £ R}, andlet R’ =R exp (RMz/9) > R.
Then y(p, v) > 0 whenever p > R’,0 < v < 1;for, if R/p £ v < 1, then

f’ [fw) — mw] dw 2 f qw dw = v,

80
2 g(lny™’
v(p,v) = ;ﬁn—‘sz‘?ll___)’v*zr >0 for R/fp=v<1,
while for
0=v= R/P:
» R P
f [fw) — mw]dw = — f [f(w) — mw| dw + f ™ dw
(44 0 R
2 —RM3 + n In (p/R),

50

2 —RMy+ 1 ln (RY/R) _
'Y(P» U) > m pz(l — vz) - 0.
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From equation (2.5) it follows that A{p} < #°/m for p > R’. The inequality
Mp} > #'/m for p > R’ if f(w) — mw £ —qw™ for w > R may be proved
similarly. Q.E.D.

Analogous results on the behavior of A{p} as p — 0 may be obtained from
the behavior of f(w) as w — 0; the proofs in this case are similar to (but even
simpler than) those above.

Theorem 2.9. If lim,—o, fw)/w = o, then lim,.o Ap} = 0. If
lim,, -0+ f(w)/w = 0, then lim,., AM{p} = + .

Theorem 2.10. Suppose f(w) ~ aw’ as w — 0 for some a > 0, 8 = 0. Then
Mol ~ (#3/a)p'™* as p — 0. In particular, if f(0) > 0, then lim,., A\{p} = O;
if f(0) = 0 and f is differentiable from the right at 0, then lim,-, N{p} = #*/14(0)
(where §4(0) s the right derivative of f at 0). (Note that when §4(0) > 0, =*/f1(0)
18 the first eigenvalue of the ‘“‘variational” problem

o) + ufi0)e®) =0, 0=t=1  ¢0) = Q1) =0.

Cf. Krasnosel’skit [9, p. 196].)
Corollary 2.10.1. Suppose | is differentiable from the right at the origin,
F(0) = 0, and f(w) — wfL(0) < 0 (or > 0) for sufficiently small w. Then lim,-, \{p}

= 7 /f40) and Np} > #*/f40) (or < #°/§4(0), respectively) for sufficiently
small p.

Proof. Theorems 2.10 and 2.8,
Note that the hypothesis of the corollary is satisfied if f(w) is strictly concave
with f4(0) < -+ o (or strictly convex, respectively) for sufficiently small w.

Theorem 2.11. Let f be non-decreasing on (0, 7). Then Np} = 8p/f(p) for
0<p<mn

Proof. Since f is non-decreasing, F is convex and differentiable, and therefore
F(p) — F(w) = f(0)(p — w)
for0 = w = p < r. Thus

/3 __ ol/2 ! dy
Mo = 2% [ i

= |#5] [ i - v (] "ame.

Observe that if { is non-decreasing on (0, r), then Theorem 2.5 and the second
part of Theorem 2.9 follow immediately from Theorem 2.11.

The following lemma collects some results on convex functions which will
be useful in the sequel. The proof of these results may be found, e.g., in Bourbaki

).
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Lemma 2.1. Let f be a convex funciion on (0, r); i.e., for every w; , w, n
{0, r) and every a ¢ [0, 1].

2.8) flaw, + (1 — @w,) £ af(wy) + @ — ao)f(wy).

If for fixed w, , w, , equality holds in (2.8) for some a e {0, 1), then equality holds
for all @ e (0, 1). f 1s continuous on (0, r), has a right derivative f(w) and a left
derivative f1(w) at each point w e (0, r), and 1s differeniiable except possibly at
countably many poinis of (0, r). The derivatives f} and {} are non-decreasing on
©, r), and f(w) — wfi(w) s non-increasing on (0, r). Either { is non-increasing
on 0, 1), or f s non-decreasing on (0, r), or there is a point a e (0, r) such that f
18 non~increasing on (0, a) and non-decreasing on (a, v). If {(0) > 0, then either
f(w) /w is non-increasing for we (0, r) or there is a point b € (0, r) such that f(w)/w
s non-increasing for w ¢ (0, b) and non-decreasing for w e (b, r). If f(0) = 0
and f is non-negative, then f(w)/w is non-decreasing for w e (0, r).

Our next theorem uses Theorem 2.8 to show that for certain convex functions f,
equation (1.1) will have at least two solutions for some values of A\; Lemma 3.2
below shows that there can be at most two solutions for all A when f is convex.

Theorem 2.12. Let { be a convex function on (0, +«), and let m =
limy e flw)/w(S + o). If f(0) > 0 and f(w)/w is eventually strictly increasing
(equivalenily, if wfi(w) — f(w) is eventually positive), then N{p} has a maximum
N* > o7 /m at some finite number p = p* > 0, and thus (1.1) has at least two solu-
tions for each \ such that =°/m < N < \*%.

Proof. By Lemma 2.1, m = lim,-.. f(w)/w exists since f is convex, and
by Theorems 2.7 and 2.10, lim,.« X {p} = #°/m and lim,-, A{p} = 0. If m =
+ o, the result follows immediately from the continuity of AMp}. U m < -+ o,
then f(w) — mw is a convex function of w which is negative for sufficiently
large w, and therefore f(w) — mw is decreasing for all w. It follows that there
is an € > 0 such that for sufficiently large w, f(w) — mw £ —e From Theorem
2.8, Mp} > =°/m for sufficiently large p. The continuity of A\{p} implies that
AMp} has a maximum A* > #°/m, and thus there are two solutions for each \
with 7°/m < A < A%, Q.E.D.

3. In this section we obtain some results on the maximum number of solu-
tions of (1.1) for fixed A. Important use is made of Theorem 2.2. Observe that
if { is differentiable, then the hypothesis of Lemma 3.1 that f(w)/w is non-
increasing is equivalent to the inequality f(w) — wf’(w) = 0. This means that
the tangent to the graph of f(w) against w always intersects the positive vertical
(ordinate) axis. In particular, the hypothesis of Lemma 3.1 is satisfied if f is
concave. Theorem 3.1 should be compared with [8, Theorem 7.14] and [11],
and Lemma 3.2 with {8, Lemma 6.3], [10], {12], and [3]. Note, however, that
we do not assume that f is monotonically increasing.

Lemma 3.1. Let f(w)/w be a non-increasing function of w for 0 < w < r.
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If (1.1) has positive solutions u; , us for some fixed N, with max {||u]], [Jus]]} < 7,
then u, = up unless f(w) = (#°/Nw for 0 £ w < max {||udl], ||ua|l}.

Proof. If uy # 4, , then by Theorem 2.2 we can assume that u,(f) < w4, ()
for 0 < ¢ < 1 and therefore f(u.(t))/u:(t) = f(us(t))/u2(f) for 0 < ¢t < 1. Then

0= fo l [ (Qus' () — wa(ui’ (O] dt = N fo 1 ul(t)uz(t)[le((tt))) _ f%((tt)))] i

Since the integrand is non-negative and w;(f)u.(t) > 0 for 0 < ¢ < 1, we must
have 1 (0) /() = 1(ua(®)/us(0) for 0 < ¢ < 1. Let mo = F(lJuall)/Iluall; we
assert that f(w)/w = m, for 0 < w = ||uy||. To see this, we note that since
£luall/ Il = FCUhaal)) /Nl and ) /0 35 decreasing, we must have £(),/w
= my for ||u;|| £ w = ||us]]. If wy is such that 0 < wo-< [|us|] and f(w,) /wo = my, ,
then there is a point £, , 0 < {, < 1, such that wy = u.(fo) and f(us(t)) /ust) =
F(ui(to)) /us(to). Thus, w, is an interior point of the interval [u:(4), [|u:|] and
f(w)/w = mq for all we [u,(l), ||uz]|]. This shows that the set {w:0 < w = ||y,
f(w)/w = m,} is both open and (by continuity) closed relative to the interval
(0, [|usl|l; thus, f(w)/w = m, for all we (0, ||u.||] and f(w) = mew for 0 < w <
lJuz]|. Then u, and u, are positive solutions of u”” 4+ Ameu = 0, u(0) = u(l) = 0,

and we obviously must have Am, = =°, Q.E.D.

The following theorem is an immediate consequence of Lemma 3.1 and the
results of the preceding section,

Theorem 3.1. Let {(w)/w be a non-increasing function of w for 0 < w <
r = +o, and let me = lim,—o. f(w)/w (so that 0 < My £ +») and m =
limg,io f(w)/w (so that 0 = m < + »). Then \;{p} is a non-decreasing function
of p for 0 < p < + o, lim,e N{p} = x'/mo Z 0, and lm,ia A{p} =
/mE f o, If0 < my =m < + =, (1.1) has infinitely many positive solutions
asin wt, a > 0, for \ = x°/m, , and no positive solutions for other values of \.
If0 £ m < my S + o, then (1.1) has no positive solutions for A < «°/myq or for
A = n°/m, and exactly one positive solution for «°/my < N < «°/m; there are no
positive solutions for N = =°/mq unless there is an ro > 0 such that f(w) = mew
for 0 £ w = 1o, tn which case (1.1) has tnfinitely many positive solutions « sin wt,
0 < a £ 1, corresponding to N = w°/mq, . As the eigenwalues \ of (1.1) increase
from #°/mq to 7°/m, the norms of the corresponding solutions increase from O to

+o.

Figure 1, in which is sketched a graph of the maxima of the solutions of (1.1)
against the corresponding values of ), illustrates the assertions of Theorem 3.1.
The number 7, may be zero, positive, or infinite; if finite, it is assumed to be
chosen so that f(w) ¢ mew for w > re. If {(0) > 0, 7, is zero and =°/m, is zero.

Lemma 3.2. Suppose that either f(0) = 0 and f(w)/w is & non-decreasing
function of w or f(0) > 0 and f(w) is convex in w for 0 < w < r. If, for any fixed
A, (L.1) has non-negative solutions uo , Uy , Uz , with max {||uol, [|udll, [Juall} < 7,
then at least two of these are equal unless f(w) = (#°/Nw for 0 < w < max {||uo|],

Hwall; Hhaeall}-
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lall

.
0<n?/m, 12 /m<te

£ /w ¥ 5 £w) = myw, O0<w<r,

Figure 1.

Proof. The case f(0) = 0 is handled as in Lemma 3.1, If {(0) > 0 and there
are three positive solutions u, , %; , %3 , then by Theorem 2.2 we may assume
uo(f) < ui(t) < ua(t) for 0 < t < 1. The convexity of f implies that f(u(t) + k)/h
is a non-decreasing function of h. Reasoning as in the proof of Lemma 3.1 with
Uy — %o and u; — U in place of u; and u, , respectively, we find that we must
have

f () — fuo(®) _ fua(t)) — fluo(®))
w(?) — uo(?) u(t) — u(?) '

for all ¢ with 0 < ¢ < 1. Using Lemma 2.1 and arguments similar to those of

Lemma 3.1, we conclude that f must be linear, say f(w) = mw -+ b with b > 0

since f(0) > 0. But then it is well-known that (1.1) has at most one positive

solution for each A (the uniqueness also follows from Lemma 3.1). Thus there

cannot be 3 solutions 1, < %; < %3, and the theorem has been proved.
Lemma 3.2 and Theorem 2.12 imply.
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Theorem 3.2. Let f be as described in the first sentence of Lemma 3.2 for
O<w<r=+4o,andlet my = lim,e. fW)/w 0 ST My £ +)and m =
limyaio fW)/w (0 Em = + o). Iff(0) = 0, thenme < +,0 < m, my < m,
and N p} is a non-increasing function of p for 0 < p < + o with lim, A {p} =
w/mey S + o, lim,.,. Mp} = 7°/m = 0. If my = m, (1.1) has infinitely many
posilive solutions a sin wt, @ > 0, corresponding to X\ = w°/m, , and no positive
solutions for other values of \. If mo < m, (1.1) has no positive solutions for A =
w/m or N\ > n°/m, and exactly one positive solution for w*/m < N < w°/mq;
there are no positive solutions for X = = /mo unless 0 < my < + ® and there is an
ro > 0 such that f(w) = mew for 0 £ w = ry, tn which case there are infinitely
many positive soluttons o sin wt, 0 < & < 1o, corresponding to N = =" /my . As
the eigenvalues \ of (1.1) increase from @°/m to «°/my , the norms of the correspond-
ing solutions decrease from + e« to 0.

If 1(0) > 0 (so that f is convex), Theorem 3.1 is applicable if f(w)/w is non-
increasing for 0 < w < + o, If f(w)/w is eventually strictly increasing, then there
is a finite positive number p* with \* = M{p*} > =°/m such that \{p} s an increas-

full |

0<w?/m 12 /m, <t
£(w)/w 4 3 £Qw) = myw, 0<w<rg

Fiqure 2.
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ing function of p for 0 < p < p* and a decreasing function of p for p* < p < + =;

lim,—o Mp} = 0 and lim,.,o Ap} = 7°/m = 0. For 0 < X £ «°/m and for

N = N, (1.1) has exactly one posilive solution; for =°/m < N < N*, (1.1) has exactly

two posttive solutions; there are no positive solutions for A = 0 and X > \*,
Figures 2 and 3 illustrate the assertions of Theorem 3.2.

4, It is clear that, given Theorem 2.2, the proofs of Lemmas 3.1 and 3.2
can be generalized to any self-adjoint operator L, in place of the operator Lu =
—u/’. Using different methods (¢f. [8, §7.1]), it can be shown that most of the
results of Sections 2 and 3 can be extended to multidimensional integral equations
of the form

(@) u@) =\ [ K@, )iy, )] dy,

where K(z, y) is a weakly singular kernel, if f(z, 2) is positive and monotonically
increasing in z. However, Theorem 2.2 is apparently not true in general for

el

- . A

0<n?/m A

f convex, £(0)>0, f(w)/w eventually 4+

Ficure 3.



BOUNDARY VALUE PROBLEM 13

(4.1), so the generalization of Lemma 3.2 has the following form: If f(z, 2) is
convex in z, then, for fixed A\, equation (4.1) does not have three solutions
Up , U1 , Up SALISTYING ue(2) < ui(x) < uz(x). The stronger result of Theorem 3.2
on the existence of at most two nonnegative solutions may be extended to dif-
ferential equations of the form (¢f. Moroney [10] and Coffman [3], who treat
the case f(t, 0) = 0):

w’(t) - N u@®)) =0, 02¢t=1,
au(0) — o’u’'(0) = 0,
Bu() + sw'(l) = 0,

a, o, 8,6 = 0,a8 + o8+ af > 0, where either

(1) f@, 2) is independent of ¢, convex, and continuously differentiable, and
'8’ = 0if f is not strictly convex, or

(i1) f(¢, 2) is non-increasing (or non-decreasing) in ¢, convex and continuously
differentiable in 2z, « = 0 (or 8 = 0, respectively), and, if f(t, 2) is not strictly
convex in z, 8/ = 0 (or &’ = 0, respectively).

Acknowledgment. The author wishes to thank Professor D. 8. Cohen for
suggesting this problem and for providing valuable advice leading to its solution.
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