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THE NUMBER OF SOLUTIONS TO LINEAR DIOPHANTINE
EQUATIONS AND MULTIVARIATE SPLINES

WOLFGANG DAHMEN AND CHARLES A. MICCHELLI

ABSTRACT. In this paper we study how the number of nonnegative integer
solutions of s integer linear equations in n > s unknowns varies as a function
of the inhomogeneous terms. Aside from deriving various recurrence relations
for this function, we establish some of its detailed structural properties. In
particular, we show that on certain subsets of lattice points it is a polyno-
mial. The univariate case (s = 1) yields E. T. Bell's description of Sylvester's
denumerants.

Our approach to this problem relies upon the use of polyhedral splines. As
an example of this method we obtain results of R. Stanley on the problem of
counting the number of magic squares.

1. Introduction. Let X be an s x n integer matrix with columns x1,..., xn e
Zs\{0} such that the only solution of the equation XX = 0, A € R" is the zero
vector, i.e.,

(i.i) o^Kx1,...,**}]
where [A] denotes the convex hull of a given set A. Consequently, if we denote the
cardinality of A by |^4| we see that

(1.2) t(a\X) = \{0eZa+:X0 = a}\

is finite for every a G Zs.
The objective of this paper is to study t(-\X) as a function on Zs. For the

case 8 = 1, i.e., when we have a single linear relation, t(-\X) was introduced by
Sylvester who called it a denumerant. It was further studied by E. T. Bell who
proved that t(-\X) is a polynomial on certain subsets of the integers (cf. [2, 12]). In
general, *(-|-X") is relevant for the combinatorial theory of partitions of nonnegative
integers (see [11] for some special two dimensional examples) and in a special case
it corresponds to the problem of counting matrices with nonnegative integer entries
and equal row and column sums (magic squares). Recently, Stanley [13] used
properties of Hilbert series of graded algebras to prove certain conjectures about
magic squares stated in [1] (see §§2, 4 for more details). We will show that these
results also appear as a consequence of Theorem 3.1 below.

Our interest in this subject arose from some recent work on the multivariate
truncated power T(-[X) and box spline B(-\X). Under the assumption (1.1) they
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510 WOLFGANG DAHMEN AND C. A. MICCHELLI

are denned respectively by the equations

(1.3) f   f(x)T(x[X)dx= f    f(Xu)du,
JR' JR^

and

(1.4) f   f{x)B{x\X)dx= f       f(Xu)du
JR° J[0,l}n

which are assumed to hold for any continuous function / of compact support in
Rs. (Although these definitions do not require X to have integer entries, we will
only deal with this case here.) When span {a;1,... ,xn} = (X) = Rs, both T(x\X)
and B(x[X) are piecewise polynomials of degree <n — s. We will assume in what
follows that (X) = Rs. For more detailed information about these functions the
reader is referred to [3, 4, 6]. The identity

(1.5) T(x\X)= Y^ t(a\X)B(x - a\X)
qGZ»

established in [6] shows that these three functions are closely related. This equation
proved useful in connection with subdivision algorithms for the fast computation of
box spline surfaces [9]. In the present context, it will allow us to use multivariate
splines to study t(-|-AT).

The paper is organized as follows: After deriving some basic identities for t(-\X)
we motivate in §2 the subsequent discussion by recalling Bell's characterization
of Sylvester's denumerant and relating t(-\X) to the problem of counting magic
squares. The main result, Theorem 3.1, along with some consequences like the
extension of Bell's theorem to systems of equations, is given in §3. The first part of
Theorem 3.1 states that on certain cones depending on X, t(-\X) coincides with an
element of the intersection of the null spaces of certain difference operators. This
element is uniquely determined by certain interpolation conditions. The second part
of Theorem 3.1 gives a reciprocity relation for these extensions of the enumerating
function t(-\X) which, as pointed out before, is only well denned when (1.1) holds.
We mention that when (1.1) is not required to hold similar reciprocity relations
but for Hilbert series related to sets of solutions to linear diophantine equations are
obtained in [14] by totally different methods. The results of §3 are then applied
in §4 to the problem of counting magic squares. Combining Theorem 3.1 with the
characterization of the above mentioned intersection of null spaces we begin §5 by
proving our extension of Bell's theorem. Furthermore, in this section we exploit the
relationship oit(-[X) to multivariate splines and establish more detailed information
about t(-[X). Specifically, we determine its leading homogeneous terms. This close
relationship to the splines also gives a direct proof of the first part of Theorem 3.1
when X is unimodular. Finally, §6 is devoted to proving Theorem 3.1 in its full
generality.

2. Background material and some basic identities. The relation between
t(-[X) and the multivariate truncated power becomes apparent if we define t(-[X)
alternatively by requiring that the equation

(2.i) J2 m<*m<*\x) = E vw)
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holds for any ip: Zs —► R which vanishes on all but a finite number of lattice points.
This observation motivated us to call t(-\X) the discrete truncated power. Using
(2.1), formula (1.5) readily follows from (1.3), (1.4) by decomposing R" into integer
translates of the cube [0,1]". The relation (2.1) also suggests the following: for any
integer diagonal matrix D = diag(di,..., dn), set d = (dy,..., dn) and

(2.2) J2 ^)bD{a[X) =   £   iP(X0).
a<EZ» 0eZl

0</3<d

Comparing this equation with (1.4) we call br}(ct\X), a € Z3, the discrete box spline.
Equivalently, (2.2) means

bD(a\X) = \{(3eZn+:X3 = a,O<0l<dt,i=l,...,n}[

so that the discrete box spline counts the number of integer solutions of X8 = a
in the open cube [0, dy) x • • • x [0,dn). Formally, we have t(-\X) = boo(-[X).

Let us introduce the backward difference operator

Vyf(a)=f(a)-f(a-y).
For notational convenience we will occasionally view X as an (indexed) set of not
necessarily distinct vectors x1,... ,xn rather than as a matrix. Therefore, we can
define inductively for y e X

Vx/ = Vy(Vxxw/).
The discrete box spline bD(a\X) is then related to t(a\X) by the equation

(2-3) bD(a[X) = VXDt(a\X)

which is the discrete analog of the relation

(2.4) B(x\X) = VxT(x\X),

[6]. For a discrete analog to (1.5), we observe that

J2 rp(a)t(a\X)=  £ 1>(XP)=  £    £   iP(XDp + X0)
aezs 0ezi_ MSZ" O<0<d

=   E    E ^(a + X0)t(a\XD)
O<0<da€Zs

= E E^ + ̂ N^HXD)
cvez» iezs

=  E ^(Q) E t(v\XD)bD(a-v\X)

which means

(2.5) t(a\X)=^t(u\XD)bD(a-u\X).

This equation relates partitions with respect to X, XD and restricted partitions
for A".
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512 WOLFGANG DAHMEN AND C. A. MICCHELLI

Replacing ip(a) by za = z\1,..., zfs, z 6 Cs, in (2.1) gives

(2.6) £ zH(a[X) =  £ z™ = |
qGZs 0€Z1 iij=i\x     *    ;

the generating function for t(-[X). Similarly, the generating function for bo(-\X) is

(2.7) z z«bD(a\x)=ft l1-^-) ■
a6Z» j=l \  x     "      /

Defining
^f{X)^{X0:0£Zn},    £f+(X) = {X0:peZ+}

we clearly have

(2.8) supp«(-|X) = {QGZs: t(a[X) ^ 0} = 5?+{X).

Moreover, as an immediate consequence of our definition we see that when n = s
and (X) = Rs then

t 0,    otherwise.

In general one has for any V C X

(2.10) t(-\X) = t(-\X\V)*t(-\V),    bD(-\X) = bDlxxv(-\X\V)*bDlv(-\V)

where (g * f)(a) = ^2„€Z. 9(a ~ u)f(v) denotes discrete convolution of g and /
and D\v — diag(rfi,,... ,dim), if V — {xtl,... ,xlm}. (The continuous analogs of
these equations for B(-\X) and T(|X) may be found in [6]). In particular, when
V = {x%} (2.10) yields

oo

(2.11) t(a\X) = J2t(a-jx*\X\{x>})
3=0

which combined with (2.9) gives a recursive method for computing t(cv|X).    A
similar recursion, of course, holds for bo(-[X).

It is easy to see that

Vvt(a\X) == *(a|X\n
(2.12) VvbD(a\X) = VVDlvbDlxxv(a[X\V),        a € Zs.

These equations "invert" (2.10) and also have counterparts for the box spline and
truncated power.

When a is large (2.11) may be inconvenient for evaluating t(a[X). We shall
therefore present some other identities for t(|X) which may also be useful. To
this end, let el = (6i>)?=i denote the ith coordinate vector. Taking the ith partial
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derivative of both sides of (2.6) yields

^((a^lMa-fe'lX^^X:^"^!,^).^!,1^^.^!,^)

= X>^xJ-e' 52zat(a\XU{xi})
j=l a£Z»

= ^za\Y^x\t(a + ei-xi\Xu{xi})\.
a€Z» \j=l J

Hence, in general we get, by setting v ■ oc = X^=1 v%oti, the equation
n

(2.13) (v ■ a)t(a[X) = ^(XTi/)ji(a - x>[X U {x]})
3=1

thereby relating a lower order truncated power to several higher order ones. The
usefulness of this formula for certain choices of X will be discussed below.

Our next formula relates discrete truncated powers to the denumerant, i.e., to
univariate discrete truncated powers. To this end, choose A € Zs such that for
every fc e Z

|{a€Zs: A-a = fc}n(X) + | < oo
where (X) + = {Xt: t e R"} is the cone spanned by X.  Then for any function
j:Z-»R with finite support one has

J2 g(X-a)t(a\X)=  J2 9(* ■(*(*))=  E 0((XTX)-f3)
aez» 0ezi 0ezi

= J2g(k)t(k[XTX).
fcez

On the other hand, since

£ g(X ■ a)t(a\X) = £ g(k) (   £  t(fl\X)
a€Zs fceZ \A/3=fc J

we conclude that

(2.14) <(fc|XTA) =   J2  t(a\X),        keZ.
X-a=k

Therefore, the discrete Radon transform of a discrete truncated power is a denu-
merant.

To arrive at another identity for t(-\X) we choose A G Rn and consider the
telescoping expansion

1 - X0 = (1 - Af1) + (Af - Af Af2) + (Af'Af2 - Af A^2Af3)

(2.15)
= J2Ql(X)(l-Xt)

t=i
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where

qr[X)-\o, /?r = 0,

and 0(r) = (By,..., 0r, 0,..., 0). Now suppose X0 = v and let z € Cs. We replace
each Aj by X{ZX  in equation (2.15) to obtain the identity

(216) l-Xfi* T Q^Z)

l" j n-=i(i-A^)  fen?-Wi(i-Aij-')
where

0i-i
(2.17) ft(A,«) - A^(*-1)^lll+-+^-'I,_1 £ A^*'.

Now, setting Aj = 1, t = 1,..., n, we get

(' '    n"=i(i - ***) ~ fe      n"=i;,-*(i - ̂ )(i - z")
Thus we infer from (2.6) after straightforward reindexing and comparison of coef-
ficients that

n   ft-1
(2.19) <(q|X) = ^^t(a- Xp(i -1)- lxl\(X\{x>}) U {X/?})

t=l   i = 0

where the interior sum is zero whenever fii = 0. Note that when 0 = me1, (2.19)
reduces to

m — l

(2.20) t(a[X) = ^2 t{a - lx'\(X\{x1}) U {mx1}).
t=o

But since for every fixed a € Z, and m sufficiently large

(2.21) t(a - lx'\(X\{x1}) U {mx1}) = t(a - lx'\X\{x1}),

(2.20) reduces to (2.11) when m —► oo, while (2.20) is a trivial identity when m = 1.
Finally, let us consider the special situation where X consists of repetitions of

the elements of some basis Y — {y1,... ,ys} C Zs of Rs.   Specifically, we let
a = (qy,-..,qa) and

(2.22) X = {y1,...,ya}g = {y1,...,y1,...,y9,...,ya}

where each y% is repeated qx times. Clearly, W = | det F|y_1 is an integer matrix
so that upon substituting z — £w below we obtain

E zat(a[X) = J2 ZWat{a[X) =     £     ?t(W-la\X)
qGZ» crGZ» aey(rV)
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where as before J?(W) = {Wa: a &Z3}. On the other hand, for n = qy H-\-qs
and a = | det Y |

EzX0 _   V^   eWX0 _ _1_
^                (1 - c*?)'1 ■ ■ ■ fl - £al«8/3ez^            /?ez>                v      S1/         v      ss;

\3€Z J \j€Z J
=  E C(t(ay\{a}qi)---t(as\{a}qs))

aezs

where {1}; = {1,..., 1} is the set consisting of 1 repeated / times. This means that

(2.23) t(a\X) = t((Wa)y[{a}qi)---t((Wa)s[{a}J.
Each of the denumerants t((Wa)j\{a}Qi) can easily be evaluated, see formula (2.28)
below.

When X is comprised of more than s distinct directions, the situation is more
complicated. Nevertheless, combining formulas (2.19) and (2.23) is sometimes help-
ful. To illustrate this, consider the example

X = {e1,e2,e1+e2},        * = (*,•)?=!■

Using (2.19) for fi = (1,1,0) we get for a = (oty,a2)

t(a\X) = t(a\e2,e1 +e2,ex +e2)+t(a-e1\e1,e1 + e2,ex + e2)

where both summands are now of type (2.22). Specifically, one obtains from this
equation that

t(a\X) = (a2 - ay)+{ay + 1)+ + (Ql - 1 - a2)°.(a2 + 1) +

= min(ai,a2) + 1

where
xk __ f x >    x Z 0,
X+     \ 0,      x < 0.

In this particular case, the discrete truncated power could have been determined
directly.

There seems to be no general simple recursive scheme for the evaluation of t(a[X)
which is independent of a. We will therefore employ other means to obtain more
information about t(-\X). In order to explain what we have in mind, we review
some facts about denumerants. First consider the simple example

(2.24) X„ = {1}„.
It is easy to verify that

(2-25) W-^f^-l1)'        J-°'
(for instance, use (2.11) and induction on n). Clearly, (2.25) shows that t(-\Xn)
is a polynomial of degree n - 1 in j € Z+, because if we define Pn(t) = (t + n -
l)---(t + l)/(n- 1)\, one has

(2.26) t(j\Xn) = Pn(j),        j -0,1,2,....
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Moreover, since

(2.27) Pn(j) = S0],       j = 0,-1,...,-n + l,

we see that Pn and t(j\Xn) even agree for j = —n + 1,... ,0,1,_   In general,
denumerants do not exhibit such a simple polynomial structure. In fact, one easily
verifies that

^      f t(l[Xn),    j = Ik, lez,(2.28) t(jk,...,k)=t(j\kXn) = { nU   nh    J '.
t 0, otherwise.

E. T. Bell [2] clarified the form of denumerants as follows:

THEOREM 2.1 (E. T. BELL). Let a be the least common multiple of xy,...,xn
€E N. Then for every fixed b 6 Z+, 0 < b < a, t(ja + b\xy,..., xn) is a polynomial
of degree n — 1 as a function of j € Z+.

This nice result implies that one only has to compute t(ja + b\xy,... ,xn),
j — 0,... ,n — 1, for instance by using (2.11), in order to determine the value of
t(ja + b[xy,..., xn) for any j € N. Bell's result raises the question of characterizing
t(a|X) for systems of diophantine equations. A particularly interesting special case
of this problem arises in the enumeration of magic squares. Following [13], we call
an m x m matrix A with nonnegative integer entries a magic r-square if all row
and column sums equal r. We denote by Hm(r) the number of all magic r-squares
of order m. It is natural to ask how Hm(r) behaves as a function of r for any given
m. MacMahon [11] solved this problem for m < 3. Stanley [13] proved, among
other things, that Hm(r) is a polynomial of degree (m - l)2 in r E N.

Let us briefly point out how this problem fits into the present context. For this
purpose, we define the 2m x m2 matrix with columns

(el . . . glg2 . . . g2 . . . gm . . . em \
el...emgl...gm...gl...emJ

where el = (Sij)JLv   With any m x m matrix A = (atj)7V=i> we associate the
2

vector a = (an,... ,alm,a2i,. ■ • ,a2m,... ,ami, ■ ■ ■ ,amm) € Rm . Therefore, A is
2

a magic r-square if and only if a € Zip   and

(2.30) Mma = re

where e = (1,...,1) € Z2m. Observe that the 2m equations (2.30) are dependent.
These equations are equivalent to

(2.31) Mma = re

where now e = (1,..., 1) € Z2m_1 and Mm is obtained from Mm by dropping the
first row (any row would do just as well). Clearly, 0 ^ [Mm] and Mm has full rank
2m — 1 (the (2m - 1) x (2m — 1) minor consisting of the first m columns of Mm
and one column from each of the remaining blocks of consecutive m columns is
nonsingular). Thus for s = 2m — 1, n = m2 we have

(2.32) Hm{r) = t{re\Mm).

As we shall see, Bell's result as well as some results about Hm(r) obtained by
Stanley [13] follow from general results for t(-\X) which we will now describe.
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3. A characterization of t(-\X). The objective of this section is to extend
Bell's result mentioned in the previous section to systems of diophantine equations.

Our starting point is the difference relation (2.12) which states that for any
V CX

(3.1) Vvt(a\X) = t(a\X\V).

Next, we require the following collections of subsets of X

y(X) = {VcX:(X\V)^R3},

and also
3g(X) = {Y C X: \Y\ = s, (Y) = R3}.

Note that in the terminology of matroid theory, (X,3§(X)) is a represented matroid
and the minimal elements of ^(X) are its cocircuits (cf. [15]).

In view of (2.8) and (2.9) the relation (3.1) assures that

(3.2) Vvt(a[X)=0

for any a £ J?+(X\V). Also notice that when V E f(X), we have dim(X\V> <
s -1 so that (3.2) actually holds for "most" lattice points in Z3. The relation (3.2)
suggests that we consider the following space of lattice functions [6]

V(X) = {/:Zs^C,Vv/ = 0,VejaX)}.

To state the main result of this section we find it convenient to use the following
terminology. We say that an open cone fi C (X)+ is an X-cone if fi is bounded by
but not intersected by any of the subspaces (V),V C X, dim(V) = s — 1. We call
these subspaces X-planes for T(|X). Moreover, we set

Z(X) = {Xv: ve [0,1]"}

and for any set K CR3

b(K\X) = {a e Z3 : {a + Z(X)) nK^0}.

When K = {y} we denote this set by b(y\X).
Note that in view of (1.4) Z(X) is the support of the box spline B(-[X) and

b(U[X) consists of those lattice points a for which the support of B(- — a[X) inter-
sects fi.

The main result of this section is

THEOREM 3.1. For any X-cone fi, there exists a unique /n(|X) € V(X) such
that

(3.3) fc1(a\X) = t(a[X),        aeb(ii\X).

Moreover, /n(|X) has the following properties:  for any u G fi such that

(3.4) b(u\X)n3+(X) -{0},

/n(|X) is uniquely determined by

(3.5) Ma\X)=6oa,        aCb(u\X),
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and satisfies the relation

(3.6) /n(a|X) = (-l)"-7fi    -a-fV|X    ,        a G Zs.

The reader should realize that there may be several distinct sets 6(u|X) which
satisfy (3.4).

Observe that properties (3.5) and (3.6) are readily verified for the example (2.24)
by using (2.25)-(2.27).

Before proceeding further we make some observations about the condition (3.4)
which will prove useful. For this purpose, we introduce the set

(3.7) A=(X)+\(        (J        (a + (X)+)\.
\c€^+(X)\{0} J

Since for every a G .2+(X)\{0} there is a y G X such that a = eto + y ior some
ao € oS+ (X) we may express A alternatively as

(3.8) A = (X) + \\J(y + (X) + ).
yex

Recall that from (2.4)

(3.9) B(x\X) = VxT(x\X) = T(x\X) + £ cvT Ix - £ v\x)
vex        V      vev      J

for some integer cy.    Therefore when u G A,  (3.7) implies that for V  ^ 0,
t(u - Y.v&v v\x) = °- Hence (3-8) yields
(3.10) B{u\X) = T{u\X),        uGA.

Suppose u belongs to some X-cone fi. Then u satisfies (3.4) if and only if u
belongs to A. To see this, observe that (3.10) implies for u e Anfi that 0 € b(u\X)
because T(u[X) > 0. Moreover, if a G 6(u|X) n -2+(X), a ^ 0 then u € a + (X) +
which is excluded by the definition of A. Conversely when u S fi\A there is an a €
.5+(X)\{0} such that u € a+ (X)+ and so u G i + Z(X), for some 7 G ̂ (X)\{0}
which means 7 G 6(u|X) C\Sf+(X).

Furthermore, we also note that since 0 ^ [X] there is an eo > 0 such that

(3.11) e0Z(X) c A.

For our next remark, we introduce the notion of X-region of B(|X). This is a
region bounded by but not intersected by any of the hyperplanes a + (V), V C X,
dimF = s — 1, a G Z3. From (3.10) we see that there is a one-to-one correspondence
between X-cones of T(-|X) and X-regions of B(|X) whose closure contains the
origin. For a given X-cone fi we will denote the corresponding X-region by fio-

Finally, we mention a fact often used in our subsequent analysis, namely, b(u\X)
= b(u'\X) if and only if u and u' belong to the same X-region of S(|X). One
should also realize that fi fl A may contain several different X-regions. Therefore
when this is the case there are several different sets b(u\X) satisfying (3.4).
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In order to formulate a multivariate version of Theorem 2.1, we require the
continuous analog of V(X), namely

D(X) = {/ G 3>'(RS) :Dvf = 0,Ve ?(X)}
where for any y G Rs,

Dyf = T.Vi§f>   Dvf=\U*>v)f
3=1        3 \yev     J

and 3?'(RS) denotes the space of distributions of all C°°(RS) functions with com-
pact support.

Using standard multi-index notation, let

Uk ~ \  E CaXa : c<* e R f

denote the space of all polynomials of total degree < fc on R3 and define

(3.12) d(X) = max{m: VV cX,\V\=m=> (X\V) = Rs}.
We recall the following results from [5, 7, 8].

THEOREM 3.2.

nd(X) Q D(X) C nn_3    and    dimD(X) = [&(X)[.

We are now prepared to state

THEOREM 3.3.  Let W C Z3, \W\ = s, (W) = R9 be chosen so that

(3.13) &(W)<z&(Y),    VYe^(X).
Then for any (i G Zsfl{iyt; : v G [0, l)3} the function fn(W ■+ri[X) is a polynomial
in D(W~1X).

As an immediate consequence we state

COROLLARY 3.1.   If X is unimodular, i.e.

(3.14) |detY| = l,    VFG^(X),

then /n(-|X) G D(X).
Note that when s = 1 the only possible choice of X satisfying (3.14) and (1.1)

is given by (2.24). In view of Corollary 3.1 and (2.3) the discrete truncated power
and box spline are piecewise polynomials when (3.14) holds.

Somewhat more can be said concerning i(a|X) when (3.14) holds.

THEOREM 3.4.   Let X satisfy (3.14) and let pt G -2+(X) be arbitrary. Then
(i)  t(jp,[X) is a polynomial i?M(j) of exact degree n — s for j€Z+. Moreover,

(ii)   if for some m G Z+, \i = (l/m)Xl"=i^ G Z3 we have i?M(-l) = ••• =
Rfi(—m + 1) = 0, and

(iii)  Rp(j) = (-l)n-°Rp(-j - m), j G Z.

Before proving these results we will apply them to the problem of counting magic
squares.
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4. Magic squares. In this section, we apply the above results to the problem
of counting the number of magic squares of order m with a fixed row and column
sum equal to r. We already pointed out in §2 how this fits into the context of
discrete truncated powers. We will adhere to the notation used earlier. Thus, Mm
is the s x n matrix where s = 2m — 1, n = m2 defined in (2.31). The first step in
our analysis is

THEOREM 4.1.   For any m > 2

(4.1) |detY| = l,    VyeJ(Mm).

Moreover, d(Mm) = m — 1 and

(4.2) W(Mm)[ = dim D(Mm) = m2m~2.

PROOF. The first assertion is a well-known property of the transportation prob-
lem in linear programming. It is a consequence of the following lemma due to Heller
and Tompkins (cf. [10]).

LEMMA 4.1. Let A be any matrix whose rows can be partitioned into two dis-
joint sets, Ty and T2, such that A,Ty and T2 have the following properties:

(a) Every entry of A is 0,1 or —1.
(b) Every column contains at most two nonzero entries.
(c) If a column of A contains two nonzero entries having both the same sign then

one of the respective rows belongs to Ty and the other one belongs to T2.
(d) // a column of A contains two nonzero entries having opposite signs then

both rows are in Ty or both are in T2.
Then A is totally unimodular, i.e. all its minors are 0,1 or —1.

To prove this lemma one observes first that the properties (a), (b), (c), (d) are
hereditary, i.e. every submatrix of A has these properties, too. The assertion now
follows by induction in the following way. Pick any column of A. If it has at most
one nonzero entry then the result follows by the induction hypotheses. Otherwise,
this column has two nonzero entries. If the respective rows belong to the same
group, we add them together producing a zero row and apply induction as before.
If the respective rows are in opposite groups Ty and T2 subtracting one of the rows
from the other one, only one nonzero entry is left in this column. It is easy to
see that after elimination the matrix still satisfies (a), (b), (c) and (d) so that the
induction step proves the lemma.

In view of Theorem 3.2, the assertion (4.2) follows as soon as we prove \&(Mm)\
— m2m"2. For this purpose, consider the matrix Gm = MmM^- Since

detGm= £ Mm(y-2™-1)2
*-*        ,    , \ll,...,l2m-l J

where for A = {al])vl^=l and any jy < ■ ■ ■ < j-,, ly < ■ ■ ■ < l^

, . (a3xU      ••    °iiO*(*:::::£)-H ;
\a3-,h       ■"      a3-,lJ

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DIOPHANTINE EQUATIONS AND MULTIVARIATE SPLINES 521

we conclude from (4.1) that detGm = \£&(Mm)\. A direct calculation shows that

"m    ...    0     1     ...     1"

0 ...    m     1     ...     1
Gm_     1     ...     1    m    ...    0    '

1 ...     1     0    ...    m
By elementary row and column eliminations we obtain

det0m = (_ir(^)"*m™-.P(^L)
where

"I-A    ... r
P(A) = det    : i    =(-l)mAm"1(A-m)

.1 ...    1-A.
whence the result follows.  The value of d(Mm) is easily obtained.  We omit the
details.

This leads us to the following result, see Stanley [13].

COROLLARY 4.1.   (i) Hm(r) is a polynomial in r of exact degree (m - l)2,
(ii) Hm(-1) = Hm(-2) = ■■■ = Hm(-m + 1) = 0, and
(iii) Hm(-m - j) = (-l^-'HmU), j G Z.
PROOF. In view of equation (2.31), Hm(j) = t(je\Mm). Therefore Corollary 4.1

follows from Theorem 3.4 and the observation that
m2

(4.3) ^i'=rae.
i=l

5. The relationship to multivariate splines. The spaces D(X),V(X)
needed for the characterization of t(-\X) also play a central role in the discus-
sion of the algebraic properties of span {B(- - a\X): a G Z3} (cf. [7, 8]). Let us
briefly review the main facts which are relevant for the present context.

Let
A(X) = {z€C3: 3Y e^f(X),Vye Y,zy = 1}.

As pointed out in [7] every z G A(X) has the form

(5.1) Z = ^ia\/\detY\^    ^e2niai/\detY\^

for some Y G 3S(X) and some integer j, 1 < j < k = |detF|.   The vectors
a1,..., ak are in Z3 and given by the equations

YTaJ = |dety|/iJ,        j = l,...,k,

where p:1,..., fik are lattice points in the parallelepiped determined by YT, that is,

{^,...,/} = {Yrt;:t;G[0,innZ8.
We now introduce the set

X2 = {yeX:Zy = l}

so that we can state the following theorem.
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THEOREM 5.1.   / G V(X) if and only if

(5.2) f(a)=    J2   zap(a\z)
zeA(x)

where for each z G A(X), p(-[z) is some polynomial in D(XZ) and moreover,

(5.3) dimV(X) =     ^     |detY|.
Ye^(x)

Note that e = (1,..., 1) G A(X), and Xe = X, so that in particular

(5.4) D(X) C V(X)
and every / G V(X) has a unique representation / = Pf + Ef where Pf G D(X)
and Ef G E(X), the space of functions g of the form

(5.5) g(a) =       £       zap(a\z),        p(-\z) G D(XZ).
z£A(X)\{e}

Thus, in particular,

(5.6) D(X) = V(X),
if and only if (3.14) holds.

Next, let

c{X) = \J{(V)+a: aeZ3,\V[=dim(V) =s-l,V C X}.
Therefore c(X) is the union of the faces of a + Z(X),a G Z3. Recall that by our
definition the set b(y\X) for y £ c(X) (see §3) identifies those translates of the box
spline which are nonzero at the point y. The next result from [8] counts the number
of lattice points in b(y\X).

THEOREM 5.2.   For any y <£ c(X) one has

\b(y[X)\=     Yl     |detY|=dimV(X)=vols(^(X)).
ye^(x)

Moreover, for any sequence {da}aeb(y\x) there exists a unique f G V(X) such that

f(a)=da, aeb(y\X).
Thus condition (3.5) in Theorem 3.1 uniquely determines the extension /n(|X)

of t(-\X).
At this point we can derive Theorem 3.3 from Theorem 3.1 (whose proof will

appear later).
PROOF OF THEOREM 3.3. We infer from (5.1) that for any z G A(X) there is

aF6J(I) such that

zw0+n _ zp.zW0 = z»eXy^2Tri(ak)TWfi/\detY\}

= 2"exp{27rz(/)7'Y-1VK/3} = 2"

since by (3.13) Y~xWfi G Zs for all fi G Zs. Thus for any / G V(X) given by (cf.
Theorem 5.1, (5.2))

f(a)=    J2   z°P(a\z)
zeA(X)
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we have
g(fi) = f(Wfi + pt)=    J2    WW

zeA(x)

where Q(x\z) = z,tp(Wx+ri\z) and ztip(x+Li[z) G D(XZ) is a polynomial in x of de-
gree <n-s (cf. Theorem 3.2). For any V G y(X) it follows that Vf]Xz G f^(Xz),
z G A(X) and so Dvnx,p(-[z) = 0. Thus Dw-iVQ(-\z)\x = z<iDvp(-\z)\Wx+IJi = 0
and we conclude that g G D(W~1X). The assertion now follows from Theorem 3.1.

Let us extract from (1.5) more information about the relationship between t(-\X)
and its continuous counterpart T(|X). To this end, we need the following two facts.

First, we state an analog of Theorem 3.1 for the truncated power function T(|X).

PROPOSITION 5.1. For each X-cone, fi, there exists a unique polynomial Pn G
D(X) such that

(5.7) T(x\X) = PQ(x),        xGfi.
The proof of this result follows from the relation

(5.8) DVT(-[X) = T(-\X\V)
(cf. (3.1)), the definition of T(|X), D(X), and Theorem 3.2.

In view of the relation (2.4), Proposition 5.1 also implies that c(X) gives the
X-planes of the translates B(- — a[X), a G Z3. Thus on any region which is
bounded by but not intersected by the hyperplanes in c(X) any function in
span{S(- — a|X): a G Z3} agrees with some polynomial in D(X). Next we re-
quire

PROPOSITION 5.2.   (i) The linear operator F defined by

(Ff)(x)= Yf(a)B(x-a[X)
a€Z»

maps D(X) one-to-one and onto itself [3, 5].
(ii) For any g G E(X) one has [8] (Fg)(x) = 0.

Now recall from [8] that the translates B(- — a\X), a G Zs, are locally linearly
independent meaning that J2aez° caB(x — a\X) — 0, x G fi, where fi is any domain
in Rs, implies cQ = 0, a G 6(fi|X) if and only if X is unimodular, i.e. (3.14) holds.
Thus, in view of (1.5), Propositions 5.1 and 5.2 immediately imply that t(-|X)
agrees on 6(fi|X) with some polynomial in D(X), if (3.14) is valid. This gives an
alternative derivation of Corollary 3.1.

When X is unimodular, that is, under assumption (3.14), additional information
about <(-|X) can be obtained. To this end, we recall the following construction of a
dual basis for the translates of a box spline. For any v G R3, let 3>(x) = B(x + v\X).
Since $(0) = 1, the expansion

(Mx))'1 =  £ aa(v)xa

is valid in some neighborhood of zero. Here, as usual, for / G Li(Rs) the Fourier
transform / is defined by

/(*)= /   f(y)e~lxy dy.
Jr*
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Setting
(Lvf)(x)=    E    aQ(v)(-i)^Daf(x)

\a\<n—s

it was shown in [8] that for v £ c(X)

(LvB(--fi\X))(a + v) = 6a0,        a,0CZs.

Choosing v so that tv £ c(X), t G (0,1) we may define

(Lf)(x)=    E    (-i)W^aD%f(x)
\a\<n — s

where D"f(x) = limt_0+ Daf(x + tv), aa = aa(0), to obtain

(5.9) (LB(--fi[X))(a) = 6a0,        a,0eZ3.
Applying L to both sides of relation (1.5) yields

(5.10) (LT(-\X))(a) = t(a\X).
Observing that ao = 1 we obtain

(5.11) T(a\X)+      E     (-i)llla1DlT(a[X) = t{a[X),        a G Zs,
0<h|<n-«

which relates r-(-|X) directly to the truncated power T(|X), a piecewise polynomial
of degree < n- s.

Now, let fi be any X-cone and note that for Pn(-) = T(|X)|n G D(X), (5.9)
yields

Pn(x)= £(LPn)(a)fl(x-a|X).
a€Z»

We define /n = LPq which by Proposition 5.2 belongs to D(X). Thus (1.5) and
the local linear independence of B(- — a\X), a G Zs, provide

(5.12) fa(a\X) = t(a\X),        a G 6(fi|X).
Clearly, for u G fi, b(u[X) C 6(fi|X) and if u satisfies (3.4) then t(a\X) = 60a, a G
6(u|X). Thus we have confirmed (3.3)-(3.5) in Theorem 3.1, when X is unimodular.

Moreover, the representation (5.11) allows us to prove Theorem 3.4(i) and (ii)
independently of Theorem 3.1.

PROOF OF THEOREM 3.4. Recalling from [4, 6] that for any y G (X) +

(5.13) T(ty\X) = tn+~sT(y\X),

Corollary 3.1 and (5.11) show that for any p. G Jzf+(X), t(jp\X) is a polynomial in
j G Z+ of exact degree n- s which proves (i). If p. = (1/m) J27=i x% G ^S an(^ ^ 's
any X-cone we can find e0 > 0 such that un = Xv, v G [0,eo]3 satisfies (3.4), see
(3.11). Hence

.    n

(m - j)fi + Uq = - 2_^ X% + Xv = Xw,
t=l

where w G [0, l]n, whenever j = 1,..., m — 1, i.e.

-i/zG6(un|X),       y = l,...,m-l.
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This proves (ii); (iii) follows from (3.6) of Theorem 3.1.
Even when X is not unimodular equation (1.5) and Theorem 3.1 still yield useful

information about t(-\X). We conclude, as above, for x G fi, a fundamental X-cone,
that

PQ(x)=T(x[X) =     J2     t(a[X)B(x-a\X)
a£b{Q\X)

(5.14) =     E     fn(a\X)B(x - a\X)
a€b(Q\X)

= £ PfQ(a[X)B(x-a\X),        x G fi,
aezs

where as before for / G V(X) its polynomial part in D(X) is denoted by Pf.
Taking into account that

(5.15) (q(D)B(-\X))(2na) = 0,        a G Zs\{0}, q G D(X),

see [5], Poisson's summation formula converts (5.14) into

(5.16) Pn(x) = (Pfa(-iD + x\X)B(-\X))(0).
Expanding Pfc, in a Taylor series around x and noting that

(5.17) B(0\X) = 1
the relation (5.16) yields for x G fi

(5.18) T(x\X) = Pfn(x\X)+      £      D»PMx[X)(-i)^D"B(0[X)/v\.
0<\v\<n-s

Thus we have

PROPOSITION 5.3. The leading homogeneous terms of Pfo(-\X) agree on fi
withT(-[X).

As a final remark, before proving Theorem 3.1, we recall from [7] that for any
y £ c(X) there exist coefficients {cp}, 0 G b(y[X) such that for

*(x)=     J2    c0B(x + 0\X),
0Eb(y\X)

the operator
(Sf)(x)= £ f(aMx-a)

aeZ'
satisfies

SQ = Q,        Qe D(X).
Hence, for any x G fi

T(x\X) = Pn(x) = (SPn)(x) = J2 ^n(a|X)$(x - a)
a£Z'

= T.\     H    c0Pc1(a + fi\X)\B(x-a[X).
a€Z<>   \0€b(y\X) J
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Thus, we infer from (5.14) the representation

(5.19) Pfn(a\X)=     £    c0Pn(a + fi\X),        a G Zs.
0€b(y\X)

6. Proof of Theorem 3.1. The proof of Theorem 3.1 relies on Theorem 5.2
and various properties of the sets b(y\x), y £ c(X), which will be developed along
with the proof. We proceed by induction on n. For n = s, let

{ 0,    otherwise.

Clearly, Vy/n(a|X) = 0, a G Zs, y G X, so that /n(|X) G V(X). Moreover, by
(2.9) t(a\X) = /n(a|X), a G J2+(X). The assertion follows for n = s as soon as
we show that

b(ti\x)c\3'(X)=3+(X).
To see this it is sufficient to note that fi = int(X)+ is partitioned by the sets
Z(X) +Xfi = {X(v + fi): v G [0, l]s}, fi G Z%.

Now let n > s. By Theorem 5.2 there exists a unique function gu(-\X) G V(X)
satisfying

(6.1) gu(a\X) = S0a,        a€b(u\X).

Recall from the remarks following Theorem 3.1 that for every X-cone fi, there
is a subset of fi which we call fio with the property that every element of fio is on
the same side as the origin of every X-plane. Thus fio is at the tip of fi. We will
now show that for any u satisfying (3.4) gu(-[X) agrees with t(-\X) on 6(fi|X). For
this purpose, it is sufficient to assume that u G fio since then Theorem 5.2 would
insure that for any u satisfying (3.4) gu(-\X) equals t(-[X) on 6(fi|X).

LEMMA 6.1.   Let y G X such that (X\{y|) = Rs, u in some X-cone fi, and
6(u|X)n^+(X) = {0}.

(i) If 0 G b{u\X\{y}) then

(6.2) Vygu(-\X)=gu(-\X\{y}).

(ii) IfO$b(u\X\{y}), then

Vygu(-\X)=0.
PROOF. Clearly, Vygu(\X) G V(X\{j/}). The proof of (i) and (ii) are now

immediate consequences of Theorem 5.2 and the inclusion

(6.3) b(u[X\{y}) U (b(u\X\{y)) - y) C b(u\X)
which follows from the definition of b(u\X).

To make use of this lemma, we combine (3.4) with (6.1) and obtain

(6.4) t(a\X) - gu{a\X) = 0,        aeb(u\X).

We have to show that (6.4) and our induction hypothesis imply that

(6.5) gu(a\X) = t(a[X), a G 6(fi|X),

which would prove (3.3) and (3.5) for /n(|X) = gu(-\X). In order to verify (6.5) we
will extend the validity of (6.4) step by step to "neighboring" sets b(u'\X), u' G fi.
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To this end, we recall that the restriction of any linear combination

£ caB(x-a\X)
aez»

to any X-region is a polynomial in D(X). Any two X-regions Fi,r2 are called
adjacent if Ti n T2 C c(X) and vols_i(Fi D T2) > 0. We say that a vector y G Rs
is parallel to some hyperplane Hf C R3 whenever Bf = Bf + y. Moreover, a region
T is said to lie between two parallel hyperplanes Hi = {x: a ■ x = Ci}, i = 1,2, ii
(a ■ x — Cy)(a ■ x — c2) < 0, for all x G T.

LEMMA 6.2. Suppose Fi,r2 are two adjacent X-regions separated by the hy-
perplane H C c(X). Let zi G Ti; i = 1,2. Then for any a G b(z2[X)\b(z1[X) and
any y G X not parallel to H there exists a G {±1} such that a + ay G b(z1\X).
The sign of a is determined by the condition that T2 is between H — ay and H.
Moreover, if B(- — a|X) is continuous on Ty \JT2 then one has

fl, ifa£b(z2\X\{y})-y,
°     1-1,     ifaEb(z2[X\{y}).

PROOF. By assumption HV\Ty = Bf n T2 is an s - 1 face of a + Z(X). Thus
it can be represented as a + p + Z(Y') for some Y' — {y1,... ,y3~1} C X and
p = J2x$Y' ^xX, where 6X = 0 or 1. Suppose y G X is not parallel to Y', that is,
Y = {y} U Y' G 3§{X). T2 is intersected by either the parallelepiped generated by
HnT2 and y or by HC\T2 and —y. These sets are given respectively by a+p+Z(Y)
and a + p — y + Z(Y). Since T2 is an X-region any parallelepiped intersecting it
must also contain it. Thus z2 G fi + Z(Y) for some fi G Z3. Define

(6.6) a- = <
\ -l,   /Jeff.

Observe that a + p E H while a + p - y £ H since y is not parallel to H.
Hence the parallelepipeds mentioned above are fi + Z(Y) and fi + ay + Z(Y) which
means z1 must be contained in fi + ay + Z(Y). Next, observe that if fi £ Bf, that
is, Ty C a + p + Z(Y), then Ty must be between the hyperplanes H and H + y.
However, if 6y = 0 we see that Bf and Bf + y are in a + Z(X). Since by assumption
Ti is not in a + Z(X) we conclude Sy = 0 implies fi G H. Similarly, when 8y = 1
we get H and H - y in a + Z(X) while if fi G H then Ti is between H and H — y.
Thus 8y = 0 if and only if fi G H.

We can now show that z1 G a+ay+Z(X), thereby establishing the first assertion
of the lemma. When fi G ff, that is, <r = — 1, then

fi + ay + Z{Y) =a + p-y + Z{Y)
which is contained in a - y + Z(X). In the other case, fi £ ff, we have 6y — 1 so
that p - y G Z(X\Y') and

fi + ay + Z(Y) = a + p-y + y + Z(Y)
is now contained in a + y + Z(X). Thus in all cases a + ay G 6(z' |X).

For the second part of the assertion we note that the continuity assumption on
S(|X) implies that DyB(- - a\X) does not vanish identically on T2. Since

DyB(\X) = B(-\X\{y}) - B(- - y\X\{y})
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we conclude that
aEb(z2[X\{y})U(b(z2\X\{y})-y)

because b(z\X\{y}) does not change for z G T2. Now a G b(z2\X\{y}) means that
T2 C a + Z(X\{y}). Since every face of a + Z(X\{y}) has the form a + J2xav &xX+
Z(V), V C X\{y}, dim(V) = s-1 we conclude that in the representation for ffnr2,
6y - 0 so that fi G ff. Similarly a G b(z2\X\{y}) - y implies 6y = 1 and fi <£ H
which by (6.6) completes the proof.

We are now ready to prove (3.3) and (3.5) with /n = gu- We assume inductively
that Theorem 3.5 holds for all n < |X| and show that for any y G X

(6.7) Vy(gu(a[X)-t(a[X))=0,        a G b(Q[X\{y}).
We prove this equation by distinguishing two cases: when 0 G b(u\X\{y}) then (6.7)
follows from Lemma 6.1, (2.12) and our induction assumption because whenever fi is
an X-cone it is surely contained in an X\{y}-cone. In the case that 0 ^ b(u\X\{y})
we will show that

(6.8) b(n\X\{y})n3+(X\{y}) = 0.
To accomplish this, let us point out first that fi n (X\{y}) + = 0. Suppose to
the contrary that there is x G fi fl (X\{y}) + . We can then find m G N such
that x/m G fio (see the discussion after Theorem 3.1). Since for any u G fio,
b(u\X\{y}) = b(x/m\X\{y}) we conclude 0 £ b(x/m\X\{y}). However, b(u[X) =
b(x/m[X), u G fio, and 0 G b(u[X) so that x/m = (X\{y})tx + ty for some
t1 G [0, l]s_1 and t G [0,1], t > 0, otherwise we would have 0 G b{x/m\X\{y}).
This gives x/m £ (X\{y})+ which is a contradiction.

Now, to prove (6.8) we again suppose to the contrary that there is an a G
b(Q\X\{y}) n -5+(X\{j/}). Thus there exists w G fi such that for some t1 e
[0,l]"-\ w = a + (X\{y})<1 G fi. Since a G 5f+(X\{y}) this implies w G
(X\{y})+ contradicting the fact that fi D (X\{y}) + = 0 which proves (6.8). Fi-
nally, combining (2.8), (6.8) and Lemma 6.1 (ii) provides (6.7) in this case too.

Now let ri,r2 be any two adjacent X-regions in fi and let zl ETi, i = 1,2. In
order to verify (6.5) it is sufficient to prove the following

CLAIM. Suppose

(6.9) t(a\X) = ffu(a|X),        aEb(z1\X).

Then
t(a\X) = gu(a\X),        aEb(z2[X).

In fact, starting with z1 = u this would, in view of (6.4), allow us to extend the
validity of (6.4) step by step exhausting 6(fi|X).

To prove the above claim let ff C c(X) denote the (s — l)-hyperplane separating
Ty and T2 and suppose a G b(z2\X)\b(z1\X). We have to distinguish two cases.
First suppose B(- — a|X) is discontinuous across ff. Then there exists y E X
such that (X\{y}) ^ R3, and y is not parallel to ff. Since (X) = Rs, y is not
parallel to (X\{y}) which in turn is parallel to ff. Furthermore, (X\{y}) is not
a separating hyperplane for any T^r2 since it forms a boundary of (X)+ so that
ff / (X\{?/}). Now suppose a belongs to ff. By choice T2 is in a+Z(X) so that T2
lies between ff and H + y. Thus Lemma 6.2 gives a — y E 6(^1|X). Since a G ff and
therefore a <£ (X\{y}) we get by (3.1) and (2.8) Vyt(a[X) = r(a|X\{y}) = 0 while
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Vyou(a|X) = 0 because {y} E f/(X). Since by assumption (6.9) t(a — y[X) =
9u(ct-y\X) this implies t(a\X) = gu(a\X). T2 lies between ff and H + y or ff and
ff — y. Thus when a ^ ff it must be between ff and ff — y. Consequently, Lemma
6.2 gives a + y E 6(u1|X). Z(X) has parallel faces contained in a + (X\{y}) + and
a + y + (X\{y}) + and ff contains one of them. Hence in this case a + y E H.
As before we conclude Vyt(a + y[X) = Vygu(a + y\X) — 0 and again since by
assumption (6.9) t(a + y\X) — gu(a + y\X) also <(a|X) = gu(a[X), proving the
claim under the assumption that B(- — a\X) is discontinuous across ff.

If, on the other hand, B(■ - a|X) is continuous on Ty U T2 the reasoning in the
proof of Lemma 6.2 assures that

aG6(22|X\{y})U(6(22|X\{y})-y)
where y E X is any direction not parallel to ff. If a G b(z2\X\{y}) Lemma 6.2
says that a — y E b(z1\X) so that gu(a\X) = r.(a|X) follows from the assumption
(6.9) and (6.7). If a E 6(z2|X\{y}) - y, that is, a + y E 6(22|X\{y}), Lemma 6.2
implies y + a E b(zx\X). Again (6.9) combined with (6.7) yields gu(a\X) = t(a\X).
This proves the claim and therefore (3.3), (3.5) in Theorem 3.1.

It remains to verify the reciprocity relation (3.6). Again we will proceed by
induction on n. Note that for n = s, (X) = Rs, a E S?(X) if and only if —a —
Ej=i xj G &(X) so that (3.6) trivially holds for

/n(a|X)=\0,    ai^(X).

Now suppose (3.6) holds for any strict subset X' of X where \X\ = n> s and let

Q(a) = gu(a\X) - (-l)n"s^ j -a - £ x>[X

where gu(-\X) E V(X) is defined by (6.1) and hence coincides with /n(-|X) by (3.5)
of Theorem 3.1. If for some y = xl G X, (X\{y» ^ Rs, then VyQ{a) = 0, a E Zs,
because {y} G y(X). On the other hand, if (X\{y» = R3 and 0 G b(u[X\{y})
Lemma 6.1(i) gives

VyQ(a) = gu(a\X\{y}) - (-l)n~3 i gu (-a - f^ x*|X J

= gu(a[X\{y})-(-ir-3-1gul-a-   f^   ^XMv))
\ i = l;i^l J

= 0
where we have used our induction hypothesis in the last step. Furthermore, when
(X\{y}) = R3 and 0 £ b(u[X\{y}) Lemma 6.1(ii) assures that VyQ(a) = 0,
a G Zs. Thus under all circumstances

(6.11) VyQ = 0,        y e X.
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Therefore Q is constant on every lattice Jz?(V), V E 38(X), that is,

(6.12) Q E V(V),    for all V E 38(X).
Since by Theorem 3.3 of [8], Z(X) can be decomposed into translates of the par-
ellelepipeds Z(V) = {Vt: t E [0, l}3}, V G 38(X), there is some Y E 38(X) such
that

(6.13) 0e6(u|Y).
We need to consider the lattice points in the half open parallelepiped generated

by Y. For this purpose we let {p1, ...,/*'} = Z3 n {Yt: t E [0, l)3}. Recall from [7]
that the sets

Z]=p?+3'(Y),       j = l,...,l,
form a partition of Z3 and that / = | det K |. We will show next that for each
j = 1,... ,1 there is an a? E Zj such that Q(a3) = 0. Thus we would conclude from
(6.12) and Theorem 5.2 that Q — 0 which advances the induction hypothesis. We
base this claim about Q on

LEMMA 6.3. Suppose Y E 38(X) satisfies (6.13). Let W(X) = {z E X: 0 <£
b(u[X\{z})}.  Then for each j — 1,..., / there exists a E Zj such that

(6.14) ja,-a-fv+     £    azw\ Cb(u[X)\{0}
{ j = l w€W(X) J

holds for some az E {—1,1}, z E W(X).

Before proving this result, let us observe that Q{a) = 0 for any a E Zj satisfying
(6.14). In fact, we have for a G 6(u|X)\{0} that gu(a[X) = 0 by the definition
(6.1). Hence

Q(a) = gu(a\X) - (-l)n-sgu    "a " E X^X

= -(-l)»-to(-a-fy|XJ.
From Lemma 6.1(ii) and the definition of W(X) we infer that

Q(a) = -(-l)"-^tt(-a-Xy+    E    a*z\X)
\ j = l z€W{X) J

which by (6.14) in Lemma 6.3 gives Q(a) — 0, again by the definition of gu(-\X).
Now (6.11) implies Q vanishes everywhere on Zr Since j was arbitrary we conclude
that Q vanishes identically which was to be shown.

Thus it remains to prove Lemma 6.3. To this end, note first that Xt = x holds
for some t E [0, l]n if and only if X(l - t) = £"=i x' - x, i.e. (cf. (1.4))

B(x\X) = B (E^ ~x\x\ ■
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Hence we observe that B(u - a\X) # 0 if and only if B(E"=i xj - u + a\X) ^ 0
proving that

n

(6.15) b{-u[X) = -b(u\X) - ^2 x3.
3 = 1

Next we will prove Lemma 6.3 first under the assumption

(6.16) W(X) = 0.
In view of (6.15) this is equivalent to showing that for each j = 1,..., | det Y|

(6.17) Zj n (b(u\X) n b{-u\X)) ^ 0

because 0 ^ b(—u\X). Since Z(X) is convex this is equivalent to saying that

(6.18) ZjD (-int Z(X))?0.

To prove (6.18) we recall from [3] that the condition W(X) = 0 implies 5(-|X) is
continuous and that

IdetYl-1 =    Y,    B(x-a\X),        ieRs.
ae^f(Y)

Thus, in particular

(6.19) 1 = | det Y|    J2    B{-pj-a\X) = \detY\^2 B(-a[X).
a£y(y) aeZj

From this and the continuity of B(|X) equation (6.18) is immediate.   Hence we
have proved Lemma 6.3 under the assumption that W(X) = 0.

For the general case we introduce the set X = X U W(X). Clearly this set
satisfies (6.16), i.e. W(X) = 0. Hence for any j, 1 < j < I, there exists a' E Zj
and t\t2 G [0,1]" such that

(6.20) a' + Xt^u,        a'+Xt2 = -u.

Since 0 £ b(-u\X) (because 0 ^ [X]) we have a' / 0.   We may write the first
relation in (6.20) as

a' + (X\W(X))r+    J2    (r'w + rZ)w = u
wew(x)

for r E [0, i]»-\mx)\t r^r» e [o, i]. Now let W(X) = VyU V2, where Vy = {w G
W(X) :t'w + t^< 1}, V2 = {wE W(X) : t'w + t'J, > 1} so that

u = a' + (X\W(X))r + £ (r'w + r£> + £ «, + r£ - l)w + £ *>.
w€Vi W&V2 tu€V2

Alternatively, this means a1 = a1 + J2wev2 w e b(u\X). Similarly, we derive from
the second relation in (6.20) that

a2 = a' + J2 v> e b{-u\X)
w£V±
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holds for some V2 C W(X) (where V2' is possibly different from V2). Now, note
that W(X) C Y so that a' G Zj implies a1 G Zj. Thus set

a = a   = a' + y    w
wev2

so that

a2 = a' + Y^ w = a+\   EW_EW1G b(-u\X).
w€V^ \t»6Vj wev2    J

Hence (6.14) follows again from (6.15) as soon as we have shown that a constructed
above is different from zero. To see this note that W(X) C d(X)+ = d(X) + . Since
a = 0 means a' = - Ylwev2 w we get ~a> € ^W + - However, this is contradicted
by the fact that by construction -a' € intZ(X) C int(X)+ = int(X)+. Thus the
proof of Lemma 6.3 is complete.
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