The Number of Spanning Trees in Graphs with a Given Degree Sequence

A. V. Kostochka*

Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

Dedicated to Professor Paul Erdős on the occasion of his 80th birthday

ABSTRACT

Alon's [1] idea is slightly refined to prove that for each connected graph G with degree sequence $1 < k = d_1 \le d_2 \le \cdots \le d_n$ the number C(G) of spanning trees of G satisfies the inequality

$$d(G)k^{-n O(\log k/k)} \leq C(G) \leq d(G)/(n-1)$$
,

where $d(G) = (\prod_{i=1}^{n} d_i)$. An almost exact lower bound for C(G) for 3-regular G on n vertices is also given. © 1994 John Wiley & Sons, Inc.

1. INTRODUCTION

All graphs considered here are simple connected graphs. For a graph G on n vertices let C(G) denote the number of spanning trees of G and $c(G) = (C(G))^{1/n}$. It is known (see [1, 2]) that for each k-regular graph G(k > 1),

$$c(G) < k . \tag{1}$$

Alon [1] studied $c(k) = \lim_{n \to \infty} \inf\{c(G) \mid G \text{ is } k \text{-regular on } n \text{ vertices}\}.$

Theorem A [1]. For each k-regular graph G,

* This work was partly supported by the Grant 93-011-1486 of the Russian Foundation of Fundamental Research.

Random Structures and Algorithms, Vol. 6, Nos. 2 and 3 (1995) © 1995 John Wiley & Sons, Inc. CCC 1042–9832/95/030269–06

$$c(G) \ge k^{1 - O((\log \log k / \log k)^2)}$$

Therefore, $c(k) \ge k^{1-O((\log \log k / \log k)^2)}$.

Theorem B [1]. For each k > 2, $\sqrt{2} \le c(k) < ((k+1)^{k-2}(k-1))^{1/(k+1)} = k^{1-\Theta(1/k)}$. In particular, $2^{1/2} \le c(3) \le 2^{3/4}$.

The result of Theorem A together with (1) shows that the structure of a k-regular graph G unexpectedly does not affect too strongly the quantity C(G). For example, if k is large enough, then we have C(G) < C(H) for any k-regular G and 1.001k-regular H on the same number of vertices. In this article we will follow the lines of Alon's proof to sharpen and generalize Theorem A. The main result is

Theorem 1. Let G be a connected graph with degree sequence $1 < k = d_1 \le d_2 \le \cdots \le d_n$. Denote $d(G) = (\prod_{i=1}^n d_i)$. Then $d(G)k^{-n O(\log k/k)} \le C(G) \le d(G)/(n-1)$. Therefore, $k^{1-O(\log k/k)} \le c(k) \le k^{1-\Theta(1/k)}$.

This means that the dependence of C(G) on the structure of G for graphs with large minimal degree is rather weak. In [1] Alon asked about exact values of c(k). We find here $c(3) = 2^{3/4}$ by proving

Theorem 2. Let G be a graph whose vertex degrees are from $\{2, 3\}$, having m vertices of degree 3. Then

$$C(G) \ge 2^{3(m+2)/4}$$
, (2)

provided $G \neq K_4$.

2. A LOWER BOUND FOR LARGE k

Let G be a (connected) graph with degree sequence $k = d_1 \le d_2 \le \cdots \le d_n$ of vertices v_1, v_2, \ldots, v_n . Following Alon [1], for each $i \in \{1, \ldots, n\}$ choose, randomly (with a uniform distribution on the d_i vertices adjacent to v_i) and independently, a vertex $\Gamma(v_i)$ adjacent to v_i and orient the edge $(v_i, \Gamma(v_i))$ from v_i to $\Gamma(v_i)$. The number of components in the resulting oriented subgraph H of G is equal to the number of oriented cycles in H (oriented cycles of length 2 are possible). Note that the number of possible resulting oriented subgraphs H is d(G). Every spanning tree T of G will be represented among these H exactly n-1 times (with cycles of length 2 using any one edge of T). Thus, $C(G) \le d(G)/(n-1)$.

Lemma 1. For each $i \in \{1, ..., n\}$ and any integer t > 1 the probability that v_i belongs to an oriented cycle in H of length t is at most 1/k.

Proof. Since $\Gamma(v_i)$ are chosen independently, we can consider the events consecutively. Let $w_0 = v_i$ and, for j = 1, 2, ..., t - 1, $w_j = \Gamma(w_{j-1})$. If not all the vertices $w_0, w_1, ..., w_{t-1}$ are distinct or (w_0, w_{t-1}) is not an edge in G, then v_i

does not belong to an oriented cycle in H of length t. Otherwise, the probability that $v_i = \Gamma(w_{t-1})$ is $1/d(w_{t-1}) \le 1/k$.

Lemma 2. For any integer t > 1 the expectation of the number of components of *H* with oriented cycles of length at most *t* is no more than $(n/k) \ln t$.

Proof. By Lemma 1, the expected number of vertices on oriented cycles in H of length j is at most n/k. Hence the expected number of such cycles is at most n/kj. Thus, the desired expectation does not exceed $(n/k)(1/2 + 1/3 + \cdots + 1/t)$.

To prove Theorem 1, it is enough now just to repeat the second half of Alon's proof [1] of Theorem A, keeping in mind Lemma 2. Thus, we only outline the arguments. Let \mathcal{H} be the family of those oriented subgraphs H of G having at most $(2n/k) \ln k$ components of size k or less. Then each $H \in \mathcal{H}$ has less than $(3n/k) \ln k$ components. By Lemma 2, $|\mathcal{H}| \ge d(G)/2$. With each $H \in \mathcal{H}$ we associate a forest F_H by deleting an arbitrary edge from the unique cycle of each component. Then it can be seen that any such forest F can be obtained from at most $k^{(6n/k) \ln k}$ distinct $H \in \mathcal{H}$. Each F_H is contained in a spanning tree of G and any spanning tree of G contains at most

$$\sum_{i=0}^{(3n/k)\ln k} \binom{n-1}{i} = k^{n O(\log k/k)}$$

forests with less than $(3n/k) \ln k$ components. This completes the proof of Theorem 1.

3. ON GRAPHS WITH MAXIMAL DEGREE 3

Throughout the section for a graph H we will denote by m(H) the number of vertices of degree 3 in H and $f(H) = 2^{3(m(H)+2)/4}$.

Let us count C(G) for several G. Denote $H_1 = K_4$, $H_2 = K_4 \lor e$, $H_3 = K_{3,3}$, $H_4 - 3$ -prism; to obtain H_5 , we subdivide an edge of K_4 by a vertex. It is an easy exercise to see that $C(H_1) = 16$, $C(H_2) = 8$, $C(H_3) = 81$, $C(H_4) = 75$, $C(H_5) = 24$. Thus, for $H_2 - H_5$, Theorem 2 is true.

Proof of Theorem 2. Suppose that G = (V, E) is a minimum (on the number of edges) graph which is not K_4 such that C(G) < f(G). Evidently, |E| > 3.

Claim 1. G has no cut-edge.

Proof. If G has a cut-edge, then for some s there is a path $P = (v_1, \ldots, v_s)$ such that $d(v_1) = d(v_s) = 3$, $d(v_2) = \cdots = d(v_{s-1}) = 2$ and all the edges of P are cutedges. Let G_1 and G_2 be the components of the graph obtained from G by deleting the edges and the interior vertices of P. Both G_1 and G_2 have a vertex of degree 2 (namely, v_1 and v_s) and hence do not coincide with K_4 . Note that $m(G_1) + m(G_2) = m(G) - 2$. By the minimality of $G, C(G_1)C(G_2) \ge f(G_1)f(G_2) = f(G)$. But $C(G) = C(G_1)C(G_2)$, a contradiction.

Claim 2. G is 3-regular.

Proof. Suppose that G contains a vertex v with $N_G(v) = \{x, y\}$.

Case 1. $(x, y) \not\in E$. Let $G_1 = (G \setminus v) \cup \{(x, y)\}$. If $G_1 = K_4$, then $G = H_5$, a contradiction. Otherwise by the minimality of $G, C(G_1) \ge f(G_1) = f(G)$. But $C(G) \ge C(G_1)$.

Case 2. $(x, y) \in E$. If d(y) = 2, then either $G = K_3$ and we are done, or the third edge incident with x is a cut-edge, which contradicts Claim 1. So, we can suppose that $N_G(x) = \{v, y, u\}$, $N_G(y) = \{v, x, w\}$. If u = w, then again either $G = K_4 \lor e = H_2$ and we are done, or the third edge incident with w is a cut-edge. Thus, we can assume $u \neq w$. Let G_1 be obtained from G by contracting x, y, and v into a new vortex z (of degree 2). By the minimality of $G, C(G_1) \ge f(G_1) = 2^{-3/2} f(G)$. But each spanning tree of G_1 can be extended to a spanning tree of G by three ways [by adding any two edges of the triangle (x, v, y)]. Hence $C(G) \ge 3C(G_1) \ge 3f(G_1) > f(G)$.

Claim 3. G contains no subgraph K_4 /e.

Proof. Suppose that G contains a subgraph K_4 'e (see Fig. 1). Since G has no cut-edge, $w \neq v$. Consider $G_1 = G \setminus \{x, y, z, u\}$. By the minimality of G [d(w) = 2 in $G_1]$, $C(G_1) \ge f(G_1) = 2^{-4.5} f(G)$. Because of $C(K_4 \setminus e) = 8$, each spanning tree T_1 of G_1 can be extended to a spanning tree T of G by:

- (a) 8 ways such that T contains (x, w) and does not contain (u, v);
- (b) 8 ways such that T contains (u, v) and does not contain (x, w);
- (c) 8 ways such that T contains both (u, v) and (x, w).

Hence $C(G) \ge 24C(G_1) > f(G)$.

Claim 4. G contains no triangles.

Proof. Suppose that G contains a triangle (x, y, z) and $\{(x, u), (y, v), (z, w)\} \subset E$. Due to Claim 3, the vertices u, v, and w are distinct. Let G_1 be obtained from G by contracting x, y, and z into a new vertex t. If $G_1 = K_4$, then $G = H_4$, a contradiction. Otherwise, by the minimality of $G, C(G_1) \ge f(G_1) = 2^{-3/2} f(G)$. But

each spanning tree of G_1 can be extended to a spanning tree of G by three ways [by adding any two edges of the triangle (x, y, z)]. Hence $C(G) \ge 3C(G_1) \ge 3f(G_1) \ge f(G)$.

Now, consider the neighborhood of an arbitrary edge (u, v) of G [see Fig. 2(a)]. Consider $G_1 = (G \setminus \{v, u\}) \cup \{(x, y), (z, w)\}$ [see Fig. 2(b)]. If $G_1 = K_4$, then $G = H_3$, a contradiction. Otherwise, by the minimality of $G, C(G_1) \ge f(G_1) = 2^{-1.5}f(G)$. For each spanning tree T_1 of G_1 , we will point out three spanning trees of G containing T_1 such that any spanning tree T of G will appear at most once.

Case 1. $E(T_1) \cap \{(x, y), (z, w)\} = \emptyset$. We extend T_1 by four ways adding an edge from $\{(x, u), (y, u)\}$ and an edge from $\{(z, v), (w, v)\}$.

Case 2. $(x, y) \in E(T_1)$, $(z, w) \notin E(T_1)$. We add to $E(T_1)$ the edges (x, u), (y, u), and an edge incident to u (three ways).

Case 3. $(x, y) \not\in E(T_1), (z, w) \in E(T_1)$. We do symmetrically to the Case 2.

Case 4. $E(T_1) \supset \{(x, y), (z, w)\}$. Then in $T_1 \setminus \{(x, y), (z, w)\}$ exactly one pair of elements of $\{x, y, z, w\}$ is connected by a path, and this pair is neither $\{x, y\}$ nor $\{z, w\}$. W.l.o.g. we suppose that this pair is $\{z, x\}$. Then we add to $E(T_1)$ the sets (a) $\{(x, u), (y, u), (z, v), (w, v)\}$, (b) $\{(v, u), (y, u), (z, v), (w, v)\}$, and (c) $\{(v, u), (y, u), (x, u), (w, v)\}$.

To construct the examples for which equality in (2) holds, consider an arbitrary tree T with the maximal degree 3. Now, attach to every end-vertex v of T a copy of K_4 've so that the degree of v becomes 3, and for some subset A of E(T) replace each edge (v, w) by a copy of the graph on Figure 1 (with v and w as on Figure 1). Denote the resulting graph by G(T, A). Recall that the number of end-vertices of T is equal to m(T) + 2. Since $C(K_4 v) = 8$, m(G(T, A)) = 4(m(T) + 2 + |A|) - 2 and each cut-edge belongs to any spanning tree, we have $C(G(T, A)) = 8^{m(T)+2+|A|} = 8^{(m(G(T,A))+2)/4}$. It can be proved that any graph with equality in (2) can be obtained from some G(T, A) by replacing several paths by edges.

As to 3-regular graphs, consider a path $P_t = (v_1, \ldots, v_{2t})$. Attach to each end of P_t a copy of H_5 described above and replace for $i = 1, \ldots, t - 1$ the edge (v_{2i}, v_{2i+1}) by a copy of K_4 've so that the resulting graph G(t) is 3-regular. We know that $C(H_5) = 24$, and m(G(t)) = |V(G(t))| = 6 + 4t = 4(t+2) - 2. Hence, $C(G(t)) = 24^{28^{t-1}} = (9/8) 8^{(m(G(t))+2)/4} = (9/8)f(G(t))$. Thus, the bound here is also

Fig. 2.

close to the truth. More careful consideration can show that (9/8)f(G) is the lower bound of C(G) for 3-regular graphs G except for K_4 .

ACKNOWLEDGMENT

The author thanks N. Alon for interesting and useful discussions and other help.

REFERENCES

- [1] N. Alon, The number of spanning trees in regular graphs, Random Struct. Alg., 1 175-181 (1990).
- [2] B. D. McKay, Spanning trees in regular graphs, Eur. J. Combinat., 4 149-160 (1983).

Received November 2, 1993 Accepted April 14, 1994