The Number of Spanning Trees in Graphs with a Given Degree Sequence

A. V. Kostochka*
Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
Dedicated to Professor Paul Erdốs on the occasion of his 80th birthday

Abstract

Alon's [1] idea is slightly refined to prove that for each connected graph G with degree sequence $1<k=d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ the number $C(G)$ of spanning trees of G satisfies the inequality $$
d(G) k^{-n O(\log k / k)} \leq C(G) \leq d(G) /(n-1),
$$ where $d(G)=\left(\Pi_{i=1}^{n} d_{i}\right)$. An almost exact lower bound for $C(G)$ for 3 -regular G on n vertices is also given. (C) 1994 John Wiley \& Sons, Inc.

1. INTRODUCTION

All graphs considered here are simple connected graphs. For a graph G on n vertices let $C(G)$ denote the number of spanning trees of G and $c(G)=(C(G))^{1 / n}$. It is known (see [1,2]) that for each k-regular graph $G(k>1)$,

$$
\begin{equation*}
c(G)<k . \tag{1}
\end{equation*}
$$

Alon [1] studied $c(k)=\lim _{n \rightarrow \infty} \inf \{c(G) \mid G$ is k-reguiar on n vertices $\}$.
Theorem A [1]. For each k-regular graph G,

* This work was partly supported by the Grant 93-011-1486 of the Russian Foundation of Fundamental Research.

$$
c(G) \geq k^{1-O\left((\log \log k / \log k)^{2}\right)} .
$$

Therefore, $c(k) \geq k^{1-O\left((\log \log k / \log k)^{2}\right)}$.
Theorem B [1]. For each $k>2, \sqrt{ } 2 \leq c(k)<\left((k+1)^{k-2}(k-1)\right)^{1 /(k+1)}=$ $k^{1-\theta(1 / k)}$. In particular, $2^{1 / 2} \leq c(3) \leq 2^{3 / 4}$.

The result of Theorem A together with (1) shows that the structure of a k-regular graph G unexpectedly does not affect too strongly the quantity $C(G)$. For example, if k is large enough, then we have $C(G)<C(H)$ for any k-regular G and $1.001 k$-regular H on the same number of vertices. In this article we will follow the lines of Alon's proof to sharpen and generalize Theorem A. The main result is

Theorem 1. Let G be a connected graph with degree sequence $1<k=d_{1} \leq d_{2} \leq$ $\cdots \leq d_{n}$. Denote $d(G)=\left(\Pi_{i=1}^{n} d_{i}\right)$. Then $d(G) k^{-n O(\log k / k)} \leq C(G) \leq d(G) /(n-$ 1). Therefore, $k^{1-O(\log k / k)} \leq c(k) \leq k^{1-\Theta(1 / k)}$.

This means that the dependence of $C(G)$ on the structure of G for graphs with large minimal degree is rather weak. In [1] Alon asked about exact values of $c(k)$. We find here $c(3)=2^{3 / 4}$ by proving

Theorem 2. Let G be a graph whose vertex degrees are from $\{2,3\}$, having m vertices of degree 3. Then

$$
\begin{equation*}
C(G) \geq 2^{3(m+2) / 4} \tag{2}
\end{equation*}
$$

provided $G \neq K_{4}$.

2. A LOWER BOUND FOR LARGE \boldsymbol{k}

Let G be a (connected) graph with degree sequence $k=d_{1} \leq d_{2} \leq \cdots \leq d_{n}$ of vertices $v_{1}, v_{2}, \ldots, v_{n}$. Following Alon [1], for each $i \in\{1, \ldots, n\}$ choose, randomly (with a uniform distribution on the d_{i} vertices adjacent to v_{i}) and independently, a vertex $\Gamma\left(v_{i}\right)$ adjacent to v_{i} and orient the edge ($v_{i}, \Gamma\left(v_{i}\right)$) from v_{i} to $\Gamma\left(v_{i}\right)$. The number of components in the resulting oriented subgraph H of G is equal to the number of oriented cycles in H (oriented cycles of length 2 are possible). Note that the number of possible resulting oriented subgraphs H is $d(G)$. Every spanning tree T of G will be represented among these H exactly $n-1$ times (with cycles of length 2 using any one edge of T). Thus, $C(G) \leq d(G)$ / ($n-1$).

Lemma 1. For each $i \in\{1, \ldots, n\}$ and any integer $t>1$ the probability that v_{i} belongs to an oriented cycle in H of length t is at most $1 / k$.

Proof. Since $\Gamma\left(v_{i}\right)$ are chosen independently, we can consider the events consecutively. Let $w_{0}=v_{i}$ and, for $j=1,2, \ldots, t-1, w_{j}=\Gamma\left(w_{j-1}\right)$. If not all the vertices $w_{0}, w_{1}, \ldots, w_{t-1}$ are distinct or $\left(w_{0}, w_{t-1}\right)$ is not an edge in G, then v_{i}
does not belong to an oriented cycle in H of length t. Otherwise, the probability that $v_{i}=\Gamma\left(w_{t-1}\right)$ is $1 / d\left(w_{t-1}\right) \leq 1 / k$.

Lemma 2. For any integer $t>1$ the expectation of the number of components of H with oriented cycles of length at most t is no more than $(n / k) \ln t$.

Proof. By Lemma 1, the expected number of vertices on oriented cycles in H of length j is at most n / k. Hence the expected number of such cycles is at most $n / k j$. Thus, the desired expectation does not exceed $(n / k)(1 / 2+1 / 3+\cdots+1 / t)$.

To prove Theorem 1, it is enough now just to repeat the second half of Alon's proof [1] of Theorem A, keeping in mind Lemma 2. Thus, we only outline the arguments. Let \mathscr{H} be the family of those oriented subgraphs H of G having at most $(2 n / k) \ln k$ components of size k or less. Then each $H \in \mathscr{H}$ has less than $(3 n / k) \ln k$ components. By Lemma $2,|\mathscr{H}| \geq d(G) / 2$. With each $H \in \mathscr{H}$ we associate a forest F_{H} by deleting an arbitrary edge from the unique cycle of each component. Then it can be seen that any such forest F can be obtained from at most $k^{(6 n / k) \ln k}$ distinct $H \in \mathscr{H}$. Each F_{H} is contained in a spanning tree of G and any spanning tree of G contains at most

$$
\sum_{i=0}^{(3 n / k) \ln k}\binom{n-1}{i}=k^{n O(\log k / k)}
$$

forests with less than $(3 n / k) \ln k$ components. This completes the proof of Theorem 1.

3. ON GRAPHS WITH MAXIMAL DEGREE 3

Throughout the section for a graph H we will denote by $m(H)$ the number of vertices of degree 3 in H and $f(H)=2^{3(m(H)+2) / 4}$.

Let us count $C(G)$ for several G. Denote $H_{1}=K_{4}, H_{2}=K_{4} \backslash e, H_{3}=K_{3,3}$, H_{4} - 3-prism; to obtain H_{5}, we subdivide an edge of K_{4} by a vertex. It is an easy exercise to see that $C\left(H_{1}\right)=16, C\left(H_{2}\right)=8, C\left(H_{3}\right)=81, C\left(H_{4}\right)=75, C\left(H_{5}\right)=24$. Thus, for $H_{2}-H_{5}$, Theorem 2 is true.

Proof of Theorem 2. Suppose that $G=(V, E)$ is a minimum (on the number of edges) graph which is not K_{4} such that $C(G)<f(G)$. Evidently, $|E|>3$.

Claim 1. G has no cut-edge.
Proof. If G has a cut-edge, then for some s there is a path $P=\left(v_{1}, \ldots, v_{s}\right)$ such that $d\left(v_{1}\right)=d\left(v_{s}\right)=3, d\left(v_{2}\right)=\cdots=d\left(v_{s-1}\right)=2$ and all the edges of P are cutedges. Let G_{1} and G_{2} be the components of the graph obtained from G by deleting the edges and the interior vertices of P. Both G_{1} and G_{2} have a vertex of degree 2 (namely, v_{1} and v_{s}) and hence do not coincide with K_{4}. Note that $m\left(G_{1}\right)+m\left(G_{2}\right)=m(G)-2$. By the minimality of $G, C\left(G_{1}\right) C\left(G_{2}\right) \geq f\left(G_{1}\right) f\left(G_{2}\right)=$ $f(G)$. But $C(G)=C\left(G_{1}\right) C\left(G_{2}\right)$, a contradiction.

Claim 2. G is 3-regular.
Proof. Suppose that G contains a vertex v with $N_{G}(v)=\{x, y\}$.
Case 1. $(x, y) \notin E$. Let $G_{1}=(G \backslash v) \cup\{(x, y)\}$. If $G_{1}=K_{4}$, then $G=H_{5}$, a contradiction. Otherwise by the minimality of $G, C\left(G_{1}\right) \geq f\left(G_{1}\right)=f(G)$. But $C(G) \geq C\left(G_{1}\right)$.

Case 2. $(x, y) \in E$. If $d(y)=2$, then either $G=K_{3}$ and we are done, or the third edge incident with x is a cut-edge, which contradicts Claim 1. So, we can suppose that $N_{G}(x)=\{v, y, u\}, N_{G}(y)=\{v, x, w\}$. If $u=w$, then again either $G=K_{4} \backslash e=H_{2}$ and we are done, or the third edge incident with w is a cut-edge. Thus, we can assume $u \neq w$. Let G_{1} be obtained from G by contracting x, y, and v into a new vortex z (of degree 2). By the minimality of $G, C\left(G_{1}\right) \geq f\left(G_{1}\right)=$ $2^{-3 / 2} f(G)$. But each spanning tree of G_{1} can be extended to a spanning tree of G by three ways [by adding any two edges of the triangle (x, v, y)]. Hence $C(G) \geq$ $3 C\left(G_{1}\right) \geq 3 f\left(G_{1}\right)>f(G)$.

Claim 3. G contains no subgraph $K_{4} \backslash$ e.
Proof. Suppose that G contains a subgraph $K_{4} \backslash e$ (see Fig. 1). Since G has no cut-edge, $w \neq v$. Consider $G_{1}=G \backslash\{x, y, z, u\}$. By the minimality of $G[d(w)=2$ in $\left.G_{1}\right], C\left(G_{1}\right) \geq f\left(G_{1}\right)=2^{-4.5} f(G)$. Because of $C\left(K_{4} \backslash e\right)=8$, each spanning tree T_{1} of G_{1} can be extended to a spanning tree T of G by:
(a) 8 ways such that T contains (x, w) and does not contain (u, v);
(b) 8 ways such that T contains (u, v) and does not contain (x, w);
(c) 8 ways such that T contains both (u, v) and (x, w).

Hence $C(G) \geq 24 C\left(G_{1}\right)>f(G)$.
Claim 4. G contains no triangles.
Proof. Suppose that G contains a triangle (x, y, z) and $\{(x, u),(y, v),(z, w)\} \subset$ E. Due to Claim 3, the vertices u, v, and w are distinct. Let G_{1} be obtained from G by contracting x, y, and z into a new vertex t. If $G_{1}=K_{4}$, then $G=H_{4}$, a contradiction. Otherwise, by the minimality of $G, C\left(G_{1}\right) \geq f\left(G_{1}\right)=2^{-3 / 2} f(G)$. But

Fig. 1.
each spanning tree of G_{1} can be extended to a spanning tree of G by three ways [by adding any two edges of the triangle (x, y, z)]. Hence $C(G) \geq 3 C\left(G_{1}\right) \geq$ $3 f\left(G_{1}\right)>f(G)$.

Now, consider the neighborhood of an arbitrary edge (u, v) of G [see Fig. 2(a)].
Consider $G_{1}=(G \backslash\{v, u\}) \cup\{(x, y),(z, w)\}$ [see Fig. 2(b)]. If $G_{1}=K_{4}$, then $G=H_{3}$, a contradiction. Otherwise, by the minimality of $G, C\left(G_{1}\right) \geq f\left(G_{1}\right)=$ $2^{-1.5} f(G)$. For each spanning tree T_{1} of G_{1}, we will point out three spanning trees of G containing T_{1} such that any spanning tree T of G will appear at most once.

Case 1. $E\left(T_{1}\right) \cap\{(x, y),(z, w)\}=\emptyset$. We extend T_{1} by four ways adding an edge from $\{(x, u),(y, u)\}$ and an edge from $\{(z, v),(w, v)\}$.

Case 2. $(x, y) \in E\left(T_{1}\right),(z, w) \notin E\left(T_{1}\right)$. We add to $E\left(T_{1}\right)$ the edges (x, u), (y, u), and an edge incident to u (three ways).

Case 3. $(x, y) \notin E\left(T_{1}\right),(z, w) \in E\left(T_{1}\right)$. We do symmetrically to the Case 2.
Case 4. $E\left(T_{1}\right) \supset\{(x, y),(z, w)\}$. Then in $T_{1} \backslash\{(x, y),(z, w)\}$ exactly one pair of elements of $\{x, y, z, w\}$ is connected by a path, and this pair is neither $\{x, y\}$ nor $\{z, w\}$. W.l.o.g. we suppose that this pair is $\{z, x\}$. Then we add to $E\left(T_{1}\right)$ the sets (a) $\{(x, u),(y, u),(z, v),(w, v)\},(b)\{(v, u),(y, u),(z, v),(w, v)\}$, and (c) $\{(v, u)$, $(y, u),(x, u),(w, v)\}$.

To construct the examples for which equality in (2) holds, consider an arbitrary tree T with the maximal degree 3 . Now, attach to every end-vertex v of T a copy of $K_{4} \backslash e$ so that the degree of v becomes 3 , and for some subset A of $E(T)$ replace each edge (v, w) by a copy of the graph on Figure 1 (with v and w as on Figure 1). Denote the resulting graph by $G(T, A)$. Recall that the number of end-vertices of T is equal to $m(T)+2$. Since $C\left(K_{4} \backslash e\right)=8, m(G(T, A))=4(m(T)+2+|A|)-2$ and each cut-edge belongs to any spanning tree, we have $C(G(T, A))=8^{m(T)+2+|A|}$ $=8^{(m(G(T, A)++2) / 4}$. It can be proved that any graph with equality in (2) can be obtained from some $G(T, A)$ by replacing several paths by edges.
As to 3-regular graphs, consider a path $P_{t}=\left(v_{1}, \ldots, v_{2 t}\right)$. Attach to each end of P_{t} a copy of H_{5} described above and replace for $i=1, \ldots, t-1$ the edge $\left(v_{2 i}, v_{2 i+1}\right)$ by a copy of $K_{4} \backslash e$ so that the resulting graph $G(t)$ is 3 -regular. We know that $C\left(H_{5}\right)=24$, and $m(G(t))=|V(G(t))|=6+4 t=4(t+2)-2$. Hence, $C(G(t))=24^{2} 8^{t-1}=(9 / 8) 8^{(m(G(t))+2) / 4}=(9 / 8) f(G(t))$. Thus, the bound here is also

Fig. 2.
close to the truth. More careful consideration can show that (9/8)f(G) is the lower bound of $C(G)$ for 3-regular graphs G except for K_{4}.

ACKNOWLEDGMENT

The author thanks N . Alon for interesting and useful discussions and other help.

REFERENCES

[1] N. Alon, The number of spanning trees in regular graphs, Random Struct. Alg., 1 175-181 (1990).
[2] B. D. McKay, Spanning trees in regular graphs, Eur. J. Combinat., 4 149-160 (1983).

Received November 2, 1993
Accepted April 14, 1994

