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ABSTRACT 

Alon's [l] idea is slightly refined to prove that for each connected graph G with degree 
sequence 1 < k = d ,  5 d ,  5 . . .5 d,  the number C ( C )  of spanning trees of G satisfies the 
inequality 

d(G)k-n O(1OS k l k )  .I C(G)  .I d(G) l (n  - 1)  , 

where d(G) = (nn,, di). An almost exact lower bound for C(G) for 3-regular G on ti 

vertices is also given. 0 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

All graphs considered here are simple connected graphs. For a graph G on n 
vertices let C(G)  denote the number of spanning trees of G and c(G) = (C(G))"". 
It is known (see [l, 21) that for each k-regular graph G (k > l), 

c(G) < k . (1) 

Alon [l] studied c(k) = limn-- inf{c(G) 1 G is k-reguiar on n vertices}. 

Theorem A [l]. For each k-regular graph G ,  
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> kl-O((log log &/log k ) 2 )  
c ( G )  - 

Therefore, c(k)  2 kl-O(( log  log &/log 

Theorem B [l]. 
k l - w / k )  . 

For each k > 2 ,  d 2 5 c ( k )  < ((k + l)&-’(k - l))l’(k+l) = 
particular, 21/2 5 c(3)  5 23/4. 

The result of Theorem A together with (1) shows that the structure of a 
k-regular graph G unexpectedly does not affect too strongly the quantity C(G).  
For example, if k is large enough, then we have C(G)  < C ( H )  for any k-regular G 
and 1.001k-regular H on the same number of vertices. In this article we will 
follow the lines of Alon’s proof to sharpen and generalize Theorem A. The main 
result is 

Theorem 1. 
* * .  5 d, .  Denote d ( G )  = (fly==, d ; ) .  Then d(G)k-  

Let G be a connected graph with degree sequence 1 < k = d ,  5 d ,  5 
I C(G) 5 d ( G ) / ( n  - n O(l0g k l k )  

1). Therefore, kl-O(log k / k )  5 c(k)  5 k’-e(”k).  

This means that the dependence of C(G) on the structure of G for graphs with 
large minimal degree is rather weak. In [l] Alon asked about exact values of c(k) .  
We find here c(3)  = z3l4 by proving 

Theorem 2. 
vertices of degree 3 .  Then 

Let G be a graph whose vertex degrees are from (2,3}, having m 

C(G)  2 23(m+2)/4 , (2) 
provided G # K4. 

2. A LOWER BOUND FOR LARGE k 

Let G be a (connected) graph with degree sequence k = d ,  5 d ,  5 * * - 5 d ,  of 
vertices u , ,  u,, . . . , u,. Following Alon [l], for each i E (1,. . . , n }  choose, 
randomly (with a uniform distribution on the di  vertices adjacent to ui) and 
independently, a vertex T(u,)  adjacent to ui and orient the edge (ui, I‘(ui)) from ui 
to r(ui). The number of components in the resulting oriented subgraph H of G is 
equal to the number of oriented cycles in H (oriented cycles of length 2 are 
possible). Note that the number of possible resulting oriented subgraphs H is 
d ( G ) .  Every spanning tree T of G will be represented among these H exactly 
n - 1 times (with cycles of length 2 using any one edge of T ) .  Thus, C(G) I d(G) l  
(n - 1). 

Lemma 1. 
belongs to an oriented cycle in H of length t is at most l lk .  

For each i E (1, . . . , n }  and any integer t > 1 the probability that ui 

Proof. Since T(u,) are chosen independently, we can consider the events 
consecutively. Let wo = ui and, for j = 1,2,  . . . , t - 1, wj  = r ( w j - l ) .  If not all the 
vertices wo,  w l ,  . . . , w,- ,  are distinct or (wo,  is not an edge in G, then ui 
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does not belong to an oriented cycle in H of length t. Otherwise, the probability 
0 that ui = r(wr-,) is 1/d(wr-,) I l l k .  

Lemma 2. 
H with oriented cycles of length at most t is no more than (nlk) In t. 

For any integer t > 1 the expectation of the number of components of 

Proof. By Lemma 1, the expected number of vertices on oriented cycles in H of 
length j is at most nlk. Hence the expected number of such cycles is at most nlkj. 
Thus, the desired expectation does not exceed (nlk)(1/2 + 113 + - - - + l / t) .  0 

To prove Theorem 1, it is enough now just to repeat the second half of Alon's 
proof [l] of Theorem A, keeping in mind Lemma 2. Thus, we only outline the 
arguments. Let X be the family of those oriented subgraphs H of G having at 
most (2nlk) In k components of size k or less. Then each H E  X has less than 
(3nlk)lnk components. By Lemma 2, IX l rd (G) /2 .  With each H E X  we 
associate a forest FH by deleting an arbitrary edge from the unique cycle of each 
component. Then it can be seen that any such forest F can be obtained from at 

distinct H E X. Each FH is contained in a spanning tree of G and most k(6nlk) I n k  

any spanning tree of G contains at most 

forests with less than (3nlk)lnk components. This completes the proof of 
Theorem 1. 

3. ON GRAPHS WITH MAXIMAL DEGREE 3 

Throughout the section for a graph H we will denote by m(H) the number of 
vertices of degree 3 in H and f(H) = 23(m(H)+2)/4. 

Let us count C(G)  for several G. Denote H ,  = K , ,  H2 = K,k, H3 = K 3 , 3 ,  
H ,  - 3-prism; to obtain H, ,  we subdivide an edge of K ,  by a vertex. It is an easy 
exercise to see that C(H, )  = 16, C(H,) = 8, C(H3)  = 81, C(H,) = 75, C(H,)  = 24. 
Thus, for H ,  - H, ,  Theorem 2 is true. 

Proof of Theorem 2. 
edges) graph which is not K, such that C(G)<f(G). Evidently, IEl>3.  

Suppose that G = (V, E) is a minimum (on the number of 

Claim 1. G has no cut-edge. 

Proof. If G has a cut-edge, then for some s there is a path P = ( u , ,  . . . , u,) such 
that d(u, )  = d(u,) = 3, d(u2) = . - . = d(u,- , )  = 2 and all the edges of P are cut- 
edges. Let G ,  and G ,  be the components of the graph obtained from G by 
deleting the edges and the interior vertices of P. Both G ,  and G, have a vertex of 
degree 2 (namely, u1 and u s )  and hence do not coincide with K,. Note that 
m(G,) + m(G,) = m(G) - 2. By the minimality of G, C(G,)C(G,) 2f(G,)f(G2) = 

0 f(C). But C(G) = C(G,)C(G,),  a contradiction. 
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Claim 2. G is 3-regular. 

Proof. 
( x , y ) g E .  Let G ,  = ( G \ u ) U { ( x , y ) } .  If GI = K4, then G = H , ,  a 

contradiction. Otherwise by the minimality of G, C(G,) 2f(G,) =f(G). But 

( x ,  y )  E E .  If d ( y )  = 2,  then either G = K, and we are done, or the 
third edge incident with x is a cut-edge, which contradicts Claim 1. So, we can 
suppose that NG(x) = { u ,  y ,  u } ,  N G ( y )  = { u , x ,  w}. If u = w, then again either 
G = K4k = H ,  and we are done, or the third edge incident with w is a cut-edge. 
Thus, we can assume u # w. Let G ,  be obtained from G by contracting x ,  y ,  and 
u into a new vortex z (of degree 2) .  By the minimality of G, C ( G , )  r f (G, )  = 
2-,”f(G). But each spanning tree of G ,  can be extended to a spanning tree of G 
by three ways [by adding any two edges of the triangle ( x ,  u ,  y ) ] .  Hence C ( G )  2 

0 

Suppose that G contains a vertex u with NG(u) = { x ,  y } .  
Case 1 .  

C(G)  2 C(G, ) .  
Case 2. 

3C(G,)  2 3f(G1 1 >f(G). 

Claim 3. G contains no subgraph K4k. 

Proof. Suppose that G contains a subgraph K4k (see Fig. 1). Since G has no 
cut-edge, w # u .  Consider G = G\{x, y ,  z ,  u } .  By the minimality of G [d(w) = 2 
in G , ] ,  C(G, )  rf(G,) = 2 -  f(G). Because of C(K4k) = 8, each spanning tree T, 
of G ,  can be extended to a spanning tree T of G by: 

4.51 

(a) 8 ways such that T contains ( x ,  w )  and does not contain (u,  u ) ;  
(b) 8 ways such that T contains (u, u )  and does not contain ( x ,  w); 
(c) 8 ways such that T contains both (u, u )  and ( x ,  w). 

Hence C ( G )  2 24C(G,) >f(G). 0 

Claim 4. G contains no triangles. 

Proof. Suppose that G contains a triangle (x ,  y ,  z )  and { ( x ,  u) ,  ( y ,  u ) ,  ( z ,  w)} C 
E .  Due to Claim 3,  the vertices u, u ,  and w are distinct. Let GI be obtained from 
G by contracting x ,  y ,  and z into a new vertex t .  If G ,  = K4, then G = H4, a 
contradiction. Otherwise, by the minimality of G, C(G, )  r f (G, )  = 2-3”f(G). But 

Fig. 1. 
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each spanning tree of G ,  can be extended to a spanning tree of G by three ways 
[by adding any two edges of the triangle (x,y,z)]. Hence C ( G ) r 3 C ( G l ) 2  

Now, consider the neighborhood of an arbitrary edge (u, u )  of G [see Fig. 2(a)]. 
Consider G ,  = (G\{u, u } )  U { ( x ,  y), (z, w)} [see Fig. 2(b)]. If G ,  = K 4 ,  then 

G = H 3 ,  a contradiction. Otherwise, by the minimality of G, C(G,)  ?f(G,) = 
2-'.,f(G). For each spanning tree T ,  of G ,  , we will point out three spanning trees 
of G containing T ,  such that any spanning tree T of G will appear at most once. 

Case 1. E(T,)  rl { ( x ,  y), (z, w)} = 0. We extend T ,  by four ways adding an edge 
from { ( x ,  u ) ,  (y ,  u ) }  and an edge from ((2, u ) ,  (w, u ) } .  

Case 2. (x ,y)EE(T, ) ,  (z, w ) j Z E ( T , ) .  We add to E ( T , )  the edges ( x , u ) ,  
(y ,  u ) ,  and an edge incident to u (three ways). 

Case 3. ( x ,  y)$E(T,), ( z ,  w) E E(T,).  We do symmetrically to the Case 2. 
Case 4. E(T, )  3 { ( x ,  y), (z, w)}. Then in T,\{(x, y), ( z ,  w)} exactly one pair of 

elements of { x ,  y, z ,  w} is connected by a path, and this pair is neither { x ,  y} nor 
{ z ,  w}. W.1.o.g. we suppose that this pair is { z , x } .  Then we add to E(T, )  the sets 
(a) { ( x ,  u),  (Y,  u) ,  (2, u ) ,  (w, u ) } ,  (b) { ( u ,  u ) ,  (Y,  u), (2, v), (w, u ) } ,  and (4 { ( u ,  u ) ,  
(Y, u) ,  ( x ,  u),  (w, u ) } .  0 

3f(G1 1 >f(W 

To construct the examples for which equality in (2) holds, consider an arbitrary 
tree T with the maximal degree 3. Now, attach to every end-vertex u of T a copy 
of K4k so that the degree of u becomes 3, and for some subset A of E ( T )  replace 
each edge ( u ,  w) by a copy of the graph on Figure 1 (with u and w as on Figure 1). 
Denote the resulting graph by G(T, A). Recall that the number of end-vertices of 
T is equal to m(T)  + 2. Since C(K4k) = 8, m(G(T, A)) = 4(m(T) + 2 + IAI) - 2 
and each cut-edge belongs to any spanning tree, we have C(G(T, A)) = 8 
- - g ( m ( G ( T . A ) ) + 2 ) / 4  . It can be proved that any graph with equality in (2) can be 
obtained from some G(T, A) by replacing several paths by edges. 

As to 3-regular graphs, consider a path P, = ( u , ,  . . . , uZr) .  Attach to each end 
of PI a copy of H ,  described above and replace for i = 1, . . . , t - 1 the edge 
( u Z i ,  u Z i + , )  by a copy of K4k so that the resulting graph G(t) is 3-regular. We 
know that C ( H , )  = 24, and m(G(t)) = IV(G(t))I = 6 + 4t = 4(t + 2) - 2. Hence, 
C(G(t)) = 24'8'-' = (9/8) 8(m(G(r))+2)'4 = (9/8)f(G(t)). Thus, the bound here is also 

m(T)+2+1AI  
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close to the truth. More careful consideration can show that (9/8)f(G) is the 
lower bound of C(G) for 3-regular graphs G except for K4. 
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