THE NUMBER OF SUBCONTINUA OF THE REMAINDER OF THE PLANE

ERIC K. VAN DOUWEN

Denote the Euclidean plane by Π , and for a completely regular space X denote its remainder $\beta X - X$ by X*. We will prove that Π^* has 2^c pairwise nonhomeomorphic subcontinua by finding a family \mathscr{X} of nondegenerate subcontinua each of which has a unique cut point, and then finding 2^c members of \mathscr{X} which are pairwise nonhomeomorphic because their cut points behave differently. It is of interest that the second part uses a method of Frolik originally invented to prove that X^* is not homogeneous for nonpseudocompact X.

Denote the half-line $[0, \infty)$ by H. It is well-known that H^* and (\mathbb{R}^n) , $(2 \leq n < \omega)$, are continua, [6, 6L]. Evidently, H^* embeds in $(\mathbb{R}^n)^*$, $(1 \leq n < \omega)$, and $(\mathbb{R}^m)^*$ embeds into $(\mathbb{R}^n)^*$, $(1 \leq m \leq n < \omega)$. It was announced in [4] that H^* has at least 5 pairwise nonhomeomorphic nondegenerate (proper) subcontinua. Recently Winslow, [9], proved that $(\mathbb{R}^3)^*$, hence $(\mathbb{R}^n)^*$ $(3 \leq n < \omega)$ has 2^c pairwise nonhomeomorphic subcontinua by algebraic means which give no information about $(\mathbb{R}^2)^*$. We here show that $\Pi^* = (\mathbb{R}^2)^*$, hence $(\mathbb{R}^n)^*$, $(2 \leq n < \omega)$, has 2^c pairwise nonhomeomorpic subcontinua by topological means which give no information about H^* . After this paper was written I received Browner's (neé Winslow) [3], where this result also was obtained, with totally different means.

We use ω for the nonnegative integers, and identify Π with the complex plane, so that $\omega \subseteq H \subseteq \Pi$. Throughout – denotes the closure operator in βX , with X being clear from the context.

1. Basic facts about βX . We here collect basic facts about βX needed in this paper. They are often used without explicit mention.

If X is normal, then $\overline{F} \cap \overline{G} = (F \cap G)^-$ for every two closed $F, G \subseteq X$.

If A is closed and C^{*}-embedded in X, in particular if A is closed in X and X is normal, then βA may, and will, be identified with \overline{A} and A^* may, and will, be identified with $\overline{A} \cap X^*$.

Each map $f: X \to Y$ extends to a map $\beta f: \beta X \to \beta Y$. If f is a surjection then $\beta f^{-}X^* = Y^*$, or, equivalently, $f^{-}Y = \beta f^{-}Y$, if and only if f is perfect (\equiv closed + compact fibers), [7, 1.5].

Also, if X is normal and A is closed in X, then $(\beta f) \upharpoonright \overline{A} = \beta(f \upharpoonright A)$.

Fact 1.1. Let $f: X \rightarrow \omega$ be a perfect surjection. Then for all

 $A \subseteq \omega$

$$(f^{\leftarrow}A)^{-} = [\beta f^{\leftarrow}A]^{-} = \beta f^{\leftarrow}A$$
.

Just observe that $(f^{\leftarrow}A)^{-} \cup (f^{\leftarrow}(\omega - A))^{-} = \beta X$, that $(f^{\leftarrow}A)^{-} \subseteq \beta f^{\leftarrow}\overline{A}$ and $f^{\leftarrow}(\omega - A)^{-} \subseteq \beta f^{\leftarrow}(\omega - A)^{-}$, and that $\beta f^{\leftarrow}\overline{A}$ and $\beta f^{\leftarrow}(\omega - A)^{-}$ are disjoint.

2. Construction of many subcontinua of Π^* . For $n \in \omega$ let C_n be the circle of radius 1/3 in the upper half plane which touches H in n, i.e.,

$$C_n = \{z \in \Pi \colon |z - (n + i/3)| = 1/3\}$$
.

Clearly $Y = \bigcup_n C_n$ is a closed subspace of Π , and $f = \bigcup_n C_n \times \{n\}$ is a well-defined perfect map from Y onto ω . For $p \in \omega$ define

$$C_p=eta f^{\leftarrow}\!\{p\}$$
 .

[This does not conflict with our definition of C_n $(n \in \omega)$, for $f^{-}\{n\} = \beta f^{-}\{n\}$ $(n \in \omega)$ since f is perfect.] Also, for $p \in \omega^*$ define

$$X_p = C_p \cup H^*$$
 .

We first show that C_p touches H^* in p, i.e.,

Fact 2.1. $C_p \cap H^* = \{p\}, (p \in \omega^*).$

Clearly $p \in C_p \cap H^*$ since $p = f(p) \in C_p$ and $p \in \omega^* \subseteq H^*$. Next, for $q \in \beta \omega - \{p\}$ consider $P \subseteq \omega$ such that \overline{P} contains p but not q. Then $[\beta f^- P]^- = \beta f^- \overline{P}$ by Fact 1.1, hence

$$C_p \cap H^* \subseteq [\beta f^- P]^- \cap H^* = (f^- P)^- \cap \overline{H} \cap H^*$$

= $((f^- P) \cap H)^- \cap H^* = \overline{P} \cap H^*$.

It follows that $C_p \cap H^* \subseteq \{p\}$.

The following will be proved in $\S\S 3$ and 4.

Fact 2.2. C_p is a continuum without cut points, $(p \in \omega^*)$.

Fact 2.3. H^* has no cut points.

[We know already that H^* is a continuum.] Fact 2.3 also follows from the theorem of Bellamy, [1], and Woods, [10], that H^* is an indecomposable continuum, but we think it is of interest to supply a more direct proof.

350

 \Box

COROLLARY 2.3. X_p is a continuum which has p as unique cut point, $(p \in \omega^*)$.

Fix $p \in \omega^*$. It suffices to show that p is indeed a cut point. To this end we must show that $|H^*| \neq 1 \neq |C_p|$. Now $|H^*| \neq 1$ since $H^* \supseteq \omega^*$.

It remains to show that $C_p - \overline{H} \neq \emptyset$. Define $g: \omega \to Y$ by $g = \{\langle n, n+2i/3 \rangle : n \in \omega\}$. Then $f \circ g = \mathrm{id}_{\omega}$, hence $\beta f \circ \beta g = \mathrm{id}_{\beta\omega}$, hence $\beta g(p) \in \beta g^{\leftarrow} \{p\} = C_p$. But range (g) is a closed subset of Π which misses H, hence range $(\beta g) = (range(g))^-$ misses \overline{H} , hence $\beta g(p) \in C_p - H$.

We complete this section with pointing out that each X_p is 1-dimensional (in the sense of dim, ind and Ind): Since X_p is a nondegenerate continuum we have $d(X_p) \ge 1$ for $d \in \{\dim, \inf, \operatorname{Ind}\}$. Since $d(X) \le \operatorname{Ind} X$ for $d \in \{\dim, \operatorname{ind}\}$ and normal X it remains to show that $\operatorname{Ind} X_p \le 1$. While there is no general sum theorem for Ind in the class of compact Hausdorff spaces we do have $\operatorname{Ind} X_p =$ max $\{\operatorname{Ind} H^*, \operatorname{Ind} C_p\}$ since $|H^* \cap C_p| = 1$. But clearly max $\{\operatorname{Ind} H^*,$ $\operatorname{Ind} C_p\} \le 1$ since Ind is closed monotone and $\operatorname{Ind} \beta X = \operatorname{Ind} X$ for normal X.

3. Forming Y_p 's from Y_n 's. Throughout this section let Y be a space which admits a perfect map f onto ω , and for $p \in \beta \omega$ define

 $Y_p = \beta f^{\leftarrow} \{p\} \ .$

Note that $Y_n = f^{-}\{n\} = \beta f^{-}\{n\}$, and that Y is the topological sum of the Y_n 's. Hence the Y_p $(p \in \omega^*)$ are constructed from the Y_n $(n \in \omega)$ the same way we constructed the C_p 's from the C_n 's in §2.

There are many properties \mathscr{P} such that if each Y_n $(n \in \omega)$ has \mathscr{P} then each Y_p $(p \in \omega^*)$ has \mathscr{P} . Below we see two examples of this phenomenon.

PROPOSITION 3.1. If each Y_n $(n \in \omega)$ is connected, then so is each Y_p $(p \in \omega^*)$.

Fix $p \in \omega^*$, and let F_0 and F_1 be nonempty disjoint closed subsets of Y_p . We will prove that $F_0 \cup F_1 \neq Y_p$. Since F_0 and F_1 are compact we can find open U_0 and U_1 in βY such that

$$F_i \subseteq U_i \quad (i \in 2) , \quad ext{and} \quad U_0 \cap \overline{U}_1 =$$

Define

$$V_i = \{n \in \omega \colon Y_n \subseteq \overline{U}_i\} \quad (i \in 2), \qquad P = \omega - (V_0 \cup V_1).$$

We claim that $p \in \overline{P}$: For each $i \in 2$ we have $F_{1-i} \neq \emptyset$, hence $Y_p \not\subseteq \overline{U}_i$, hence $Y_p \not\subseteq (\beta f^- V_i)^-$; since $(\beta f^- V_i)^- = \beta f^- \overline{V}_i$, by Fact 1.1, it follows that $p \notin \overline{V}_i$.

Since each Y_n is connected we can choose $C \subseteq Y$ of the form $\{c_n: n \in P\}$ with $c_n \in Y_n - (\bar{U}_0 \cup U_1) \ (n \in P)$. Now \bar{C} meets $Y_p = \beta f^-\{p\}$ since βf is closed, and $P = \beta f^-C$, and $p \in \bar{P}$. But \bar{C} misses $\bar{U}_i = (Y \cap \bar{U}_i)^-$ since C is closed and misses $Y \cap \bar{U}_i$, and since Y is normal, $(i \in 2)$. It follows that $Y_p - (\bar{U}_0 \cup U_1) \neq \emptyset$, hence $F_0 \cup F_1 \neq Y_p$. \Box

REMARK 3.2. With some more work one can prove the more general result that $\beta \phi$ is monotone for each monotone perfect surjection ϕ .

This shows that each C_p is a continuum, but does not show yet that no C_p has a cut point. For that result we need the following definition and propositions.

DEFINITION 3.3. A space X is said to have Q if it has a dense subset D such that for every two distinct $x, y \in D$ there are subcontinua K and L of Y with $K \cap L = \{x, y\}$.

PROPOSITION 3.4. Each space that has Q is connected and has no cut points.

PROPOSITION 3.5. If each Y_n $(n \in \omega)$ has Q, then so has each Y_p $(p \in \omega^*)$.

Fix $p \in \omega^*$, for each $n \in \omega$ choose $D_n \subseteq Y_n$ which witnesses that Y_n has Q, and define

$$D = \{\beta d(p) \colon d \in \prod_n D_n\}.$$

[This definition makes sence since each member of $\prod_n D_n$ is a function $\omega \to Y$.] We show that D witnesses that Y_p has Q in three steps.

Step 1. We show that $D \subseteq Y_p$: For $d \in \prod_n D_n$ we have $f \circ d = \mathrm{id}_{\omega}$, hence $\beta f \circ \beta d = \mathrm{id}_{\beta\omega}$ by continuity, hence $\beta d(p) \in Y_p = (\beta f)^{-} \{p\}$.

Step 2. We show that D is dense: It suffices to prove that $D \cap \overline{U} \neq \emptyset$ for each open U in βY which intersects Y_p . Given such an U, since $\overline{U} = (Y \cap U)^-$ and since βf is continuous, we must have $p \in [\beta f^{\neg}(Y \cap U)]^- = [f^{\neg}(Y \cap U)]^-$. Choose $d \in \prod_n D_n$ such that $d(n) \in U$ for $n \in f^{\neg}(Y \cap U)$. Then $\beta d(q) \in \overline{U}$ for $q \in [f^{\neg}(Y \cap U)]^-$, in particular for q = p.

Step 3. For $x, y \in D$ we find subcontinua K, L of Y_p with $K \cap L = \{x, y\}$: Consider $d, e \in \prod_n D_n$ with $x = \beta d(p)$ and $y = \beta e(p)$. For $n \in \omega$ choose subcontinua K_n and L_n of Y_n with $K_n \cap L_n = \{d(n), e(n)\}$. Define

$$K = Y_p \cap (\bigcup_n K_n)^-$$
 and $L = Y_p \cap (\bigcup_n L_n)^-$.

K and L, which obviously are compact, are connected by an obvious generalization of Proposition 3.1, e.g., K is connected since $K = (\beta k)^{-} \{p\}$ where $k = f \upharpoonright \bigcup_{n} K_{n}$. Also, $K \cap L = A$, where

$$A = \{eta c(p) \colon c \in \prod_n \{d(n), e(n)\}\}$$
 ,

so it remains to show that $A \subseteq \{\beta d(p), \beta e(p)\}$ since obviously $A \supseteq \{\beta d(p), \beta e(p)\}$. Indeed, if $c \in \prod_n \{d(n), e(n)\}$ then without loss of generality $p \in \overline{P}$ where $P = \{n \in \omega : c(n) = d(n)\}$, and then $\beta c(p) = \beta d(p)$.

4. Proving that H^* has no cut points. It sufficies to prove that if U_0 and U_1 are any two nonempty open subsets of H^* then $|H^* - (U_0 \cup U_1)| = 2^c$. Given such U_i 's, choose an open V_i in βH such that

$$\varnothing \neq H^* \cap \bar{V}_i \subseteq U_i \quad (i \in 2)$$

Then $H \cap \overline{V}_i$ is noncompact since $\overline{V}_i = (H \cap \overline{V}_i)^-$, $(i \in 2)$. It follows that we can find $a, b: \omega \to H$ such that

$$n \leq a(n) < b(n) < a(n+1)$$
, and $a(n) \in \overline{V}_0$ and $b(n) \in \overline{V}_1$, $(n \in \omega)$.

Define $Y \subseteq H$ and $f: Y \rightarrow \omega$ by

$$Y = \bigcup [a(n), b(n)]$$
, and $f = \bigcup [a(n), b(n)] \times \{n\}$

Then Y is closed in H, hence we may assume $\beta Y = \overline{Y}$, and $Y^* = \overline{Y} \cap H^*$. As f is perfect it follows that

$$eta f^{\leftarrow} \{p\} \subseteq H^* \quad ext{for} \quad p \in \omega^*$$
 .

As $f \circ a = f \circ b = \operatorname{id}_{\omega}$ we have $\{\beta a(p), \beta b(p)\} \subseteq \beta f^{-}\{p\}, (p \in \omega^*)$. But clearly $\beta a(p) \in \overline{V}_0 \subseteq U_0$ and $\beta b(p) \in \overline{V}_1 \subseteq U_1$. As $\beta f^{-}\{n\} = f^{-}\{n\} = [a(n), b(n)], (n \in \omega)$, since f is perfect, it now follows from Proposition 3.1 that $\{\beta f^{-}\{p\}: p \in \omega^*\}$ is a family of $|\omega^*| = 2^{\circ}$ pairwise disjoint subcontinua of H^* each of which meets both U_0 and U_1 . As U_0 and U_1 are disjoint and open, it follows that $|H^* - (U_0 \cup U_1)| = 2^{\circ}$, as required.

We leave generalizations to the reader.

REMARK 3.5. We can use the above to show that there is an infinite connected completely regular space which has no infinite compact subspaces; this answers a question of Bankston (oral communication). Indeed, since H^* has 2^t closed subsets, and since each infinite closed subset of H^* has cardinality 2, [6, 9.12], we can find disjoint X, $Y \subseteq H^*$ each of which intersects every infinite closed subset of H^* by an obvious modification of Bernstein's classical construction of totally imperfect subsets of uncountable separable completely metrizable spaces, [8, \S 36, I]. Then X has no infinite compact subsets, and is dense in H^* since H^* has no isolated points. So if U_0 and U_1 are nonempty disjoint open sets in X, there are disjoint open V_0 and V_1 in H^* with $X \cap V_i = U_i$, $(i \in 2)$, hence $X - (U_0 \cup U_1) = X \cap (H^* - (V_0 \cup V_1)) \neq \emptyset$ since $H^* - (V_0 \cup V_1)$ is an infinite closed subset of H^* . [Bankston now regrets the fact that he has included my example in [1] without giving proper credit (letter of Oct. 1979).]

5. Finding 2ⁱ distinct X_p 's. Frolik [3] has shown that for each space X and each $x \in X$ there is a $\tau(x, X) \subseteq \omega^*$ such that

(1) τ is topological, i.e., if $h: X \to Y$ is a homeomorphism onto, then $\tau(h(x), Y) = \tau(x, X)$ for $x \in X$,

(2) τ is monotone in X, i.e., if $x \in X \subseteq Y$ then $\tau(x, X) \subseteq \tau(x, Y)$,

(3) if D is countably infinite closed discrete subset of a completely regular space X which is C-embedded (in particular if X is normal) (so that $\overline{D} \cap X^* = D^*$) then

(a) $\tau(x, D^*) = \tau(x, X^*)$ for $x \in D^*$, and

(b) there is $B \subseteq D^*$ with $|B| = 2^c$ so that $\tau(x, D^*) \neq \tau(y, D^*)$ for every two distinct $x, y \in B$.

[One defines τ by

 $\tau(x, X) = \{p \in \omega^* : \text{there is an embedding } e: \beta \omega \to X \text{ with } e(p) = x\}$,

but we don't need this.]

Applying this with $D = \omega$ we find $B \subseteq \omega^*$ with $|B| = 2^{\epsilon}$ such that $\tau(p, X_p) \neq \tau(q, X_q)$, hence such that X_p and X_q are nonhomeomorphic, for distinct $p, q \in B$, since

$$\tau(p, \omega^*) \subseteq \tau(p, X_p) \subseteq \tau(p, \Pi^*) = \tau(p, \omega^*) \text{ for } p \in \omega^*.$$

References

1. P. Bankston, The total negation of a topological property, Illinois J. Math., 23 (1979), 241-252.

2. D.P. Bellamy, A nonmetric indecomposable continuum, Duke Math, J., 38 (1971), 15-20.

3. A. Browner, Continua in the Stone-Čech remainder of R^2 , Pacific J. Math., 90

(1980), 45-49.

4. E.K. van Douwen, Subcontinua and nonhomogeneity of $\beta \mathbf{R}^+ - \mathbf{R}^+$, Notices AMS, 24 (1977), A559.

5. Z. Frolík, Nonhomogeneity of $\beta P - P$, Comm. Math. Univ. Carol., 8 (1967), 705-709.

6. L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, New York, 1960.

7. M. Henriksen and J. Isbell, Some properties of compactifications, Duke Math. J., 25 (1958), 83-105.

8. K. Kuratowski, Topologie, I, 4^{ième} éd., Warszawa, 1958.

9. A. R. Winslow, There are 2^c nonhomeomorphic continua in $\beta R^n - R^n$, Pacific J. Math., 84 (1979), 233-239.

10. R.G. Woods, Certain properties of $\beta X - X$ for σ -compact X, Thesis, 1968.

Received September 17, 1980. Research supported by NSF Grant MCS 78-09484.

Ohio University Athens, OH 45701