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THE NUMBER OF SUBCONTINUA OF
THE REMAINDER OF THE PLANE

ERIC K. VAN DOUWEN

Denote the Euclidean plane by Π9 and for a completely
regular space X denote its remainder βX — X by X*. We
will prove that 77* has 2C pairwise nonhomeomorphic subcon-
tinua by finding a family ^ of nondegenerate subcontinua
each of which has a unique cut point, and then finding 2C

members of 3? which are pairwise nonhomeomorphic because
their cut points behave differently. It is of interest that the
second part uses a method of Frolίk originally invented to
prove that X* is not homogeneous for nonpseudocompact X.

Denote the half-line [0, oo) by H. It is well-known that H* and
(Rn), (2 ^ n < ω), are continua, [6, 6L]. Evidently, # * embeds in
(jβ )*, (l^n< ω), and (Rm)* embeds into (Λ )*, (1 ^ m ^ n < ω).
It was announced in [4] that H* has at least 5 pairwise nonhomeo-
morphic nondegenerate (proper) subcontinua. Eecently Winslow, [9],
proved that (Rz)*f hence (Rn)* (3 <; n < α>) has 2C pairwise nonhomeo-
morphic subcontinua by algebraic means which give no information
about (i?2)*. We here show that Π* = (iί2)*, hence (Rn)*, (2 ^ n < ω),
has 2C pairwise nonhomeomorpic subcontinua by topological means
which give no information about £Γ*. After this paper was written
I received Browner's (nee Winslow) [3], where this result also was
obtained, with totally different means.

We use a) for the nonnegative integers, and identify Π with
the complex plane, so that ω £ H Q Π. Throughout - denotes the
closure operator in βX, with X being clear from the context.

1* Basic facts about βX. We here collect basic facts about βX
needed in this paper. They are often used without explicit mention.

If X is normal, then F Π G — (F n G)~ for every two closed
F, G £ X

If A is closed and C*-embedded in X, in particular if A is closed
in X and X is normal, then βA may, and will, be identified with A
and A* may, and will, be identified with A f] X*.

Each map f:X-*Y extends to a map βf: βX~> βY. If / is a
surjection then βf^X* = Γ*, or, equivalently, f~Y = βf*~Y, if and
only if / is perfect (= closed + compact fibers), [7, 1.5].

Also, if X is normal and A is closed in X, then (βf) \ A =
β(fΐA).

Fact 1.1. .Lei f:X—>ω be a perfect surjection. Then for all
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A £ ω

(ΓA)- - [βΓAY - βf-A .

Just observe that (f*~A)- U (/*~(α> - A))" = /9-XΓ, that (/*~-4)- £
/S/^1 and /-(<*) - A)- £ /S/̂ (α> - Ay, and that βf-A and βf*~(ω - A)~
are disjoint. •

2* Construction of many subcontinua of /?*• For ̂ 6ΰ) let
Cn be the circle of radius 1/3 in the upper half plane which touches
H in n, i.e.,

Clearly Y — (J» Cn is a closed subspace of Π, and / = U ^ « x M is
a well-defined perfect map from Y onto α>. For peω define

C, - ATίP}

[This does not conflict with our definition of Cn (neω), for f*~{n) =
/9/̂ f̂ } (neώ) since / is perfect.] Also, for peω* define

Xp = Cp U H* .

We first show that Cp touches H* in p, i.e.,

2.1. Cp n H* = {p}, (p e ω*).

Clearly p e Cp Π £Γ* since p = f(p) 6 C, and p e ω* £ J3Γ*. Next,
for 5 e /Sft) — {p} consider P £ ω such that P contains p but not ^.
Then [βf*-P]~ = /S/*~P by Fact 1.1, hence

cp n ^r* £ [/3/̂ -P]- n H* - (/-P)- n ̂ n #*
- ((/-P) nH)-nH* = p n #*.

It follows that Cp Π £Γ* £ {p}. D

The following will be proved in §§ 3 and 4.

jFαeί 2.2. Cp is a continuum without cut points, (p e α>*).

Fact 2.3. £Γ* /̂ αs ^o cut points.

[We know already that H* is a continuum.]

Fact 2.3 also follows from the theorem of Bellamy, [1], and Woods,
[10], that fiΓ* is an indecomposable continuum, but we think it is of
interest to supply a more direct proof.
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COROLLARY 2.3. Xp is a continuum which has p as unique cut
point, (1)6 0)*).

Fix peω*. It suffices to show that p is indeed a cut point.
To this end we must show that | JJ* | Φ 1 Φ \CP\. Now | J 3 r * | ^ l
since H* 2 α>*.

It remains to show that Cp — H Φ 0 . Define g:ω-*Y by
g == {(n, n + 2i/3>: n e ω}. Then / ° g = idω, hence βf°βg = id^, hence
βflr(p) 6 β(Γ{p} = Cp But rαwflrβ (fir) is a closed subset of Π which
misses H, hence range (βg) — {range (g))~ misses H, hence βg(p) 6

σ, - α α
We complete this section with pointing out that each Xp is

1-dimensional (in the sense of dim, ind and Ind): Since Xp is a non-
degenerate continuum we have d(Xp) ^ 1 for d e {dim, ind, Ind}. Since
d(X) <̂  Ind I for d e {dim, ind} and normal X it remains to show
that Ind Xp <̂  1. While there is no general sum theorem for Ind
in the class of compact Hausdorff spaces we do have Ind Xp =
max {Ind # * , Ind Cp) since | H* n Cp\ = 1. But clearly max {Ind H*,
Ind Cp} ^ 1 since Ind is closed monotone and Ind βX = Ind X for
normal X.

3* Forming Yps from IVs* Throughout this section let Y be
a space which admits a perfect map / onto ω, and for peβω define

y, = /strip}

Note that Yn = /*~{w} = βΓ~{n}, and that 3Γ is the topological sum of
the TVs. Hence the Yp (p e ω*) are constructed from the Yn (n e ω)
the same way we constructed the Cp's from the C»s in §2.

There are many properties & such that if each Yn (neω) has
& then each Yp (peω*) has &. Below we see two examples of
this phenomenon.

PROPOSITION 3.1. If each Yn (neω) is connected, then so is each
Yp (peω*).

Fix peω*, and let Fo and F1 be nonempty disjoint closed sub-
sets of Yp. We will prove that FoΌF.Φ Yp. Since Fo and Fx are
compact we can find open Uo and Ux in βY such that

F^Ut ( i62), and ϋo n ϋί = 0 .

Define

.Y.Qϋt) (ie2) , P=ω-(VoUVi).
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We claim that peP: For each i e 2 we have Fx_t Φ 0 , hence Yp gg ϋif

henceYp g (βf-Vi)—, since {βf^V^ = βf*~Viy by Fact 1.1, it follows
that p g 7<.

Since each Yn is connected we can choose C Q Y of the form
{cM: neP} with cΛ 6 Γw - (£70 U Σ70 (w 6 P). Now C meets Yp = £Γ"{p}
since /3/ is closed, and P = βf'C, and p 6 P. But C misses £/< =
(Y Π ί/"<)" since C is closed and misses Y Π ϋif and since F is normal,
(i e 2). It follows that Yp - (U0\J UJ Φ 0, hence F0\jFλΦ Yp. D

REMARK 3.2. With some more work one can prove the more
general result that βΦ is monotone for each monotone perfect sur-
jection φ.

This shows that each Cp is a continuum, but does not show yet
that no Cp has a cut point. For that result we need the following
definition and propositions.

DEFINITION 3.3. A space X is said to have Q if it has a dense
subset D such that for every two distinct x, y eD there are sub-
continua K and L of Y with K Π L = {x, y}.

PROPOSITION 3.4. Each space that has Q is connected and has
no cut points. •

PROPOSITION 3.5. // each Yn (neω) has Q, then so has each Yp

Fix pea)*, for each neco choose Dn £ Yn which witnesses that
Yn has Q, and define

D = {βd(p):deJInD%}.

[This definition makes sence since each member of J\_nDn is a func-
tion ω —» F.] We show that D witnesses that Yp has Q in three
steps.

Step 1. We show that D C F^: For deJ\nDn we have /od =
idω, hence βfoβd = iάβω by continuity, hence

2. We show that D is dense: It suffices to prove that
D Π U Φ 0 for each open Ϊ7 in βY which intersects Yp. Given such
an U, since Ό — (Y f] U)~ and since βf is continuous, we must have
p 6 [βΓ(Y n U)Y - [/""(Γ Π C/)]-. Choose deΠn-O, such that d(n) 6 U
for % G /-(Γ Π 17). Then /3d(?) e C/ for g e [f-(Y n Ϊ7)]-, in particular
for q — p.
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Step 3. For x,yeD we find subcontinua K, L of Yp with
K Π L = {x, y}\ Consider d, e e Π» Dn with x = /3d(p) and y = ββ(j>).
For %eα) choose subcontinua i£Λ and 2/Λ of Yn with iΓM n Ln =
{<Z(w), e(w)}. Define

. J5Γ= r , n α j £ )- and z, = r p n αj A.)-

K and L, which obviously are compact, are connected by an obvious
generalization of Proposition 3.1, e.g., K is connected since K =
where k — f \ \Jn Kn. Also, K n L = A, where

A = {βc(p):ceΐl{d(n),e(n)}} ,

so it remains to show that AξZ{βd(p), βe{p)} since obviously A^2{
βe(p)}. Indeed, if ceJln {d(n), e(n)} then without loss of generality
peP where P — {neω: c(n) = d(n)}, and then βc(p) = βd(p). Π

4. Proving that £Γ* has no cut points* It sufficies to prove
that if Uo and U1 are any two nonempty open subsets of H* then
I JET* — (Uo U 27i)| = 2C. Given such C7/s, choose an open Vt in βH
such that

0 ^ i ϊ * n VtQ Ut (ΐe2) .

Then fiΓf) F< is noncompact since Vi = (Hft V^)", (ie2). It follows
that we can find a, b: ω —> H such that

n <J α(%) < bin) < a(n + 1) , and a(n) e Fo and

e Fx , (w6 0)).

Define Y £ £Γ and / : Y-> ω by

(^)] , and / - U [α(w), b(n)] x

Then y is closed in H, hence we may assume βY = F, and F* =
7Π -ίΓ*. As / is perfect it follows that

βf*~{p}QH* for p e α > * .

As / o α = / o 6 r = j d ω we have {βa(p),_βb(p)} ^ βf-{p}f (pea)*). But
clearly /3α(p) 6 Fo £ ί70 and βb(p) eV.Q U,. As βf*~{n] = / {̂̂ J =
[α(n), δ(^)], (% e α)), since / is perfect, it now follows from Proposi-
tion 3.1 that {βf*~{p}: p 6 α>*} is a family of |α>* | = 2C pairwise disjoint
subcontinua of if* each of which meets both UQ and U^ As Ϊ7O and
C/Ί are disjoint and open, it follows that |£Γ* — (Uo U Uι)\ = 2C, as
required.

We leave generalizations to the reader.
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REMARK 3.5. We can use the above to show that there is an
infinite connected completely regular space which has no infinite
compact subspaces; this answers a question of Bankston (oral com-
munication). Indeed, since H* has 2C closed subsets, and since each
infinite closed subset of J5Γ* has cardinality 2C, [6, 9.12], we can
find disjoint X, Y £ fiΓ* each of which intersects every infinite closed
subset of ZΓ* by an obvious modification of Bernstein's classical
construction of totally imperfect subsets of uncountable separable
completely metrizable spaces, [8, § 36,1]. Then X has no infinite
compact subsets, and is dense in H* since H* has no isolated points.
So if Uo and Ut are nonempty disjoint open sets in X, there are
disjoint open Vo and VΊ in //* with Xf) Vt — Uif (ie2), hence
X - (Uo U Γ/Ί) = I f ! (H* - (Vo U Vx)) Φ 0 since H* - (Fo U Fx) is an
infinite closed subset of JET*. [Bankston now regrets the fact that
he has included my example in [1] without giving proper credit
(letter of Oct. 1979).]

5* Finding 2 distinct Xp's. Frolίk [3] has shown that for each
space X and each xeX there is a τ(x, X) £ α>* such that

(1) τ is topological, i.e., if h: JE"-> Y is a homeomorphism onto,
then τ(h(x), Y) = τ(x, X) for x e X,

(2) τ is monotone in X, i.e., if x e X £ Y then τ(#, X) £ r(#, F),
(3) if D is countably infinite closed discrete subset of a com-

pletely regular space X which is C-embedded (in particular if X is
normal) (so that D n X* = 2>*) then

(a) τ(s, !>*) = τ(a>, X*) for OJ 6ί)*, and
(b) there is β £ D* with |J?| = 2C so that τ(x, JD*) ^ τ(y, D*)

for every two distinct x, y eB.
[One defines τ by

τ(x, X) — {p 6 ω*: there is an embedding e: βω —> X with e(p) = x} ,

but we don't need this.]
Applying this with D — ω we find B £ α>* with | J5| = 2e such

that τ(p, Xp) ^ τ(q, Xq), hence such that Xp and X9 are nonhomeo-
morphic, for distinct p, qeB, since

τ(p, ω*) £ τ(p, Xp) £ τ(p, 77*) = r(p, ft)*) for p e ω* .
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