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THE NUMBER OF SUBCONTINUA OF
THE REMAINDER OF THE PLANE

Eric K. VAN DOUWEN

Denote the Euclidean plane by /7, and for a completely
regular space X denote its remainder 83X — X by X*. We
will prove that /7* has 2° pairwise nonhomeomorphic subcon-
tinua by finding a family 2 of nondegenerate subcontinua
each of which has a unique cut point, and then finding 2°
members of -Z° which are pairwise nonhomeomorphic because
their cut points behave differently. It is of interest that the
second part uses a method of Frolik originally invented to
prove that X* is not homogeneous for nonpseudocompact X.

Denote the half-line [0, ) by H. It is well-known that H* and
(R*), (2 < n < w), are continua, [6, 6L]. Evidently, H* embeds in
(RH*, 1 = n < w), and (R™)* embeds into (R")*, L = m < n < ).
It was announced in [4] that H* has at least 5 pairwise nonhomeo-
morphic nondegenerate (proper) subcontinua. Recently Winslow, [9],
proved that (R%)*, hence (R")* (3 < n < w) has 2' pairwise nonhomeo-
morphic subcontinua by algebraic means which give no information
about (R)*. We here show that I7* = (R**, hence (R")*, 2 < n < w),
has 2¢ pairwise nonhomeomorpic subcontinua by topological means
which give no information about H*. After this paper was written
I received Browner’s (neé Winslow) [3], where this result also was
obtained, with totally different means.

We use ®w for the nonnegative integers, and identify I7 with
the complex plane, so that @ & H < II. Throughout ~ denotes the
closure operator in 8X, with X being clear from the context.

1. Basic facts about 8X. We here collect basic facts about 8X
needed in this paper. They are often used without explicit mention.

If X is normal, then FNG = (FNG) for every two closed
F,G< X.

If A is closed and C*-embedded in X, in particular if A is closed
in X and X is normal, then 84 may, and will, be identified with A
and A* may, and will, be identified with A N X*.

Each map f: X — Y extends to a map gf: 3X— Y. If fis a
surjection then Bf~"X™* = Y*, or, equivalently, f-Y = Y, if and
only if f is perfect (= closed + compact fibers), [7, 1.5].

Also, if X is normal and A is closed in X, then (Bf) | A =

B(f T A).
Fact 1.1. Let f: X —> w be a perfect surjection. Then for all
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(f4) =[BfAl"=p8f"A.

Just observe that (f~A4)" U (f~(w — A))- = X, that (f~4)- <
Bf Aand f(w — A~ < Bf(w — A)~, and that -4 and Bf (0 — A)~
are disjoint. O

2. Construction of many subcontinua of I7*. For new let
C, be the circle of radius 1/3 in the upper half plane which touches
H in n, i.e.,

C,={zell: |z — (n + 1/3)| = 1/3} .

Clearly Y = . C, is a closed subspace of 7, and f= U.C, X {n} is
a well-defined perfect map from Y onto w. For pcw define

C, = Bf{p} .

[This does not conflict with our definition of C, (n € ®), for f{n} =
Bf {n} (n € w) since f is perfect.] Also, for p € w* define

X, =C,UH*.
We first show that C, touches H* in p, i.e.,

Fact 2.1. C,N H* = {p}, (p € w®).

Clearly peC, N H* since p = f(p)eC, and pecw* & H*. Next,
for g€ pw — {p} consider P < w such that P contains p but not gq.
Then [Bf-P]~ = Bf~P by Fact 1.1, hence

C,NH* S [BfPI"NH*=(f"P)NnHNH*
=(f"PYNH)-NnH*=PnH*.

It follows that C, N H* < {p}. |
The following will be proved in §§3 and 4.
Fact 2.2. C, is a continuum without cut points, (p € ®*).
Fact 2.3. H* has no cut points.

[We know already that H* is a continuum.]

Fact 2.3 also follows from the theorem of Bellamy, [1], and Woods,

[10], that H* is an indecomposable continuum, but we think it is of
interest to supply a more direct proof.
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COROLLARY 2.3. X, is a continuum which has p as unique cut
point, (p € ®*).

Fix pew*. It suffices to show that p is indeed a cut point.
To this end we must show that |[H*|+# 1= |C,]. Now |[H*|+#1
since H* 2 w*.

It remains to show that C,— H= @. Define g:w—Y by
g=1{{n,n+2i/8: new}. Then fog = id,, hence Bf-Bg = id;,, hence
Bo(p) € Bg~{p} = C,. But range(g) is a closed subset of I which
misses H, hence range (39) = (range (g))~ misses H, hence Bg(p)e
C,— H. O

We complete this section with pointing out that each X, is
1-dimensional (in the sense of dim, ind and Ind): Since X, is a non-
degenerate continuum we have d(X,) =1 for d € {dim, ind, Ind}. Since
d(X) £Ind X for de{dim, ind} and normal X it remains to show
that Ind X, < 1. While there is no general sum theorem for Ind
in the class of compact Hausdorff spaces we do have Ind X, =
max {Ind H*, Ind C,} since |H*N C,| = 1. But clearly max {Ind H*,
IndC,} <1 since Ind is closed monotone and Ind X = Ind X for
normal X.

3. Forming Y,’s from Y,’s. Throughout this section let Y be
a space which admits a perfect map f onto w, and for p € Bw define

Y, = Bf{p}.

Note that Y, = f{n} = gf{n}, and that Y is the topological sum of
the Y,’s. Hence the Y, (» € *) are constructed from the Y, (n € w)
the same way we constructed the C,’s from the C,’s in §2.

There are many properties & such that if each Y, (n€®) has
 then each Y, (pew*) has &. Below we see two examples of
this phenomenon.

PrOPOSITION 3.1. Ifeach Y, (n€ ) is connected, then so is each
Y, (new*).

Fix p e w*, and let F, and F, be nonempty disjoint closed sub-
sets of Y,. We will prove that F,UF, #Y,. Since F, and F, are
compact we can find open U, and U, in RY such that

Fi; Ui (":62), and ﬁon ﬁ1=@.
Define
Vi={mew: Y, U} (ie2), P=w—-(V,UV).
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We claim that p € P: For each i €2 we have F,_, = @, hence Y, & U,,
henceY, & (B8 V.); since (8 V)~ = Bf V., by Fact 1.1, it follows
that pe V,.

Since each Y, is connected we can choose CZ Y of the form
{e,:neP} withe,e Y, — (U, U U,) meP). Now C meets Y, = 8f{p}
since Bf is closed, and P = BfC, and peP. But C misses U, =
(Y N U)~ since C is closed and misses Y N U,, and since Y is normal,
(1€2). It follows that Y, — (U,U U) # @, hence F,UF, = Y,. [

REMARK 3.2. With some more work one can prove the more
general result that B¢ is monotone for each monotone perfect sur-
jeetion 4.

This shows that each C, is a continuum, but does not show yet
that no C, has a cut point. For that result we need the following
definition and propositions.

DEFINITION 3.3. A space X is said to have @ if it has a dense
subset D such that for every two distinet z, y € D there are sub-
continua K and L of Y with KN L = {«, y}.

PROPOSITION 3.4. Fach space that has @ s connected and has
no cut points. ]

PROPOSITION 3.5. If each Y, (n€w®) has Q, then so has each Y,
(€ w®).

Fix p e w*, for each new choose D, £ Y, which witnesses that
Y, has @, and define

D = {gd(p): de]l,D,} .

[This definition makes sence since each member of [], D, is a func-
tion @ — Y.] We show that D witnesses that Y, has @ in three
steps.

Step 1. We show that DS Y,: For deJ],D, we have fod =
id,, hence Bf-pAd = ids;, by continuity, hence gd(p)e Y, = (8f) {p}.

Step 2. We show that D is dense: It suffices to prove that
DN U= @ for each open U in 8Y which intersects ¥,. Given such
an U, since U = (Y N U)~ and since Bf is continuous, we must have
pelgf>(YNU) =[f(¥YNnU)]. Choose de]],D, such thatd(n)e U
for ne (Y N U). Then Bgd(q)e U for qe[f(Y N U)]-, in particular
for ¢ = p.
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Step 3. For x,yeD we find subcontinua K, L of Y, with
KNL={x,y}): Consider d,ec[],D, with x = gd(p) and y = Re(p).
For new choose subcontinua K, and L, of Y, with K,NL, =
{d(n), e(n)}. Define

K=Y,n(UK)" and L=Y,n(UL) .

K and L, which obviously are compact, are connected by an obvious
generalization of Proposition 3.1, e.g., K is connected since K= (Bk)~{p}
where k= f [ U, K,. Also, KN L = A, where

A = {Be(p):ce ];I {d(n), e(n)}} ,

so it remains to show that AS{Bd(p), Be(p)} since obviously A2{Bd(p),
,S'e(pz}. Indeed, if ce ], {d(n), e(n)} then without loss of generality
p<€ P where P = {ncw:c(n) =dn)}, and then Ge(p) = Bd(p). O

4. Proving that H* has no cut points. It sufficies to prove
that if U, and U, are any two nonempty open subsets of H* then
|H* — (U, U U)| = 2. Given such U,’s, choose an open V, in gH
such that

@+H*NV,CU, (1e2).

Then HN V, is noncompact since V, = (HN V,)-, (i€2). It follows
that we can find @, b: @ — H such that

n=<an) <bn) <an+1), and an)eV, and
bn)eV,, (new).

Define Y S H and f: Y — o by
Y =Ula(n), b(n)], and f=Ulan),b(n)]x {n}.

Then Y is closed in H, hence we may assume BY = Y, and Y * =
YN H*. As fis perfect it follows that

Bf {p} € H* for pew*.

As foa = fob =id, we have {Ba(p), Bb(p)} = Bf{p}, (pcw*). But
clearly Ba(p)e V, S U, and gb(p)e V, S U,. As Bf{n} = f{n}=
[a(n), b(n)], (n € w), since f is perfect, it now follows from Proposi-
tion 3.1 that {8f{p}: » € ®*} is a family of |@*| = 2° pairwise disjoint
subcontinua of H* each of which meets both U, and U,. As U, and
U, are disjoint and open, it follows that |H* — (U, U U))| = 2, as
required.

We leave generalizations to the reader.
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REMARK 3.5. We can use the above to show that there is an
infinite connected completely regular space which has no infinite
compact subspaces; this answers a question of Bankston (oral com-
munication). Indeed, since H* has 2¢ closed subsets, and since each
infinite closed subset of H* has cardinality 2, [6, 9.12], we can
find disjoint X, Y & H* each of which intersects every infinite closed
subset of H* by an obvious modification of Bernstein’s classical
construction of totally imperfect subsets of uncountable separable
completely metrizable spaces, [8, §36,I]. Then X has no infinite
compact subsets, and is dense in H* since H* has no isolated points.
So if U, and U, are nonempty disjoint open sets in X, there are
disjoint open V, and V, in H* with XNV,= U, (2€2), hence
X—-((U,uU0)=XnH*—(V,UV)) # @ since H* — (V,UV)) isan
infinite closed subset of H*. [Bankston now regrets the fact that
he has included my example in [1] without giving proper credit
(letter of Oct. 1979).]

5. Finding 2' distinct X,’s. Frolik [3] has shown that for each
space X and each x € X there is a z(x, X) & w* such that

(1) <z is topological, i.e., if h: X — Y is a homeomorphism onto,
then z(h(x), Y) = z(z, X) for ze X,

(2) ris monotone in X, i.e., if xe X S Y then z(x, X) S z(x, Y),

(8) if D is countably infinite closed discrete subset of a com-
pletely regular space X which is C-embedded (in particular if X is
normal) (so that DN X* = D*) then

(a) t(z, D*) = ¢(x, X*) for x e D*, and

(b) there is B< D* with |B| = 2° so that z(z, D*) # z(y, D*)
for every two distinet x, ¥ € B.
[One defines z by

z(x, X) = {p € @*: there is an embedding e: Bw — X with e(p) = «},

but we don’t need this.]

Applying this with D = we find B & 0* with |B| = 2° such
that z(p, X,) # 7(q, X,), hence such that X, and X, are nonhomeo-
morphie, for distinet p, ¢ € B, since

z(p, ®*) < ©(p, X,) < ©(p, I*) = 7(p, ®*) for pew*.
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