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In this review we discuss bifurcation theory in a Banach space setting using
the singularity theory developed by Golubitsky and Schaeffer to classify bi-
furcation points. The numerical analysis of bifurcation problems is discussed
and the convergence theory for several important bifurcations is described for
both projection and finite difference methods. These results are used to pro-
vide a convergence theory for the mixed finite element method applied to the
steady incompressible Navier–Stokes equations. Numerical methods for the
calculation of several common bifurcations are described and the performance
of these methods is illustrated by application to several problems in fluid me-
chanics. A detailed description of the Taylor–Couette problem is given, and
extensive numerical and experimental results are provided for comparison and
discussion.
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1. Introduction

The numerical analysis of bifurcation problems is concerned with the stable,
reliable and efficient computation of solutions to multiparameter nonlinear
problems. We shall consider numerical methods for solving nonlinear equa-
tions of the form

F (x, λ) = 0, (1.1)

where F is a smooth operator in an appropriate Banach space setting, x is
a state variable and λ represents one or more parameters. In applications
the main interest is often the determination of qualitative changes in x as λ
varies. Problems like (1.1) arise in the consideration of steady states of the
dynamical system

dx

dt
+ F (x, λ) = 0, (1.2)

and indeed the study of the solution set of (1.1) is usually the first step in
an analysis of the behaviour of solutions to (1.2).

The material in this review is applicable to a wide range of problems al-
though we shall concentrate on problems arising in fluid dynamics, and so for
us (1.2) represents the dynamical Navier–Stokes equations. The nonlinear
character of the Navier–Stokes equations gives rise to multiple solutions
and possibly complicated dynamics and this nonlinear behaviour is central
to problems in fluid dynamics, where the idea of dynamical similarity intro-
duces various nondimensional groups, for instance the Reynolds number and
Rayleigh number, plus geometric parameters: for example, in the Taylor–
Couette problem discussed in Section 8 there are the aspect ratio and the
radius ratio.
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In fluid mechanics we are therefore confronted with nonlinear partial dif-
ferential equations that depend on a number of parameters. This is precisely
the domain of bifurcation theory. The overall goal, when studying a fluid
mechanics problem, is to understand the complete behaviour of the system
as a ‘function’ of the parameters. Relevant questions are: How many steady
states are there? Are they stable or unstable? (It is important to have the
ability to compute unstable steady states as well as stable ones, since solu-
tions arising from bifurcations along unstable branches often interact with
stable solutions producing otherwise inexplicable phenomena.) How does
the structure of the steady state solution set change as the parameters are
varied? Do solutions always respect the symmetry of the domain or is there
symmetry breaking? How do time-dependent solutions arise? We shall ad-
dress some aspects of these questions in this review. Other very important
questions about which we have nothing to say here include: How do the ini-
tial conditions affect the evolution of the system? What types of long-term
dynamical behaviour are possible? How does fluid turbulence arise?

In fluid mechanics the nonlinearity of the governing equations combined
with the nontrivial geometry of the domain means that there are many
problems where limited progress can be made with analytical techniques
and one needs to use numerical methods.

There are two main numerical approaches to help answer some of the
above questions for the Navier–Stokes equations. Either the time-dependent
problem is discretized in space and the resulting system of ordinary equa-
tions is evolved forwards in time for various fixed values of the parameters.
This approach is called ‘simulation’, and is the main technique used in the
computational fluids community. The alternative approach is to discretize
the steady problem to obtain a system of nonlinear equations, and then use
methods from nonlinear analysis (e.g., the implicit function theorem, sin-
gularity theory) to compute paths of steady solutions and provide stability
assignment using numerical continuation methods and eigenvalue informa-
tion. We shall concentrate on the latter approach here.

The numerical analysis of continuation methods was developed in the
late 1970s by Keller (1977), Rheinboldt (1978) and Menzel and Schwetlick
(1978), though many of the key ideas appear earlier in applications, espe-
cially buckling problems, for example Anselone and Moore (1966), Ricks
(1972) and Abbot (1978). Several codes were then developed for numeri-
cal continuation and bifurcation analysis, the earliest being PITCON (see
Rheinboldt (1986)) and AUTO developed by Doedel (see Doedel and Kerne-
vez (1986)) but with recent extensions by Doedel, Champneys, Fairgrieve,
Kuznetsov, Sandstede and Wang (1997). AUTO can treat steady state and
time-dependent problems and discretized boundary value problems. We re-
fer to the article by Allgower and Georg (1993) for a detailed discussion on
numerical continuation.
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Once reliable algorithms for numerical path following and simple bifurca-
tion phenomena were devised then attention naturally shifted to multipa-
rameter problems and the construction of numerical approaches based on
the use of singularity theory (for example Beyn (1984), Jepson and Spence
(1984), Jepson and Spence (1985b)). At the same time the convergence the-
ory for discretization methods was concerned with the obvious questions:
If a continuous problem has a particular singularity, under what conditions
can it be guaranteed that the discretized problem has a singularity of the
same type? Does the numerical method converge with the same rate of con-
vergence as at nonsingular points? Do we observe superconvergence when
using projection methods? In an important series of papers Brezzi, Rappaz
and Raviart (1980, 1981a, 1981b) answered many of these questions, though
again some key ideas and results were provided independently (see, for ex-
ample, Kikuchi (1977), Fujii and Yamaguti (1980) and Moore and Spence
(1981)).

There are many books on bifurcation theory: for example, Chow and
Hale (1982) give an all-round treatment, Vanderbauwhede (1982) gives an
early account of bifurcation in the presence of symmetries, and the impor-
tant books by Golubitsky and Schaeffer (1985), and Golubitsky, Stewart and
Schaeffer (1988) look at multiparameter bifurcation problems using singular-
ity theory. Early conference proceedings are Rabinowitz (1977), Mittelmann
and Weber (1980), Küpper, Mittelmann and Weber (1984), Küpper, Sey-
del and Troger (1987), Roose, Dier and Spence (1990) and Seydel, Küpper,
Schneider and Troger (1991). H. B. Keller’s book Numerical Methods in
Bifurcation Problems (Keller 1987) is a published version of lectures deliv-
ered at the Indian Institute of Science, Bangalore. W. C. Rheinboldt’s book
(Rheinboldt 1986) is a collection of his papers and also gives information
and listing of the code PITCON for numerical continuation of parameter-
dependent nonlinear problems. The books by Kubic̆ek and Marek (1983)
and Seydel (1994) contain discussion of numerical methods and many inter-
esting examples. A comprehensive treatment, including a full discussion of
numerical methods using singularity theory, is to appear in the forthcoming
book by Govaerts (2000).

One of the successes of numerical bifurcation techniques has been the
ability to reproduce and help understand experimental results of the Taylor–
Couette flow of a fluid confined between two concentric cylinders. Because
this flow may be controlled quite precisely in the laboratory it provides an
opportunity for rigorous experimental and numerical comparison. Of course
the numerical techniques have been applied in a wide variety of other prob-
lems in fluid mechanics and have contributed significantly to the theoretical
understanding of confined flows.

The detailed plan of this review is as follows. In Section 2 some of the
main ideas in singularity theory are outlined first for scalar equations, then
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for multiparameter problems and problems with a simple reflectional sym-
metry. In Section 3 a review of bifurcation theory in Banach spaces is pre-
sented, covering the four main bifurcations to be expected in one-parameter
problems. Section 4 discusses the convergence theory for numerical methods
(both projection and finite difference methods), with special attention being
paid to obtaining superconvergence results for bifurcation parameters when
using Galerkin methods. In Section 5 mixed finite element methods for the
Navier–Stokes equations are analysed. Section 6 contains a demonstration
of superconvergence results using the Q2−P1 finite element method applied
to some classical problems in fluid mechanics. In Section 7 implementa-
tion details are provided for some of the main algorithms used to compute
bifurcation points. Section 8 contains a detailed description of the Taylor–
Couette problem, and presents extensive numerical and experimental results
for comparison. In Section 9 other applications are discussed which use the
numerical techniques described in this review. The review ends with a brief
discussion about some important topics not covered here and suggests areas
for future research.

2. Singularity theory

Golubitsky and Schaeffer (1979a, 1979b) pioneered the application of results
from singularity theory to the study of bifurcation problems. Later, two
books (Golubitsky and Schaeffer 1985, Golubitsky et al. 1988) provided a
very careful explanation of the theory and techniques, as well as many il-
lustrative examples and applications. Ideas from singularity theory were
used in the numerical analysis of bifurcation problems by Brezzi and Fujii
(1982) and Brezzi, Ushiki and Fujii (1984) to determine the effect of dis-
cretization errors, and by Beyn (1984), Jepson and Spence (1984, 1985b)
to develop systematic numerical procedures for multiparameter nonlinear
problems. Janovsky (1987) and Janovský and Plechác̆ (1992) further ex-
tended these ideas using minimally extended systems (see Section 7.5), and
the forthcoming book by Govaerts (2000) gives a comprehensive account
of numerical methods for bifurcation problems using singularity theory and
minimally extended systems with bordered systems playing a key rôle in
the linear algebra. There are many different aspects to singularity theory
for bifurcation problems and we cannot hope to cover them all in this re-
view: rather we concentrate on a few ideas to help motivate the material in
later sections. However, we believe that a good understanding of the con-
cepts and techniques in Golubitsky and Schaeffer (1985) and Golubitsky et
al. (1988) is essential in order to develop reliable numerical techniques for
multiparameter nonlinear problems.

The Lyapunov–Schmidt reduction procedure (see Section 3.2), is a process
by which information about solutions near a singular point of a nonlinear
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problem defined on a Banach space may be obtained by studying an equiva-
lent reduced problem on a space of, typically, very small dimension. In fact,
if the singularity is such that the linearization of the problem evaluated at
the singularity has a one-dimensional kernel, then the reduced problem is
one-dimensional. Thus, it is appropriate to study nonlinear scalar problems
of the form

f(x, λ,α) = 0, f : R × R × R
p → R, (2.1)

where x is a scalar state variable, λ a distinguished parameter, and α ∈ R
p

a vector of control parameters. It is important to note that the view taken
in the singularity theory of Golubitsky and Schaeffer (1985) and Golubitsky
et al. (1988) is that in applications one will wish to plot the state variable
x against the special parameter λ for several fixed values of α. Thus we do
not interchange λ with one of the αs and λ plays a different rôle than the
other ‘control’ parameters. This approach leads to a different classification
of singularities than that obtained from standard singularity theory: see
Beyn (1984).

In Section 2.1, we first consider a simple problem with no control parame-
ters. We consider multiparameter problems in Section 2.2, and in Section 2.3
give an example of the rôle played by symmetries. We draw some general
conclusions in Section 2.4.

2.1. Scalar problems

In this subsection we consider the numerical calculation of singular points
of the scalar problem

f(x, λ) = 0, x ∈ R, λ ∈ R, (2.2)

where f(x, λ) is sufficiently smooth.
Analysis of this very simple case introduces some important ideas and

provides considerable insight into the behaviour of more complicated equa-
tions. First, note that it is convenient to write f0 for f(x0, λ0), f

0
λ for

fλ(x0, λ0), etc. Now, if f0 = 0 and f0
x 6= 0, then the Implicit Function

Theorem (IFT) ensures the existence of a smooth path, x(λ), near (x0, λ0)
satisfying f(x(λ), λ) = 0. In this case we call (x0, λ0) a regular point. Of
more interest are singular points where f0

x = 0.
Consider the calculation of a singular point of (2.2). It is natural to form

the system

F (y) :=

[
f(x, λ)
fx(x, λ)

]
= 0 ∈ R

2, y =

(
x
λ

)
, (2.3)

and seek a zero of F (y). A solution y0 is regular if Fy(y0) is nonsingular,
which, as is easily checked, holds provided f0

λf
0
xx 6= 0, or, equivalently,

f0
λ 6= 0 and f0

xx 6= 0. (2.4)
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If (2.3) and (2.4) hold then (x0, λ0) is a quadratic fold point. The reason
for the name is clear when one sketches the solution curve near (x0, λ0),
noting that near (x0, λ0), λ = λ(x) with λ(x0) = λ0, and

dλ

dx
(x0) = 0,

d2λ

dx2
(x0) = −

f0
xx

f0
λ

. (2.5)

We call (2.3) an extended system, and (2.4) provides two side constraints.
Together, (2.3) and (2.4) provide the defining conditions for a quadratic fold
point.

Quadratic fold points have several nice properties. First, Newton’s method
applied to (2.3) will converge quadratically for a sufficiently accurate ini-
tial guess. Second, a sensitivity analysis shows they are stable under per-
turbation. Assume f(x, λ) is perturbed to f̂(x, λ, ǫ) := f(x, λ) + ǫp(x, λ)

and consider F̂ (y, ǫ) := (f + ǫp, fx + ǫpx) = 0. Now F̂ (y0, 0) = 0 and

F̂y(y0, 0) is nonsingular and so the IFT shows that y = y(ǫ) near ǫ = 0,

with y(ǫ) = y0 + O(ǫ), and F̂y(y(ǫ), ǫ) nonsingular. Hence the perturbed

problem f̂(x, λ, ǫ) = 0 has a quadratic fold point (x(ǫ), λ(ǫ)) satisfying
x(ǫ) = x0 + O(ǫ), λ(ǫ) = λ0 + O(ǫ).

This type of sensitivity analysis is common in structural mechanics where
the various physical imperfections in a system are ‘lumped together’ as a
single artificial parameter. One might also consider ǫ = hm where f̂ is a
discretization of f , h is a stepsize and m is the order of consistency. Clearly
quadratic folds in f are preserved in f̂ and it is not surprising that a similar
result holds for more general problems under certain assumptions, as will
be shown in Section 4.1.

2.2. Multiparameter problems

Let us change perspective now, and think of ǫ in the previous section as a
control parameter to be varied rather than merely a perturbation parame-
ter. The above analysis still applies, and provided f̂λ(x(ǫ), λ(ǫ), ǫ) 6= 0 and

f̂xx(x(ǫ), λ(ǫ), ǫ) 6= 0 there is no requirement that ǫ remain small. Thus, we
change notation by setting ǫ = α, and dropping the ‘ˆ’ symbol over the f ,
and consider the two-parameter problem

f(x, λ, α) = 0, x, λ, α ∈ R. (2.6)

Provided the side constraints fλ 6= 0 and fxx 6= 0 continue to hold, then
a path of quadratic fold points can be computed using Newton’s method
applied to

F (y, α) =

[
f(x, λ, α)
fx(x, λ, α)

]
= 0, y =

(
x
λ

)
. (2.7)
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Since the side constraints appear in Fy, they can be easily monitored. If
a zero occurs in a side constraint then a higher-order singularity has been
detected.

In fact, a complete systematic procedure for multiparameter problems of
the form (2.1) is given in Jepson and Spence (1985b) based on the singu-
larity theory in Golubitsky and Schaeffer (1985). In Golubitsky and Scha-
effer (1985) possible types of behaviour of solutions of (2.1) near a singular
point are classified according to contact equivalence, namely, equivalence up
to a smooth change of coordinates. This classification associates a num-
ber, the codimension, with each singularity, and if the codimension is fi-
nite then the singularity is equivalent to a polynomial canonical form. For
example, the simplest singularity is the quadratic fold point, which has
canonical form f(x, λ) := x2 − λ and has codimension zero. Clearly at
y0 = (x0, λ0)

T = (0, 0)T then (2.3) and (2.4) are satisfied; conversely any
f satisfying (2.3) and (2.4) is contact equivalent to x2 − λ. In Jepson and
Spence (1985b) the singularities of codimension less than 4 are arranged
in a hierarchy (see also Table 2.4 of Golubitsky and Schaeffer (1985)), and
this was used to provide an algorithm to obtain suitable extended systems
and side constraints for the calculation of the singularities. For example,
there are two codimension 1 singularities: a transcritical bifurcation (α = 0
in Figure 1) that arises in a path of fold points when fλ = 0; and a hys-
teresis bifurcation (α = 0 in Figure 2) that arises in a path of fold points
when fxx = 0. To compute a transcritical bifurcation in a stable man-
ner we need 2 parameters, namely λ and α, and the extended system is
F (y) := (f, fx, fλ)

T = 0, y = (x, λ, α)T . A transcritical bifurcation point,
y0 = (x0, λ0, α0)

T say, will be a regular solution if (a) f0
α 6= 0, and (b)

the side constraints f0
xx 6= 0 and (f0

xλ)
2 − f0

xxf
0
λλ 6= 0 hold. The canonical

form is f(x, λ) := x2 − λ2. The condition f0
α 6= 0 is a universal unfolding

condition that, roughly speaking, ensures that the control parameter α en-
ters in f in such a way as to provide all qualitatively distinct solutions of
f(x, λ, α) = 0 as α varies near α0. The transcritical bifurcation has codi-
mension 1, since 1 control parameter is needed in the universal unfolding
f(x, λ, α) = 0. Figure 1 shows the unfoldings of a transcritical bifurcation,
and Figure 2 shows the unfoldings of a hysteresis point (also of codimension
1) which has extended system F (y) := (f, fx, fxx)

T = 0 and side constraints
fλ 6= 0, fxxx 6= 0. (See p. 136 of Golubitsky and Schaeffer (1985) for the
universal unfolding condition for a hysteresis point.)

It is important to note that one would not expect to see the codimension 1
singularities, that is, transcritical or hysteresis bifurcation points, in a one-
parameter physical problem. Rather, two parameters are needed to observe
them and to locate them numerically. Also, as we see in Figures 1 and 2,
they are destroyed by perturbations. It is not surprising, then, that the con-
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α < 0 α = 0 α > 0λ

x

Fig. 1. Solution diagrams for f(x, λ, α) = x2 − λ2 + α = 0. The transcritical
bifurcation point is destroyed for α 6= 0

α < 0 α = 0 α > 0λ

x

Fig. 2. Solution diagrams for f(x, λ, α) = x3 + αx− λ = 0. The hysteresis point is
destroyed for α 6= 0 and there are no singular points for α > 0

vergence theory of discretizations near bifurcation points in one-parameter
problems proves very technical and is perhaps of limited usefulness.

A key result (Jepson and Spence 1985b, Theorem 3.10) is that a multipa-
rameter problem is universally unfolded if and only if the extended systems
produced from the hierarchy are nonsingular. This has important numerical
implications, but also shows that one needs to consider singularities with
the correct number of control parameters. If this is done then the effect of
perturbations (and discretizations) can be readily understood.

We refer the reader to Golubitsky and Schaeffer (1985), Jepson and Spence
(1985b), Golubitsky et al. (1988), Janovský and Plechác̆ (1992), Janovsky
(1987) and Govaerts (2000) for more details about the use of singularity
theory in the numerical analysis of bifurcations.

2.3. Problems with reflectional symmetry

A classification of singularities satisfying various symmetries can also be
given. Simple reflectional symmetries are discussed in Golubitsky and Scha-
effer (1985) and more complicated symmetries and mode interactions are
discussed in Golubitsky et al. (1988). We content ourselves here with a few
remarks about the simple Z2 (i.e., reflection) symmetry.

If f(x, λ) satisfies the equivariance (symmetry) condition

f(−x, λ) = −f(x, λ), (2.8)

then a classification of singularities arises that reflects the symmetry in the
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(a) (b) (c) (d)

λ

x

Fig. 3. Canonical solution diagrams for Z2-symmetric singularities of
codimension ≤ 1: (a) f(x, λ) = x3 − λx = 0, (b) f(x, λ) = x5 − λx = 0,
a quadratic symmetry breaking bifurcation, (c) f(x, λ) = x3 − λ2x = 0,

a C− coalescence point, and (d) F (x, λ) = x3 + λ2x = 0, a C+ coalescence
point. Unfoldings of (b), (c) and (d) are given on p. 260 of

Golubitsky and Schaeffer (1985)

problem and is different from that for problems with no symmetry. First note
that if (2.8) is satisfied then f(x, λ) is odd in x and so we may write f(x, λ) =
xa(x2, λ) for some function a(x2, λ). Also, if (x, λ) satisfies f(x, λ) = 0 then
so does (−x, λ). Thus the solution diagrams are symmetric about the λ
axis: see Figure 3. The simplest singularity (i.e., codimension 0) has the
canonical form f(x, λ) := x3 −λx = x(x2 −λ) and gives rise to the common
symmetric pitchfork bifurcation diagram (see Figure 3(a)). The singularities
given in Figure 3(b), (c) and (d) have codimension 1 and typically will only
be observed in a two-parameter setting (see Cliffe and Spence (1984)).

In Chapter VIII of Golubitsky and Schaeffer (1985) it is shown that the
theory for Hopf bifurcation is intimately connected to that for Z2-symmetric
problems. In particular, small amplitude periodic orbits of an autonomous
system of ODEs are in one-to-one correspondence with zeros of a nonlinear
problem that satisfies the Z2-equivariance condition (2.8). The simplest
Hopf bifurcation corresponds to a codimension 0 singularity and hence is
likely to be observed in one-parameter problems.

2.4. Implications for bifurcation theory

As we noted at the beginning of this section, singularity theory is a very
important tool in our understanding of bifurcation problems. Specifically
for this review we make the following remarks.

(i) Singularity theory enables appropriate defining conditions for singular
points to be determined. Extended systems constructed incorporating
these defining conditions are regular at the singularity, and so by vary-
ing a control parameter, paths of singularities can be computed. Such
paths of singularities may in turn have singularities at more degenerate
(higher codimension) singularities. Reliable computational tools may
therefore be constructed on this basis and were used to perform the nu-
merical computations described in Sections 6 and 8. A nice feature is
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that the nondegeneracy conditions and unfolding conditions that need
to be checked arise naturally in the numerical implementation: see, for
example, Jepson and Spence (1985b), Janovský and Plechác̆ (1992).

(ii) In one-parameter problems one would expect to observe:

• quadratic fold points,
• Hopf bifurcations;

if a trivial solution exists,

• bifurcation from the trivial solution;

and, in the presence of reflectional symmetry,

• symmetric pitchfork bifurcations.

One would not expect to observe the more degenerate (higher codimen-
sion) singularities like transcritical bifurcations. Thus, in our discussion
of bifurcation in Banach spaces we restrict attention to these four types
of bifurcation. We note, however, that if there were a more complicated
symmetry, for instance O(2), SO(2) or O(3), then other bifurcations
would arise (see, for example, Vanderbauwhede (1982), Cliffe, Spence
and Tavener (2000)), but we do not discuss these cases here.

3. Bifurcation theory in Banach spaces

Consider nonlinear problems of the form

F (x, λ) = 0, (3.1)

where F is a map from V × R → V , for some Banach space V with norm
‖ · ‖. We assume F is smooth, that is,

F : V × R → V is a Cp mapping for p ≥ 3. (3.2)

Denote the Frechet derivative of F at (x0, λ0) with respect to x (respectively
λ) by F 0

x or DxF
0 (respectively F 0

λ or DλF
0). We assume

F 0
x : V → V is a Fredholm operator of index 0 for all (x, λ) ∈ V × R.

(3.3)
(Note: where convenient, we use the notation F 0 = F (x0, λ0), . . . etc.)

Let us denote the set S by

S = {(x, λ) ∈ V × R : F (x, λ) = 0}.

It is often of interest in applications to compute paths or branches of solu-
tions of (3.1), where λ is a distinguished parameter, for instance a flow rate
or Reynolds number, and x is a state variable, for instance a temperature
or velocity field. If (x0, λ0) ∈ S with F 0

x an isomorphism on V , then the
Implicit Function Theorem (IFT) ensures the existence of a unique smooth
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path of solutions x(λ) ∈ Cp satisfying F (x(λ), λ) = 0 for λ near λ0, with
Fx(x(λ), λ) an isomorphism. A detailed account of this case appears in
Brezzi, Rappaz and Raviart (1980, Section 2). It is not difficult to show
(again using the IFT) that algebraically simple eigenvalues of Fx(x(λ), λ)
are also smooth functions of λ, and, as discussed in the introduction, our
interest centres on cases when an eigenvalue crosses the imaginary axis, with
a possible change in stability of steady solutions of ẋ+ F (x, λ) = 0.

One of the simplest cases is that of Hopf bifurcation, where at λ = λ0,
say, a complex pair of eigenvalues crosses the imaginary axis as λ varies. In
this case Fx(x(λ), λ) is nonsingular for λ near λ0. We defer discussion of
this case till later, and for the moment we consider the case when a simple
real eigenvalue crosses the imaginary axis.

Let (x0, λ0) be a simple singular point satisfying

F 0 = 0, (3.4)

let F 0
x ∈ L(V ;V ) be singular with algebraically simple zero eigenvalue, and

dim Ker(F 0
x ) = span{φ0 : φ0 ∈ V, ‖φ0‖ = 1},

dim Ker((F 0
x )′) = span{ψ0 : ψ0 ∈ V ′, 〈φ0, ψ0〉 = 1},

(3.5)

where V ′ denotes the dual of V with norm ‖·‖′, and 〈·, ·〉 the duality pairing
between V and V ′. (Here, L(V ;V ) denotes the space of bounded linear
operators on V .) Further, setting

V1 := Ker(F 0
x ), V2 := Range(F 0

x ) = {v ∈ V : 〈v, ψ0〉 = 0}, (3.6)

we have

V = V1 ⊕ V2, (3.7)

and we may introduce the linear operator L, defined by

L :=

(
F 0
x

∣∣∣
V2

)−1

, (3.8)

the inverse isomorphism of F 0
x restricted to V2, that is, the inverse isomor-

phism of F 0
x

∣∣
V2

.
In this review we shall only consider simple singularities, in the sense

that dimKer(F 0
x ) = dimKer((F 0

x )2) = 1. Multiple zero eigenvalues arise,
especially when there is a symmetry in the problem (e.g., Bauer, Keller and
Reiss (1975), Golubitsky et al. (1988)), and indeed we see a double singular
point in the Taylor–Couette problem in Section 8.

The following lemma has many applications in bifurcation theory.
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Lemma 3.1. (‘ABCD Lemma’; Keller 1977) Let V be a Banach
space and consider the linear operator M : V × R → V × R of the form

M :=

(
A b

〈·, c〉 d

)
,

where A : V → V , b ∈ V \ {0}, c ∈ V ′ \ {0}, d ∈ R. Then:

(i) if A is an isomorphism on V , then M is an isomorphism on V × R if
and only if d− 〈A−1b, c〉 6= 0;

(ii) if dim Ker(A) = codimRange(A) = 1, then M is an isomorphism if
and only if

(a) 〈b, ψ0〉 6= 0 ∀ ψ0 ∈ Ker(A′) \ {0},
(b) 〈φ0, c〉 6= 0 ∀ φ0 ∈ Ker(A) \ {0};

(iii) if dim Ker(A) ≥ 2, then M is singular.

By analogy with the case when V = R
n and A is a matrix, one can think of

M as being a 1-bordered extension of A. Keller (1977) considers ν-bordered
extensions for ν ≥ 1, and these have application when dimKer(F 0

x ) = ν.

3.1. Simple fold (limit or turning) points

In this section we consider the simplest singular point, namely a (quadratic)
fold point in a Banach space setting (cf. Section 2.1). We assume

〈F 0
λ , ψ0〉 6= 0, (3.9)

where ψ0 is defined in (3.5). Under (3.9) we have Coker
[
F 0
x , F

0
λ

]
= {0},

and the behaviour of the solution set S near (x0, λ0) can be completely
determined using the IFT. To do this, consider the system H : (V ×R)×R →
V × R introduced by Keller (1977),

H(y, t) :=

{
F (x, λ),
〈x− x0, c〉 + d(λ− λ0) − t,

(3.10)

where y = (x, λ) and c ∈ V ′ satisfies

〈φ0, c〉 6= 0 (3.11)

(one possible choice is c = ψ0). Then H(y0, 0) = 0, and

Hy(y0, 0) =

[
F 0
x F 0

λ
〈·, c〉 d

]

is an isomorphism on V × R using the ABCD Lemma. Hence near t = 0
there exists a smooth y(t) satisfying H(y(t), t) = 0. It is a simple matter,
by differentiating F (x(t), λ(t)) = 0 twice with respect to t, to show that

xt(0) = φ0, λt(0) = 0, λtt(0) = −〈F 0
xxφ0φ0, ψ0〉/〈F

0
λ , ψ0〉, (3.12)
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(cf. (2.5)). Under (3.5) and (3.9), (x0, λ0) is called a simple fold (limit or
turning) point. If, in addition,

〈F 0
xxφ0φ0, ψ0〉 6= 0, (3.13)

then (x0, λ0) is called a simple quadratic fold (Figure 4). As was indicated
in Section 2.1, a quadratic fold point is the most typical singular point in a
problem with no special features (e.g., symmetry).

The accurate location of a quadratic fold may be accomplished in many
ways, for example by finding a zero of λt, or, in finite dimensions, a point
where detFx = 0 (see Section 7.2 and Griewank and Reddien (1984)), or by
solving the extended system (Seydel 1979a, 1979b, Moore and Spence 1980)

T (y) :=




F (x, λ)
Fx(x, λ)φ
〈φ, c〉 − 1


 , y = (x, φ, λ) ∈ V × V × R, (3.14)

where c satisfies (3.11). We then have the following result.

Theorem 3.1. Assume (3.2), (3.3), (3.4), (3.5), (3.9) and (3.11). Then,
near λ = λ0, there exist smooth functions x(t), λ(t), µ(t), φ(t), such that

(i) (x(t), λ(t)) is the unique solution of F (x, λ) = 0 with (x(0), λ(0)) =
(x0, λ0);

(ii) x(t) = x0 + tφ0 + O(t2); λ(t) = λ0 + O(t2);
(iii) Fx(x(t), λ(t))φ(t) = µ(t)φ(t), φ(t) ∈ V, µ(0) = 0.

If, in addition, we assume (3.13) holds then

(iv) λtt(0) 6= 0;
(v) µt(0) 6= 0;
(vi) Ty(y0) is an isomorphism on V × V × R, where T is given by (3.14),

and y0 = (x0, φ0, λ0).

Proof. Part (i) follows directly from the IFT applied to (3.10). Part (ii)
follows by examining the form of the tangent vector to S at (x0, λ0).
Part (iii) follows by applying the IFT to the pair Fx(x(t), λ(t))φ− µφ = 0,
〈 φ, c 〉 − 1 = 0. Part (iv) is proved by differentiating F (x(t), λ(t)) = 0
twice, and part (v) by differentiating Fx(x(t), λ(t))φ(t) = µ(t)φ(t) once. The
proof of part (vi) is in Moore and Spence (1980). ✷

Remarks.

(i) Note that the main tool used to prove these results is the Implicit
Function Theorem applied toH(y, t) = 0. For this reason many authors
refer to a fold point as a regular point. We prefer to use the term
singular point because in many applications (x0, λ0) represents some
critical phenomenon.
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(ii) Condition (v) states that the eigenvalue µ(t) passes through zero with
nonzero velocity. As we shall see, this is a very common type of non-
degeneracy condition.

(iii) An immediate corollary of condition (v) is that a stable steady state
of ẋ + F (x, λ) = 0 must lose (linearized) stability at a simple quad-
ratic fold point since a real eigenvalue moves from the stable into the
unstable half plane. A typical situation is shown in Figure 4 where the
lower part of the branch is assumed to be stable. In the dynamical
systems literature a fold point is commonly known as a ‘saddle node’.

x(t)

λ
λ0

Fig. 4. Schematic illustrating the solution
typical behaviour at a quadratic fold point.
Here ( ) represents stable steady states of

ẋ+ F (x, λ) = 0, and ( ) represents
unstable states

3.2. Lyapunov–Schmidt reduction

The Lyapunov–Schmidt reduction (see, for example Stackgold (1971) and
Golubitsky and Schaeffer (1985)) plays a very important rôle in the theory
of bifurcations. We follow the treatment in Brezzi, Rappaz and Raviart
(1981a).

Consider the nonlinear problem (3.1)

F (x, λ) = 0,

subject to (3.2), (3.3), (3.4) and (3.5). Define the projection operator
Q : V → V2 by

Qv = v − 〈v, ψ0〉φ0, v ∈ V,

induced by the direct sum decomposition (3.7). Then the equation F (x, λ) =
0 is equivalent to

QF (x, λ) = 0 (3.15)
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and

(I −Q)F (x, λ) = 0. (3.16)

For x ∈ V , there is a unique decomposition

x = x0 + αφ0 + v, α ∈ R, v ∈ V2.

Write

λ = λ0 + ξ

and (3.15) becomes

F(v, α, ξ) := QF (x0 + αφ0 + v, λ0 + ξ) = 0, (3.17)

and hence, using the IFT on F = 0 in V2 and using (3.8) we obtain, for
(α, ξ) small enough,

v = v(α, ξ), with v(0, 0) = 0. (3.18)

Substituting into (3.16) we obtain the bifurcation equation (or reduced prob-
lem)

f(α, ξ) := 〈F (x0 + αφ0 + v(α, ξ), λ0 + ξ), ψ0〉 = 0. (3.19)

Thus, for (α, ξ) small enough, solutions of (3.19) are in one-to-one corre-
spondence with the solutions of (3.1). Note that this reduction process is a
very powerful tool. Independently of the precise form of (3.1), provided the
reduction process can be applied, the solution behaviour of (3.1) near a sin-
gular point can be analysed through a reduced problem of small dimension.
The dimension of the reduced problem is usually (but need not be) equal to
the dimension of Ker(F 0

x ). Numerically convenient reduction procedures are
discussed in Jepson and Spence (1984) and Janovský and Plechác̆ (1992).

It is easy to verify, using ∂v
∂α(0, 0) = 0, that

(i) f(0, 0) = 0, (ii) ∂f
∂α(0, 0) = 0,

(iii) ∂f
∂ξ (0, 0) = 〈F 0

λ , ψ0〉, (iv) ∂2f
∂α2 (0, 0) = 〈F 0

xxφ0φ0, ψ0〉.
(3.20)

Thus, using (3.9) and (3.20iii), the IFT ensures the existence of a unique
path of solutions ξ = ξ(α) to f(α, ξ) = 0. Proceeding in this way (see Brezzi
et al. (1981a) for details) one recovers the results of Theorem 3.1(i),(ii) where
α is used to parametrize S near λ = λ0 rather than t defined in (3.10). We
shall see in Section 7.1 that t is a local approximate arclength.

Clearly

f(α, ξ) = 〈F 0
λ , ψ0〉ξ + 〈F 0

xxφ0φ0, ψ0〉α
2 + h.o.t.

In the language of singularity theory f(α, ξ) is ‘contact equivalent to’ (i.e.,
can be smoothly transformed to) the form ξ − α2, which is the canonical
form for a quadratic fold (see Section 2.1).
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If (3.9) fails then ∂f
∂ξ (0, 0) = 0 and the analysis of the solutions of f(α, ξ) =

0 near (0, 0) proceeds by considering the second derivatives of f(α, ξ). Fol-
lowing Brezzi et al. (1981a), let

A0 :=
∂2f

∂α2
(0, 0), B0 :=

∂2f

∂α∂ξ
(0, 0), C0 :=

∂2f

∂ξ2
(0, 0),

where

A0 = 〈F 0
xxφ0φ0, ψ0〉,

B0 = 〈F 0
xλφ0 + F 0

xxφ0w0, ψ0〉, (3.21)

C0 = 〈F 0
λλ + 2F 0

xλw0 + F 0
xxw0w0, ψ0〉,

with w0 ∈ V2 the unique solution in V2 of

F 0
xw0 + F 0

λ = 0. (3.22)

The Morse Lemma (Nirenberg 1974, Chapter 3) shows that if

B2
0 −A0C0 > 0 (3.23)

then near (x0, λ0) there are two Cp−2 branches of solutions to (3.1) that in-
tersect transversally. Local parametrizations of the two branches are given
in Brezzi, Rappaz and Raviart (1981b, Section 2). We call such points trans-
critical bifurcation points since, under (3.23), f(α, ξ) is contact equivalent
to α2 − ξ2, the canonical form for a transcritical bifurcation given in Sec-
tion 2.2. As discussed in Section 2.4, the singularity theory of Golubitsky
and Schaeffer (1985) tells us that generically one would not expect to ob-
serve transcritical bifurcation points in one-parameter problems, but they
would appear in two-parameter problems.

However, in two special cases of great practical importance, intersecting
curves do generically arise in one-parameter problems. These are the case
of ‘bifurcation from the trivial solution’ and ‘bifurcation in the presence of
symmetry’. We discuss these two cases in the following subsections.

3.3. Bifurcation from the trivial solution

Consider the nonlinear problem F (x, λ) = 0 with the additional property
that

F (0, λ) = 0 for all λ, (3.24)

that is, the trivial solution, x = 0, is a solution for all λ. The important
question is: ‘For what values of λ do nontrivial solutions bifurcate from
the trivial solution?’ Such problems arise in many applications. One of
the simplest, but very important, examples is the buckling of a slender
elastic rod or column due to compression, a problem considered by Euler,
Bernoulli and Lagrange (see, for example, Reiss (1969), Chow and Hale
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(1982)). In fact buckling problems provide a rich source of such problems
(see, for example, Keller and Antman (1969) and Rabinowitz (1977)), and
the classic theoretical paper of Crandall and Rabinowitz (1971) is devoted
to this case. A fluid mechanical example, which will be discussed in greater
detail in Section 9, concerns a fluid layer subjected to a vertical temperature
gradient, with cooler fluid lying over the top of warmer fluid. For appropri-
ately chosen, physically reasonable boundary conditions, the non-convecting
state is a solution of the governing equations for all values of the temper-
ature gradient. In this so-called ‘conducting’ solution the buoyancy forces
are balanced by the pressure gradient and heat is transferred by conduc-
tion alone. Above a critical temperature gradient this conducting solution
becomes linearly unstable and a convecting state is observed.

We return to the mathematical analysis of (3.24). We see immediately
that

Fλ(0, λ) = 0, Fλλ(0, λ) = 0, . . . (3.25)

and hence (3.22) gives that w0 = 0. Hence C0 = 0 and, in (3.21), B0 reduces
to B0 = 〈F 0

xλφ0, ψ0〉. The nondegeneracy condition (3.23) becomes

〈F 0
xλφ0, ψ0〉 6= 0. (3.26)

If γ denotes the eigenvalue of Fx(0, λ) with γ = 0 at λ = λ0, then it is readily
shown using the IFT that Fx(0, λ) has a simple eigenvalue γ(λ) satisfying

Fx(0, λ)φ(λ) = γ(λ)φ(λ) (3.27)

with φ(λ0) = φ0, γ(λ0) = 0, γλ(λ) = 〈F 0
xλφ0, ψ0〉. We now have the following

theorem compiled from Crandall and Rabinowitz (1971) and Brezzi et al.
(1981b).

Theorem 3.2. Assume (3.2), (3.3), (3.5), (3.24) and (3.26). Then near
(0, λ0) there exists a nontrivial solution branch of F (x, λ) = 0 passing
through (0, λ0).

(i) If A0 6= 0 then

λ = λ0 + ξ, x = ξ(−2B0/A0)φ0 + O(ξ2).

(ii) If A0 = 0 then

λ = λ0 −
1

6

D0

B0
α2 + O(α3), x = αφ0 + O(α2),

where

D0 =
∂3f

∂ξ3
(0, 0) := 〈F 0

xxxφ0φ0φ0 − 3F 0
xxφ0z0, ψ0〉, (3.28)

and z0 is the unique solution in V2 of

F 0
xz0 + F 0

xxφ0φ0 = 0. (3.29)
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Furthermore, with γ(λ) an eigenvalue of Fx(0, λ) defined by (3.27),

(iii) γλ(λ0) 6= 0.

Condition (iii) is an eigenvalue crossing condition similar to (v) of The-
orem 3.1. Thus we may deduce that a stable trivial solution loses stability at
λ = λ0 provided (3.26) holds. It is natural to ask about the stability of the
bifurcating branches. Though stability assignment is possible by topological
degree theory, Crandall and Rabinowitz (1973) present an elegant analysis
using eigenvalues. Recall that γ(λ) is the (smooth) eigenvalue of Fx(0, λ) of
smallest modulus near λ = λ0. Along a branch of nontrivial solutions (given
either by (i) or (ii) of Theorem 3.2), say (x(t), λ(t)), let the eigenvalue of
smallest modulus be denoted µ(t), that is, Fx(x(t), λ(t))φ(t) = µ(t)φ(t),
where (x(0), λ(0)) = (x0, λ0), µ(0) = 0, φ(0) = φ0. The key result relating
µ(t), λ(t) and γ(λ) is given in the next theorem.

Theorem 3.3. (Crandall and Rabinowitz 1973) Under the above as-
sumptions,

(i) µ(t) and −tλt(t)γλ(λ0) have the same zeros and, whenever µ(t) 6= 0,
the same sign;

(ii) limt→0,µ(t) 6=0
−tλt(t)λλ(λ0)

µ(t) = 1.

The first result of this theorem enables stability of bifurcating branches to
be determined and, in particular, it is readily shown that, for the problem
ẋ+F (x, λ) = 0, supercritical bifurcating branches are stable and subcritical
branches are unstable. The exchange of stability at bifurcation from the
trivial solution for three cases is illustrated in Figure 5.

The question of the computation of bifurcation points on a trivial solution
branch reduces to a standard parameter-dependent eigenvalue problem, that
is, find the zero eigenvalues of Fx(0, λ). The question of computing the non-
trivial bifurcating branches is discussed in Section 7.

3.4. Symmetry breaking bifurcation

Symmetries play an important rôle in many applications, for example in
structural and fluid mechanics, some of which are described or referenced
in Golubitsky et al. (1988). A group-theoretic approach is highly advantage-
ous when studying linear or nonlinear problems in the presence of symmetry,
and, in fact, a full understanding of the range of interactions and transi-
tions that arise in applications is probably not possible without the use of
group theory. A good introduction to the power of group-theoretic meth-
ods for linear problems is given in Bossavit (1986). In many applications
the geometry of the domain imposes a natural symmetry. For example, the
equations governing laminar flow in a circular pipe have the symmetries of
the group O(2) (comprising rotations through any angle between 0 and 2π,
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(a) A0 = 0, supercritical (b) A0 = 0, subcritical

(c) A0 6= 0
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Fig. 5. (a), (b), (c) are schematic diagrams illustrating the stability of bifurcating
branches at bifurcation from the trivial solution. Here ‘s’ denotes a stable branch,

and ‘u’ an unstable branch

and a reflection (Vanderbauwhede 1982)), whereas the equations governing
laminar flow in a (symmetrically) expanding two-dimensional channel (see
Section 6), have a simple reflectional symmetry, that is, the symmetry of
the group Z2 = {1,−1}. This is the simplest nontrivial symmetry and in
this review we shall restrict attention to this case.

We assume the following common equivariance condition (see Brezzi et
al. (1981b), Werner and Spence (1984)):

There exists a linear operator S on V with S 6= I, S2 = I
such that SF (x, λ) = F (Sx, λ).

(3.30)

Note that the two-element group {I, S} is isomorphic to Z2, and hence we
call (3.30) a Z2-equivariance condition. There is a natural decomposition
of V into symmetric and anti-symmetric components, namely V = Vs ⊕ Va,
where

Vs = {x ∈ V : Sx = x}, Va = {x ∈ V : Sx = −x}. (3.31)

For x ∈ Vs and λ ∈ R, the symmetric subspace is invariant under F , Fλ, etc.
Assuming x ∈ Xs, then differentiating the equivariance condition (3.30)
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with respect to x gives

SFx(x, λ)φ = Fx(x, λ)Sφ, ∀φ ∈ V. (3.32)

Clearly, Fx : Vs → Vs and Fx : Va → Va, and so, provided x ∈ Xs, we may
introduce Fx|Vs

and Fx|Va
. Differentiating (3.32) with respect to x gives

SFxx(x, λ)uv = Fxx(x, λ)SuSv, ∀u, v ∈ V ; (3.33)

hence for x ∈ Xs and v, w ∈ Va or v, w ∈ Vs, we have Fxx(x, λ)vw ∈ Vs.
Let (x0, λ0) be a simple singular point with x0 ∈ Xs and let φ0 ∈ Ker(F 0

x ).
Substituting into (3.32) gives SF 0

xφ0 = F 0
xSφ0 = 0 and (3.5) requires Sφ0 =

cφ0 for some constant c. Multiplying by S gives φ0 = cSφ0 = c2φ0, and
hence c = ±1. The case c = 1 gives φ0 ∈ Vs, but this is less interesting since
the symmetry is not broken and all nearby solutions lie in Vs. Instead we
consider the case c = −1, the symmetry breaking case, that is,

Assume x0 ∈ Vs and φ0 ∈ Va. (3.34)

It is easy to show that

ψ0 ∈ V ′
a, and 〈x, ψ0〉 = 0, ∀x ∈ Vs. (3.35)

Under (3.30) and (3.34) we immediately have the existence of a unique
path of solutions in Vs to F (x, λ) = 0 near (x0, λ0); to show this simply apply
the IFT to F (x, λ) = 0, x ∈ Vs. Denote this path by xs(λ) and introduce
the new problem

F̃ (x̃, λ) := F (xs(λ) + x̃, λ) = 0, x̃ ∈ V. (3.36)

Clearly F̃ (0, λ) = 0 for all λ and all the results applying to bifurcation
from the trivial solution apply. Note that (3.35) implies that A0 = 0, and
so Theorem 3.2(ii) applies for the symmetry breaking path. However, in

addition, SF̃ (x̃, λ) = F̃ (Sx̃, λ) and so if (x̃, λ) solves (3.36) so does (Sx̃, λ).
This leads to the common symmetric-pitchfork bifurcation diagrams, which
are symmetric with respect to the path (xs(λ), λ). Note that in problems
with no symmetry pitchfork bifurcation arises in Theorem 3.2 if A0 = 0 and
λ and x depend quadratically on α. However, under (3.30) the bifurcating
branches must be symmetric about the trivial solution. Importantly, the
Lyapunov–Schmidt procedure goes through as one would expect, but also, as
shown in Brezzi et al. (1981b), the reduced equation inherits an equivariance
property from (3.30), namely

−f(α, ξ) = f(−α, ξ). (3.37)

Hence f(0, ξ) = 0, fξ(0, ξ) = 0, fξξ(0, ξ) = 0, etc. . . . for all ξ. In fact it is
readily shown that the reduced equation in this case has the form

f(α, ξ) =
D0

6
α3 +B0αξ + h.o.t., (3.38)
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which we use later.
For completeness we state the analogous result to Theorem 3.2 for Z2-

symmetry breaking, that is, F (x, λ) = 0 with SF (x, λ) = F (Sx, λ), S2 =
I. Note that, in (3.22) w0 ∈ Vs since F 0

λ ∈ Vs; in (3.29), z0 ∈ Vs since
F 0
xx φ0φ0 ∈ Vs; and A0 = 0, C0 = 0 using (3.35). Also, we may introduce
γ(λ), the eigenvalue of minimum modulus near λ0 of Fx(x

s(λ), λ)|Va
. The

analogue of (3.14) has the same form but with a restricted domain, namely
T (y) = 0 where T : Vs × Va × R → Vs × Va × R with

T (y) =




F (x, λ)
Fx(x, λ)φ
〈φ, c〉 − 1


 , y ∈ Vs × Va × R, (3.39)

where c ∈ V ′
a satisfies (3.11).

Theorem 3.4. Assume (3.2), (3.3), (3.4), (3.5), (3.30) and (3.34). Assume
also that

B0 := 〈F 0
xλφ0 + F 0

xxφ0w0, ψ0〉 6= 0,

where w0 is given by (3.22). Then near (x0, λ0) there exist two nontrivial
solution branches of F (x, λ) = 0 passing through (x0, λ0):

(i) a symmetric branch given by

λ = λ0 + ξ, xs(λ) = x0 − ξw0 + O(ξ2) ∈ Vs;

(ii) an asymmetric branch given by

λ = λ0 −
1

6

D0

B0
α2 + O(α4),

x = x0 + αφ0 + α2
{
−

1

6

D0

B0
w0 +

1

2
z0

}
+ O(α3);

(iii) γλ(λ0) 6= 0, where γ(λ) is the eigenvalue of minimum modulus of
Fx(x

s(λ), λ)|Va
near (x0, λ0);

(iv) Ty(y0) is an isomorphism on Vs × Va × R where T is given by (3.39),
and y0 = (x0, φ0, λ0) ∈ Vs × Va × R.

Proof. Parts (i) and (ii) are proved in Brezzi et al. (1981b). Part (iii)
is proved in Crandall and Rabinowitz (1971), but can easily be obtained
by differentiating Fx(x

s(λ), λ)φ(λ) − γ(λ)φ(λ) = 0. Part (iv) is proved in
Werner and Spence (1984). ✷

In this case we call (x0, λ0) a simple Z2-symmetry breaking bifurcation
point (or sometimes, a symmetry breaking pitchfork bifurcation point). The
stability assignments for bifurcating branches are as in Figure 5(a) or (b).

Condition (iii) states that the eigenvalue γ(λ) of Fx(x
s(λ), λ)|Va

changes
sign with nonzero speed near λ = λ0, and this fact can be used in the
detection of symmetry breaking pitchfork bifurcations (see Section 7.3).
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3.5. Hopf bifurcation

As mentioned at the beginning of this section, a Hopf bifurcation arises when
a complex pair of eigenvalues of Fx(x, λ) crosses the imaginary axis. This is
one of the typical bifurcations one would expect to occur in a one-parameter
problem of the form ẋ + F (x, λ) = 0 (see Hassard, Kazarinoff and Wan
(1981), Sattinger (1973), Wiggins (1990), Crandall and Rabinowitz (1977)).
This phenomenon has a long history with examples occurring in the work
of Poincaré and Andronov (see Wiggins (1990) for a short account of the
early history). A comprehensive account of both the theory and numerical
analysis of Hopf bifurcations is given by Bernardi (1982). The account here
is a summary of the treatment in Bernardi (1982).

Consider the nonlinear time-dependent problem

dx

dt
+ F (x, λ) = 0, (3.40)

where F maps V × R to V ′. (This is the appropriate setting when F (x, λ)
involves spatial differentiation of x: see, for example, the theory for parabolic
PDEs, Section 26 in Wloka (1987).) Assume:

(i) F (x, λ) = Ax+G(x, λ) where A is an isomorphism from V
to V ′, satisfying (Ax, x) ≥ α‖x‖2, α > 0, and G is a
Cp-mapping (p ≥ 3) from R × V into V ′;

(3.41)

(ii) F (x0, λ0) = 0; (3.42)

(iii) F 0
x has two algebraically simple, purely imaginary eigen-

values ±iω0, ω0 6= 0, with corresponding eigenvectors ζ0, ζ̄0,
and no other eigenvalues of the form ±inω0(n = 0, 2, 3, . . .).

(3.43)

Since F 0
x is an isomorphism from V to V ′, the IFT shows that, near (x0, λ0),

there is a unique path of equilibrium solutions of (3.40), xe(λ) ∈ V say, such
that F (xe(λ), λ)) = 0, xe(λ0) = x0. Also, for λ near to λ0, the IFT ensures
the existence of a unique pair of complex eigenvalues µ±(λ) = α(λ)± iω(λ)
with α(λ0) = 0, ω(λ0) = ω0. The known path xe(λ) is ‘subtracted out’

by writing x = xe(λ) + v (cf. Section 4.3) and introducing F̂ (v, λ) :=
F (xe (λ) + v, λ). So

F̂ (v, λ) = Av + Ĝ(v, λ)

for an appropriate Ĝ.
Finally, we assume the complex pair of eigenvalues crosses the imaginary

axis with nonzero speed, that is,

d

dλ
(α(λ))

∣∣∣∣
λ=λ0

6= 0. (3.44)
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A change of time variable, s = ωt, in (3.40) produces

F(v, λ, ω) := ω
dv

ds
+ F̂ (v, λ) = 0 (3.45)

and we seek 2π-periodic solutions of (3.45) in a neighbourhood of (0, λ0, ω0)
∈ X ×R×R, where X is the closure of the space of 2π-periodic functions of
D([0, 2π], V ) for an appropriate norm (see Bernardi (1982, Section II)).

It is now possible to carry out a Lyapunov–Schmidt analysis on
F(v, λ, ω) = 0. An important rôle in the theory is played by the operator

Av := ω0
dv

ds
+Av, (3.46)

which is shown to be an isomorphism from X to X ′, the dual of X . Denote
the inverse of A by T . The results may be summarized in the following
theorem (Bernardi 1982, p. 23).

Theorem 3.5. (Hopf bifurcation) Assume (3.41), (3.42), (3.43) and
(3.44). Equation (3.40) has a unique branch of T (ǫ) periodic solutions in a
neighbourhood of (x0, λ0, ω0) which is of the form

λ(ǫ) = λ0 + O(ǫ2),

ω(ǫ) = ω0 + O(ǫ2),

T (ǫ) = 2π/ω0 + O(ǫ2),

x(ǫ)(t) = xe(λ(ǫ)) + v(ǫ)(ω(ǫ)t),

where v(ǫ) = ǫ(ζ0 + ζ̄0) + O(ǫ2). Furthermore, if a certain nondegeneracy
condition holds (Bernardi 1982, (IV.20)), λ(ǫ) = λ0 +ǫ2σ2(ǫ), σ2(0) 6= 0, en-
suring a ‘quadratic’ (rather than quartic or higher-order) bifurcating branch.

As for fold and Z2-symmetry breaking bifurcations, we can set up an ex-
tended system (cf. Jepson (1981), Griewank and Reddien (1983)). Consider
T (y) = 0, where T : V × V c × R

2 → V × V c × R
2 with

T (y) =




F (x, λ)
Fx(x, λ)ζ − iωζ

〈ζ, c〉 − 1


 , y = (x, ζ, λ, ω) ∈ V × V c × R

2 (3.47)

where V c = V + iV , and c ∈ (V c)′ satisfying 〈ζ0, c〉 6= 0. The following
theorem is readily proved: see Jepson (1981), Griewank and Reddien (1983).

Theorem 3.6. Assume (3.41), (3.42), (3.43) and (3.44). Then Ty(y0) is
an isomorphism on V × V c × R

2.

Remark. It was noted in Section 2.3 that the theory for Hopf bifurcation
is closely connected to that for Z2-symmetry breaking bifurcation. The same
is true for stability assignment, and stability diagrams like those in Figure 5
can be shown to hold for Hopf bifurcation, where the bifurcating branches
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represent periodic solutions of ẋ+F (x, λ) = 0 (see Crandall and Rabinowitz
(1977)).

4. Numerical approximation

The main theoretical results on the numerical approximation of bifurcation
points were proved in the early to mid-1980s. In this review we shall con-
centrate on the work of Brezzi et al. (1980, 1981a, 1981b) and Descloux and
Rappaz (1982), who considered numerical approximation in a projection
method (especially a Galerkin method) framework, since we will use their
results in the analysis of the mixed finite element method for the Navier–
Stokes equations in Section 5. We shall also discuss the work of Moore
and Spence (1981) and Moore, Spence and Werner (1986) who performed
a ‘Keller-like’ analysis appropriate for finite difference methods. For com-
pleteness, we briefly mention other treatments at the end of this section. For
the discussion on numerical approximation we shall denote discretizations
of F (x, λ) = 0 by Fh(xh, λh) = 0, approximations of (x0, λ0) by (x0

h, λ
0
h),

and the Jacobian of the approximate problem by DxFh(xh, λh). (Here we
follow the notation in the Brezzi, Rappaz and Raviart papers in which x0

h
denotes the numerical approximation of x0, etc.)

Before we consider parameter-dependent problems, it is worth recalling
the key ideas in the theory of the approximate solution of nonlinear oper-
ator equations (see, for example, Krasnosel’skii, Vainikko, Zabreiko, Rutit-
skii and Stetsenko (1972), Weiss (1974), Keller (1975) and López-Marcos
and Sanz-Serna (1988)). Usually there are two main assumptions, namely
a consistency condition on an approximating family, and a stability condi-
tion, which can take several forms. For example, following Keller’s classic
treatment (Keller 1975), consider the problem F (x) = 0, F : V → V with
V a Banach space. The approximating family is written as Fh(xh) = 0,
Fh : Vh → Vh for some h > 0, with the spaces V and Vh linked by bounded
restriction operators: for instance, we assume the existence of operators
rh : V → Vh, such that ‖rhx‖ → ‖x‖ as h→ 0 (for appropriate norms). The
family {Fh} is consistent with F at x ∈ V to order p if

‖Fh(rhx) − rhF (x)‖ ≤ Chp,

for h sufficiently small and C independent of h. (Throughout, C will denote
a generic constant bounded independent of h.) The family {Fh} is stable at
x ∈ V if DxFh(rhx) has a uniformly bounded inverse from Vh to Vh, that is,

‖DxFh(rhx)
−1‖ < C, (4.1)

for h sufficiently small and C independent of h. We also assume that DxFh
satisfies a Lipschitz condition in an appropriate ball centred on rhx. Ex-
istence and convergence (of order p) results are proved by Keller (1975,
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Theorem 3.6). In particular we have the convergence result, that for h
sufficiently small,

‖rhx− xh‖ ≤ C‖Fh(rhx) − rhF (x)‖

= C‖Fh(rhx)‖.

The main practical difficulty is to prove the stability result. Only if x is
a regular solution of F (x, λ) = 0, that is, if DxF (x, λ) is an isomorphism on
V , should one expect to obtain a stability result like (4.1). A similar analysis
for projection methods can also be given: see, for example, Section 19.3 of
Krasnosel’skii et al. (1972), where again it is assumed that the exact solution
is regular.

For parameter-dependent problems F (x, λ) = 0, we have seen that sin-
gular points are often regular points of certain extended systems. By anal-
ogy with the standard convergence theory for regular points, it is natural
to expect that discretized parameter-dependent problems exhibit the same
qualitative behaviour as the continuous problem, and that expected rates
of convergence will be attained. This is indeed the case for the problems
discussed here. We shall see that, under reasonable consistency and sta-
bility conditions, convergence results (of expected orders) are possible for
branches of solutions, fold points, for bifurcations from a trivial solution, Z2-
symmetry breaking bifurcation points and Hopf bifurcation points. Further,
when projection methods are used, superconvergence results for approxima-
tion of critical parameter values are obtained.

However, this is not the case for all bifurcation points, as is well known for
discretizations of transcritical bifurcations: see, for instance, Descloux and
Rappaz (1982, Section 4), and Brezzi et al. (1981b). This is not surprising
from the standpoint of singularity theory, since we know from Figure 1 in
Section 2.2 that, even in the scalar case, a transcritical bifurcation point is
destroyed under perturbation when considered in the x− λ plane.

In this section, we consider mainly projection methods as a means of
generating numerical approximations, and, in particular, in the next three
subsections we discuss the approximation of the bifurcation points described
in Section 3. In Section 4.4 we discuss approximation using finite difference
methods, and in Section 4.5 we briefly review the literature.

4.1. Fold points

We shall summarize in some detail the main results in Brezzi et al. (1980,
1981a, 1981b) and Descloux and Rappaz (1982). The setting is as follows.
Consider the nonlinear problem (3.1), namely

F (x, λ) = 0, F : V × R → V
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under assumptions (3.2) and (3.3). (We note that, in fact, Descloux and
Rappaz (1982) consider a more general setting, but for this review we present
their approach within the above framework.)

For each value of a real parameter h > 0 we introduce a finite-dimensional
subspace Vh of V and consider the approximating problem

Fh(xh, λ) = 0, Fh : Vh × R → Vh. (4.2)

Near-regular points (x0, λ0) on S, (i.e., F (x0, λ0) = 0 with DxF (x0, λ0)
an isomorphism), the solution set S contains a unique path parametrized by
λ. Standard theory, under appropriate consistency conditions, shows that
the discretized problem Fh(xh, λ0) = 0 has a unique solution (x0

h, λ0) with
convergence of x0

h to x0 as h→ 0. The approximation of the curve (x(λ), λ)
by the curve (xh(λ), λ) near λ = λ0 also follows using a careful extension of
the usual IFT (see Brezzi et al. (1980)).

Consider now the case when (x0, λ0) is a fold point, that is, in addition to
assumptions (3.2), (3.3) we assume (x0, λ0) is a singular point of F (x, λ) = 0
satisfying (3.4), (3.5) and (3.9). A local analysis near a fold curve was carried
out in Section 3.1 using equation (3.10). It was shown that, provided (3.11)
is satisfied, (y0, 0) is a regular solution of H(y, t) = 0, where y = (x, λ) ∈
V × R. The obvious question is: ‘How well is the location of the fold point
approximated?’

We assume the discretization satisfies the following properties.

(i) {Fh} is a family of Cp functions mapping Vh × R into Vh. (4.3)

(ii) {Ph} is a family of projectors Ph : V → Vh, with
‖(I − Ph)x‖ → 0 as h→ 0, for all x ∈ V .

(4.4)

(iii) (Consistency.) For any fixed x, λ,

‖F (x, λ) − Fh(Phx, λ)‖ → 0 as h→ 0 (4.5)

with similar assumptions on the first (p− 1) derivatives of F (x, λ).

(iv) F and its first p derivatives are bounded independent of h
for all (x, λ) in a ball centred on (Phx0, λ0).

(4.6)

(v) (Stability.) For some C independent of h,

‖DxFh(Phx0, λ0)ξ1 +DλFh(Phx0, λ0)ξ2‖ ≥ C‖(ξ1, ξ2)‖, (4.7)

for (ξ1, ξ2) ∈ (V2 ∩Xh) × R, where V2 is given by (3.6).

The stability condition (4.7) is a condition on the total derivative of Fh
on the space complementary to Ker{F 0

x}. The corresponding result for the
continuous problem is easily shown to hold using (3.5) and (3.9).

Now define the numerical approximation of H(y, t) = 0 by

Hh(yh, t) :=

{
Fh(xh, λh),
〈xh − x0, c〉 + d(λh − λ0) − t,

(4.8)
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where yh = (xh, λh).
It is now not difficult to show (Descloux and Rappaz (1982, Lemma 3.1))

that, for h small enough, DyHh(πhy0, 0) is an isomorphism on Vh×R where
πhy0 = (Phx0, λ0). One can then show the convergence of solution curves
near the fold point. In fact we have the following theorem, which is a
compilation of results from Descloux and Rappaz (1982).

Theorem 4.1. Let y0 = (x(0), λ(0)) be a simple fold point on a solution
branch (x(t), λ(t)) of F (x, λ) = 0. Under the above consistency and stability
conditions, and for h sufficiently small, the following are true.

(i) There exists a locally unique path (xh(t), λh(t)), for t near 0, satisfying
Fh(xh(t), λh(t)) = 0, with

|λh(t) − λ(t)| + ‖xh(t) − x(t)‖

≤ C{‖Fh(Phx(t), λ(t))‖ + ‖(I − Ph)x(t)‖}

for some C independent of h, with similar bounds for | dλh(t)
dt − dλ(t)

dt |+

‖ dxh(t)
dt − dx(t)

dt ‖.

(ii) If the fold point is quadratic then Fh(xh(t), λh(t)) = 0 has a quadratic
fold point at (xh(t

0), λh(t
0)) for some t0 near 0.

(iii) Finally, if Fh(xh(t), λh(t)) = 0 is a Galerkin approximation of
F (x(t), λ(t)) = 0, then

|λh(t
0) − λ0| ≤ C

{∥∥∥∥∥
dyh(0)

dt
−

dy(0)

dt

∥∥∥∥∥

2

(4.9)

+ ‖yh(0) − y0‖

(
‖yh(0) − y0‖ + inf

ψ∈Vh×R
‖ψ − ψ̄0‖

)}
,

where yh(t) = (xh(t), λh(t)), etc., and ψ̄0 is a known element of Vh×R

(see Section 3 in Descloux and Rappaz (1982)).

Remark. Theorem 4.1(i) indicates that the curve (xh(t), λh(t)) approxi-
mates the exact curve to the expected order of convergence. The form of the
bound on the right-hand side of (4.9) indicates the possibility of supercon-
vergence when a Galerkin method is employed. The result is also in Brezzi
et al. (1981a) (as we describe below) and in Griewank and Reddien (1989).
We present numerical results illustrating superconvergence in Section 6.

Variationally posed nonlinear problems arise in a number of very impor-
tant situations (see, for example, Brezzi et al. (1980, 1981a, 1981b) where
the appropriate theoretical setting for a variety of problems is carefully laid
out). With V and H Hilbert spaces, V ⊂ H, V dense and continuously
embedded in H, V ⊂ H ⊂ V ′, the scalar product in H may represent the
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duality pairing between V and V ′. Let W be a reflexive Banach space such
that H ⊂ W ⊂ V ′ with continuous embeddings, and assume the canonical
injection of W into V ′ is compact. Let a : V × V → R be a continuous
bilinear V -elliptic form; and let G : V × R → W be a Cp mapping. Now
consider the nonlinear problem: find (x, λ) ∈ V × R such that

a(x, v) + (G(x, λ), v) = 0, ∀v ∈ V. (4.10)

We can now introduce the operators T, T ′ ∈ L(V ′;V ) defined by

a(Tf, v) = a(f, T ′v) = (f, v), ∀v ∈ V, ∀f ∈ V ′,

and an equivalent problem to (4.10) is

F (x, λ) := x+ TG(x, λ). (4.11)

Note that in this setting T : W → V is compact. This is an appropri-
ate formulation for many nonlinear problems in applications. The steady
Navier–Stokes equations do not quite fit into this framework and they are
considered in Section 5.

Define Th ∈ L(V ′;Vh) by

a(Thf, vh) = (f, vh) ∀vh ∈ Vh, ∀f ∈ V ′

and the projection Ph ∈ L(V ;Vh) by

a(Phx− x, vh) = 0 ∀vh ∈ Vh, x ∈ V.

Then

Th = PhT

and the approximating problem has the form

Fh(xh, λ) := xh + ThG(xh, λh), xh ∈ Vh (4.12)

where Th ∈ L(W ;Vh). The nice feature of this formulation is that the ap-
proximation of T by Th (i.e., approximation of a linear operator) determines
the convergence rates for the solution of the nonlinear problem (4.11). In
fact we shall assume the consistency condition

lim
h→0

‖T − Th‖ = 0 (4.13)

where the norm is in L(W ;V ).
We shall make full use of the theorems in Brezzi et al. (1981a, 1981b) and

so we discuss in detail how they obtain their convergence results. First it
is appropriate to describe the Lyapunov–Schmidt reduction process applied
to the approximate problem Fh(xh, λh) = 0.

A key idea in Brezzi et al. (1981a) and (1981b) is to perform the Lyapun-
ov-Schmidt reduction process on the discrete problem Fh(xh, λh) = 0 about
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the exact solution (x0, λ0) using the exact φ0, ψ0 and Q (see Section 3.2).
With

xh = x0 + αφ0 + v, v ∈ V2, (4.14)

λh = λ0 + ξ, (4.15)

then Fh is defined by

Fh(v, α, ξ) := QFh(x0 + αφ0 + v, λ0 + ξ). (4.16)

Assuming Fh is consistent with F given by (3.17), one obtains the existence
of vh = vh(α, ξ) satisfying Fh(vh, α, ξ) = 0. Thus the discrete reduced
problem is given by

fh(α, ξ) := 〈Fh(x0 + αφ0 + vh(α, ξ), λ0 + ξ), ψ0〉 = 0 (4.17)

and we have an equivalence between solutions of (4.17) and those of
Fh(xh, λh) = 0.

Note that, in this approach, consistency of {Fh} and {fh} as approx-
imating families for F and f follows from (4.13). Stability is ensured
by (3.5) and (3.9), since (3.5) ensures that DxF is nonsingular. The in-
duced nonsingularity of the approximating DxFh provides the equivalence
of the approximation reduction, and (3.9) ensures ∂f

∂ξ (0, 0) 6= 0 and hence
∂fh

∂ξ (α, ξ) 6= 0 for (α, ξ) near (0,0). The convergence theory is thus re-

duced to comparison of the solutions of f(α, ξ) = 0 and fh(α, ξ) = 0.

At a simple fold point ∂f
∂ξ (0, 0) 6= 0 and, if the fold is quadratic, then

∂2f
∂α2 (0, 0) 6= 0 (see Section 3.1). Hence the existence of (αh, ξh) such that

fh(αh, ξh) = 0, ∂fh

∂ξ (αh, ξh) 6= 0, ∂
2fh

∂ξ2
(αh, ξh) 6= 0 is readily shown. For

problems of the form F (x, λ) = x + TG(x, λ) = 0, we have the following
theorem.

Theorem 4.2. (Brezzi et al. 1981a) Assume (3.2), (3.3), (3.4), (3.5),
(3.9). Let F and Fh be defined by (4.11) and (4.12) and assume (4.13).
Then, for h sufficiently small, the following are true.

(i) For α near 0 there exists a unique smooth path (ξh(α), α) ∈ R
2 satis-

fying

fh(α, ξh(α)) = 0,

and hence a unique smooth path (xh(α), λh(α)) satisfying

Fh(xh(α), λh(α)) = 0.

(ii) Further,

|λh(α) − λ(α)| + ‖xh(α) − x(α)‖ ≤ C‖(T − Th)G(x(α), λ(α))‖,

with similar bounds for the approximation of derivatives of (x(α), λ(α))
with respect to α.
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(iii) If, in addition, (3.13) holds, that is, the fold is quadratic, then the
approximate problem has a quadratic fold point (x0

h, λ
0
h) satisfying

|λ0
h − λ0| + ‖x0

h − x0‖ ≤ C
1∑

l=0

∥∥∥∥(T − Th)
dl

dαl
G(x(α), λ(α))

∣∣∣∣
α=0

∥∥∥∥,

with a (possibly sharper) bound available for λ0
h−λ0, namely (cf. (4.11))

|λ0
h − λ0| ≤

{ ∣∣∣〈(T − Th)G
0, ψ0〉

∣∣∣

+‖(T − Th)G
0‖ ·

∥∥∥∥
[
(T − Th)DxG

0
]′
ψ0

∥∥∥∥

+
1∑

l=0

∥∥∥∥∥(T − Th)
dl

dαl
G(x(α), λ(α))

∣∣∣∣
α=0

∥∥∥∥∥

2}
.

As shown in Brezzi et al. (1981a), if the numerical method is a Galerkin
method then the bound on λ0

h − λ0 can be written as

|λ0
h − λ0| ≤ C

{(
inf

vh∈Vh

∥∥∥∥∥
dx(0)

dt
− vh

∥∥∥∥∥

)2

+

(
inf

vh∈Vh

‖x0
′ − vh‖

)2

+

(
inf

vh∈Vh

‖x0 − vh‖

)(
inf

ψh∈Vh

‖η − ψh‖

)}
(4.18)

where η = T ′ψ0. This bound clearly shows the superconvergence result.

4.2. Numerical approximation of bifurcation from the trivial solution and
Z2-symmetry breaking

The analysis for the numerical approximation of these two cases is very
similar and so we discuss both in a single subsection. The material here is
based on Brezzi et al. (1981b) and relies on the numerical Lyapunov–Schmidt
decomposition discussed in the previous subsection.

First, for the case of bifurcation from the trivial solution,

F (0, λ) = 0, DλF (0, λ) = 0, . . . , ∀λ, (4.19)

and we assume the same property for the discrete problem, namely

Fh(0, λ) = 0, DλFh(0, λ) = 0, . . . , ∀λ. (4.20)

(Note: if G(0, λ) = 0 for all λ for G given in (4.10), then (4.19) and (4.20)
clearly hold for F and Fh given by (4.11) and (4.12).)

The Lyapunov–Schmidt reduction for the continuous case provides

f(0, 0) =
∂f

∂α
(0, 0) =

∂f

∂ξ
(0, 0) = 0,

∂2f

∂α∂ξ
(0, 0) 6= 0
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and so, as a function of ξ, ∂f
∂α(0, ξ) changes sign at ξ = 0. For the discrete

reduced problem fh(α, ξ) = 0, one readily deduces the existence of a unique
(0, ξ0h) such that

∂fh
∂α

(0, ξ0h) = 0.

Since fh(0, ξ) = 0, and ∂fh

∂ξ (0, ξ) = 0, ∀ξ sufficiently small, we have the ex-

istence of a bifurcation point, (0, ξ0h) in the discrete reduced problem with

|λ0
h − λ0| ≤ C|∂fh

∂α (0, 0)|. As in the quadratic fold case there is a supercon-
vergence result for the critical parameter if a Galerkin method is used as
given by Brezzi et al. (1981b, Theorem 6):

∣∣∣λ0
h − λ0

∣∣∣ ≤ C

{
inf
φ∈Vh

‖φ0 − φh‖ (4.21)

+
1∑

l=0

inf
wh∈Vh

∥∥∥∥∥
dlu(0)

dtl
− wh

∥∥∥∥∥

}(
inf

ψh∈Vh

‖η − ψh‖

)
,

where η = T ′ψ0.
Let us now turn to the case of Z2-symmetry breaking bifurcation. We

assume

Fh(x, λ) satisfies the equivariance condition (3.30). (4.22)

This implies that the reduced equation inherits the equivariance condition

fh(−α, ξ) = −fh(α, ξ)

and hence

fh(0, ξ) = 0 for all ξ sufficiently small.

Now the analysis is essentially the same as for the case of bifurcation from

the trivial solution. Since ∂f
∂α(0, 0) = 0 and ∂2f

∂ξ∂α(0, 0) 6= 0, we deduce the

existence of ξ0h such that ∂fh

∂α (0, ξ0h) = 0. Also fh(0, ξ) = 0, and ∂fh

∂ξ (0, ξ) = 0

for all ξ sufficiently small, and so bifurcation in f(α, ξ) = 0 occurs at (0, ξ0h),
with

|λ0
h − λ0| ≤ C

∣∣∣∣
∂fh
∂α

(0, 0)

∣∣∣∣ (4.23)

≤ C

∣∣∣∣
〈
DxF

0
h

(
φ0 +

∂vh
∂α

(0, 0)

)
, ψ0

〉 ∣∣∣∣

= C

∣∣∣∣
〈

(DxF
0 −DxF

0
h )

(
φ0 +

∂vh
∂α

(0, 0)

)
, ψ0

〉 ∣∣∣∣,

and if F and Fh are given by (4.11) and (4.12) then

|λ0
h − λ0| ≤ C

∣∣∣∣
〈

(T − Th)G
0
x

(
φ0 +

∂vh
∂α

(0, 0)

)
, ψ0

〉∣∣∣∣ .
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Thus (x0 + vh(0, ξ
0
h), λ

0
h) is a Z2-symmetry breaking bifurcation point of

Fh(xh, λh) = 0. This result is in Theorem 4 of Brezzi et al. (1981b). That
(4.23) provides superconvergence for (λ0

h − λ0) when a Galerkin method
is used is not explicitly stated in Brezzi et al. (1981b), though the result is
easily shown by repeating the steps on page 23 of that paper. In fact, though
the superconvergence of λ0

h to λ0 is well known, it appears difficult to find
a formal statement in the literature for the symmetry breaking case, and so
for completeness we state it below. Note that, in the theory, condition (3.5)
and nondegeneracy condition B0 6= 0 in Theorem 3.4 provide the stability
condition for this analysis in the same way that (3.5) and (3.9) implied
stability in the discretized fold point case. If F and Fh are given by (4.11)
and (4.12) then consistency comes from (4.13).

Theorem 4.3. Assume the conditions of Theorem 3.4, and so (x0, λ0) is
a Z2-symmetry breaking bifurcation point. Also assume Fh(xh, λh) = 0
satisfies (4.22) and appropriate consistency conditions. Then there exists
a Z2-symmetry breaking bifurcation point (x0

h, λ
0
h) of Fh(xh, λh) = 0 with

x0
h = x0 + vh(0, ξ

0
h) ∈ Xs and with

|λ0
h − λ0| ≤ C

∣∣∣∣
∂fh
∂α

(0, 0)

∣∣∣∣ ≤ C

∣∣∣∣
〈

(T − Th)DxG
0
(
φ0 +

∂vh
∂α

(0, 0)

)
, ψ0

〉∣∣∣∣ .

If a Galerkin method is used to compute λ0
h then

∣∣∣λ0
h − λ0

∣∣∣ ≤ C

{
inf

φh∈Vh

‖φ0 − φh‖

+
1∑

l=0

inf
wh∈Vh

‖ul(0) − wh‖

}(
inf

ψh∈Vh

‖η − ψh‖

)
.

where η = T ′ψ0. Numerical results illustrating this superconvergence are
shown in Section 6.

In problems with reflectional symmetry, the need to preserve symmetry
in the discretization is well known (see, for example, Brezzi et al. (1981b),
Descloux and Rappaz (1982), Moore et al. (1986)). In the simplest case
of a Z2-reflectional symmetry the codimension zero bifurcation is a sym-
metric pitckfork bifurcation. However, if a discretization is used that does
not respect the Z2-symmetry, then the symmetric pitchfork bifurcation is
likely to be perturbed in the same way that a codimension two pitchfork
bifurcation is perturbed in a setting with no symmetry (see, for example
Golubitsky and Schaeffer (1985), p. 147). On the other hand, one must
beware of imposing a symmetric structure on a discretized problem if one
wishes to detect symmetry breaking bifurcations (see the discussion at the
beginning of Section 7.3).
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4.3. Numerical approximation near Hopf bifurcation

The theory of numerical approximation near a Hopf bifurcation is more
difficult because of the interplay between the time and space discretizations,
and there is surprisingly little numerical analysis on this very important
topic. The work of Bernardi (1982) and Bernardi and Rappaz (1984) was
the first to give a rigorous analysis of spatial discretization of nonlinear
evolution equations near Hopf bifurcations. Questions on the creation of
invariant curves after time discretization are considered by Brezzi et al.
(1984) and these ideas are explored further in Hofbauer and Iooss (1984)
and recently in Lubich and Ostermann (1998).

We outline the main ideas in Bernardi (1982). The theory of the numerical
approximation is in the style of the analysis of the Brezzi, Rappaz, Raviart
papers. An approximation Fh to F given by (3.45) is introduced as

Fh(λ,w, v) := Av + ATh

{
(w − w0)

dv

ds
+ G̃(λ, v)

}
,

where Th is an approximation of T , the inverse of A given by (3.46). Consis-
tency results follow under the assumption that ‖(Th−T )f‖X → 0 as h→ 0
for all f ∈ X , where X is defined in Section 3.5. A Lyapunov–Schmidt
analysis is then carried out on Fh. The main result is as follows.

Theorem 4.4. (Bernardi 1982, Theorem VI.1) For sufficiently small
h, Fh(λ, ω, v) = 0 has a unique branch of solutions (λh(ǫ), ωh(ǫ), vh(ǫ)) in a
neighbourhood of the branch given in Theorem 3.5 which has the form

λh(ǫ) = λ0 + σh(ǫ),

ωh(ǫ) = ω0 + χh(ǫ),

xh(ǫ) = xe(λh(ǫ)) + vh(ǫ)(ωh(ǫ)t),

where

vh(ǫ) = ǫ(ζ0 + ζ̄0) + ǫw1h(ǫ)

for smooth mappings σh, χh, w1h. Moreover,

|λh(ǫ) − λ(ǫ)| + |wh(ǫ) − w(ǫ)| + ‖vh(ǫ) − v(ǫ)‖X ≤ C
∥∥∥(T − Th)Ẽ(ǫ)

∥∥∥
X

for some smooth Ẽ(ǫ) (see Bernardi (1982)) and where C is a constant
independent of h. Bounds for the approximation of derivatives of λ(ǫ), ω(ǫ)
and v(ǫ) are also given.

An estimate which allows the possibility of superconvergence when using
a Galerkin method is given by the following lemma.

Lemma 4.1. (Bernardi 1982, Lemma VI.3) For sufficiently small h,

|λh(0) − λ0| + |ωh(0) − ω0| ≤ C
∣∣∣
[
A(T − Th)DvG

0(ζ0 + ζ̄0), ζ0
∗
] ∣∣∣,
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where C is a constant independent of h, and [·, ·] denotes the duality pairing
between X and X ′. The inner product term on the right-hand side indicates
the possibility of superconvergence in the approximation of the critical values
for λ and ω.

In Bernardi (1982) a numerical scheme based on a Galerkin approximation
in V and Fourier approximation in time is analysed, and a superconvergence
result for the quantity |λh(0)−λ0|+ |ωh(0)−ω0| is explicitly stated (Propo-
sition VII.1).

In nonlinear parabolic-type problems ẋ + F (x, λ) = 0 where the spatial
derivatives in F (x, λ) are discretized by the finite element method, we obtain
a discretized problem of the form

Mhẋh + Fh(xh, λ) = 0,

where Mh denotes a mass matrix. If xh
e(λ) denotes the discretized equi-

librium solution, then Hopf bifurcation points may be found by finding the
value λ0

h such that det(µMh+DxFh(xh
e(λ0

h), λ
0
h)) = 0 has purely imaginary

roots µ± = ±iω0
h, say. In the computations presented in Section 6 ap-

proximations to λ0
h and ω0

h were found using the Cayley transform method
discussed in Section 7.4, and then the Hopf bifurcation was located using
the system in Griewank and Reddien (1983) adapted to allow Mh rather
than the identity matrix.

4.4. Numerical approximation by finite difference methods

Most of the convergence theory is carried out for projection-type methods,
probably because of the important rôle played by the finite element method
in continuum mechanics, the main application area for bifurcation theory.
Nonetheless, finite difference methods are used in many applications and it
is important to have a sound theory. Here we briefly discuss the approach
in the papers by Moore and Spence (1981) and Moore et al. (1986) where
the Keller approximation theory (Keller 1975) is extended to deal with fold
points and Z2-symmetry breaking bifurcation points.

Consider

F (x, λ) = 0, F : V × R → V (4.24)

and the approximating problem, for some h > 0,

Fh(xh, λh) = 0, Fh : Vh × R → Vh (4.25)

where Vh is linked to V by the bounded restriction operator rh : V → Vh
such that ‖rhx‖ → ‖x‖ as h→ 0 for appropriate norms. Natural extensions
of the usual consistency conditions are assumed for {Fh}. The stability
condition assumed is the spectral stability condition used by Chatelin (1973)
for linear eigenvalue problems. Let L be a bounded linear operator on V ,
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with approximating family {Lh} which is consistent for all x ∈ V . Then
{Lh} is spectrally stable for a complex scalar z if, for h sufficiently small,
(Lh − zI) has a bounded inverse on Vh. If µ is an eigenvalue of L, and the
circle of radius δ about µ in the complex plane is denoted by Γ, then we
may define the spectral projection

P := −
1

2πi

∫

Γ
(L− zI)−1 dz.

P induces the decomposition V = PV ⊕ (I − P)V with PV being the
(generalized) eigenspace of L with respect to µ. Now if {Lh} is consistent
with L then Ph := − 1

2πi

∫
Γ(Lh−zI)

−1 dz is known to be consistent (of same
order) with P.

The stability condition assumed in Theorem 4.5 below for (algebraically)
simple fold points is

DxFh(rhx0, λ0) is spectrally stable for |z| = δ ≥ 0,

δ sufficiently small, and dim(PhX) = 1. (4.26)

This implies (see Moore and Spence (1981), §3) that DxFh(rhx0, λ0)|(I−Ph)V

is consistent with the DxF (x0, λ0)|(I−P)V , and has a uniformly bounded
inverse for h sufficiently small. By comparison with condition (3.8), this is
seen to be a very natural stability condition.

We now have the following convergence theorem for fold points.

Theorem 4.5. Assume (3.2), (3.3), (3.4), (3.5) and (3.9). Let H and Hh

be defined by (3.10) and (4.8). If

(i) {Fh(·, λh(t))} is consistent with F (·, λ(t)) at x(t) ∈ V for t sufficiently
small,

(ii) {DxFh(rhx0, λ0)} is consistent withDxF (x0, λ0), and {DλFh(rhx0, λ0)}
is consistent with DλF (x0, λ0),

(iii) DxFh and DλFh are uniformly Lipschitz in a ball centred on (rhx0, λ0),

(iv) {DxFh(rhx0, λ0)} is spectrally stable,

(v) dim(Phxh) = 1 for h sufficiently small,

then, for h sufficiently small,

(vi) Fh(xh, λh) = 0 has a locally unique solution curve (xh(t), λh(t)) with

max {|λh(t) − λ(t)|, ‖xh(t) − rhx(t)‖} ≤

Cmax {‖Fh(rhx(t), λ(t)) − rhF (x(t), λ(t))‖, ‖(I − rh)x‖}.

Furthermore, if (3.13) holds and the second derivatives of Fh satisfy fur-
ther consistency and smoothness conditions (see Moore and Spence (1981,
Corollary 11)), then
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(vii) Fh(xh, λh) = 0 has a quadratic fold point (x0
h, λ

0
h) and

max {|λ0
h − λ0|, ‖x

0
h − rhx0‖} ≤

Cmax {‖Fh(rhx0, λ0) − rhF (x0, λ0)‖, |µ
0
h|},

where µ0
h is the eigenvalue of smallest modulus of DxFh(rhx0, λ0).

Moore et al. (1986) treat the case of Z2-symmetry breaking bifurcation.
Since it is no longer assumed that Vh ⊂ V , a slightly different, but natural,
invariance condition is required. With F (x, λ) = 0 satisfying (3.30) we
assume the following equivariance condition. For each h > 0,

(a) there exists a uniformly bounded linear operator Sh on Vh
with S2

h = I, Sh 6= I such that Fh(Shxh, λh) = ShFh(xh, λh),
∀(xh, λh) ∈ Vh × R;

(4.27)

(b) symmetry and approximation commute, that is,

rhSx = Shrhx, ∀x ∈ V.

Since we are interested in symmetry breaking we assume x0 ∈ Vs and
φ0 ∈ Va, as in (3.34) in Section 3.4.

By restricting attention to Vs the Jacobian DxF (x0, λ0)|Vs
is singular, that

is, there is a unique path of symmetric solutions xs(λ) ∈ Vs near λ = λ0.
Thus standard theory for paths of regular solutions applies, as is given in
the following theorem.

Theorem 4.6. For the continuous problem F (x, λ) = 0, assume (3.2),
(3.3), (3.4), (3.5), (3.30), (3.34) and

B0 := 〈Fxλφ0 + F 0
xxφ0w0, φ0〉 6= 0.

For the discrete problem Fh(xh, λh) = 0 assume (4.27) and

(i) {Fh(x
s(λ), λ)} is consistent with {F (xs(λ), λ)};

(ii) DxFh(rhx0, λ0) is spectrally stable and consistent with DxF (x0, λ0);
(iii) DxFh is uniformly Lipschitz in a ball centred on (rhx0, λ0).

Then, for h small enough, Fh(xh, λh) = 0 has a unique solution path
(xsh(λ), λ) near λ = λ0 with

‖xsh(λ) − rhx
s(λ)‖ ≤ C‖Fh(rhx

s(λ), λ) − rhF (xs(λ), λ)‖.

In addition, under further smoothness and Lipschitz conditions on second
derivatives of Fh, and if

(iv) dimPhxh = 1 for h small enough,

then there exists a Z2-symmetry breaking bifurcation point (x0
h, λ

0
h) of

Fh(xh, λh) = 0 with

|λ0
h − λ0| ≤ C|µh(λ0)| (4.28)
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where µh(λ) is the eigenvalue of smallest modulus of DxFh(xh
s(λ), λ)|Va

.

Remark. Though the analysis is aimed at finite difference methods it also
applies to projection methods. Result (4.28) indicates the superconvergence
result given earlier in Theorem 4.3 can also be proved using this analysis.
We sketch the ideas. Let µ(λ) denote the eigenvalue of minimum modulus
of DxF (xs(λ), λ), so that µ(λ0) = 0, and introduce µ̂(λ), the eigenvalue of
minimum modulus of DxF (xh

s(λ), λ). Thus

|µh(λ0)| ≤ |µh(λ0) − µ̂(λ0)| + |µ̂(λ0) − µ(λ0)|.

Now, if a Galerkin method is used for the numerical method, the first
term on the right-hand side exhibits superconvergence using standard eigen-
value approximation theory (Mercier, Osborn, Rappaz and Raviart 1981).
Using matrix perturbation ideas, the dominant term in µ̂(λ0) − µ(λ0) is
〈(Fx(xh

s(λ0), λ0)−Fx(x
s(λ0), λ0))φ0, ψ0〉. This is a (nonlinear) functional of

(xh
s− xs)(λ0) and standard Galerkin arguments provide superconvergence.

Obviously technical details need to be provided in any given application.

4.5. Literature review

Here we briefly summarize or note some of the other literature on the con-
vergence of numerical methods at bifurcation points.

One of the first rigorous accounts of the numerical analysis of the finite el-
ement method applied to fold (turning) point problems is given by Kikuchi
(1977), where a numerical Lyapunov–Schmidt procedure is used, but ex-
panding about the discrete solution (cf. Brezzi et al. (1981a) who expand
about the exact solution). In Fujii and Yamaguti (1980) singularities arising
in the shallow shell equations and their numerical approximation are anal-
ysed, with superconvergence results being obtained for symmetry breaking
bifurcations. The papers by Beyn (1980) and Moore (1980) contain early
accounts of convergence theory at transcritical bifurcation points with both
showing the perturbation of the discretized branches near the bifurcation
point. Closely related to the approach in Brezzi et al. (1981a) is the work
of Li, Mei and Zhang (1986) who apply their results to the Navier–Stokes
equations (see the next section). Other work on this topic is that by Paumier
(1981).

The work of Fink and Rheinboldt (1983, 1984, 1985) provides a general
framework for the numerical approximation of parameter-dependent non-
linear equations. A key theme throughout is the error estimation and in
Fink and Rheinboldt (1985) the approach involves considering only a single
discretized equation, rather than a family of approximations.

Another approach is provided in Griewank and Reddien (1984, 1989,
1996), where superconvergence results for general projection methods are
obtained for classes of bifurcation points, called generalized turning points.
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Finally, we do not address the question of spurious solutions in numerical
approximations. The accepted wisdom is that after mesh refinement spu-
rious solutions move away and physical solutions remain. There is little in
the literature on this topic (but see Brezzi et al. (1984), Beyn and Doedel
(1981) and Beyn and Lorenz (1982)).

5. Application to the Navier–Stokes equations

Here we apply the theory in Section 4.1 to the approximation of a fold
point in the Navier–Stokes equations. In this section we consider the ap-
proximation of bifurcation points of the steady compressible Navier–Stokes
equations discretized by the mixed finite element method (in the following
section we present numerical results obtained using Q2 −P1 elements (Sani,
Gresho, Lee and Griffiths 1981)). A general convergence theory at a fold
point for a mixed finite element method is discussed by Li et al. (1986) based
on the theory in Brezzi et al. (1981a), though a superconvergence result is
not presented. Here we go through in some detail the convergence theory
for a fold point and give a superconvergence result.

5.1. Function spaces and norms

We introduce the usual Sobolev spaces. Let Lp(Ω) be the space of Lebesgue-
measurable, real-valued functions f defined on Ω such that

‖f‖Lp(Ω) =

∫

Ω
|f |p <∞,

where 1 ≤ p <∞ and

L2
0(Ω) =

{
v ∈ L2(Ω) :

∫

Ω
v = 0

}
.

Let a = (a1, . . . , aN ) ∈ N
N and

|a| =
N∑

i=1

ai.

For v ∈ Lp(Ω), let

∂av =
∂|a|v

∂a1x1, . . . , ∂aNxN

denote the weak derivative of v of order a.
For each integer m ≥ 0, the Sobolev spaces Wm,p(Ω) are defined by

Wm,p(Ω) = {v ∈ Lp(Ω) : ∂av ∈ Lp(Ω)∀|a| ≤ m} ,
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with the following norm:

‖v‖Wm,p(Ω) =



∑

|a|≤m

∫

Ω
|∂av|p




1/p

.

The space Wm,p(Ω) is also provided with the semi-norm

|v|Wm,p(Ω) =



∑

|a|=m

∫

Ω
|∂av|p




1/p

.

When p = 2, Wm,p(Ω) is denoted by Hm(Ω). Hm(Ω) is a Hilbert space with
the scalar product

(u, v)Hm(Ω) =
∑

|a|≤m

∫

Ω
∂au ∂av.

As usual, Wm,p
0 (Ω) denotes the closure of the space of smooth functions

with compact support in Ω, with respect to the norm ‖ · ‖Wm,p(Ω).

For 1 ≤ p <∞, the dual space of Wm,p
0 (Ω) is denoted by W−m,p′(Ω) with

norm defined by

‖f‖W−m,p′ (Ω) = sup
v∈Wm,p

0 (Ω),v 6=0

〈f, v〉

‖v‖Wm,p(Ω)
,

where p′ is given by

1/p+ 1/p′ = 1,

and 〈·, ·〉 denotes the duality pairing between Wm,p
0 (Ω) and W−m,p′(Ω).

Let m ≥ 0 be an integer and s and p be two real numbers such that
1 ≤ p <∞ and s = m+σ with 0 < σ < 1. Then W s,p(Ω) denotes the space
of functions, v, such that

v ∈Wm,p(Ω),

and ∫

Ω

∫

Ω

|∂av(x) − ∂av(y)|p

|x− y|N+σp
dxdy < +∞ ∀|a| = m.

W s,p(Ω)is a Banach space with the norm

‖v‖W s,p(Ω) =



‖v‖pWm,p(Ω) +

∑

|a|=m

∫

Ω

∫

Ω

|∂av(x) − ∂av(y)|p

|x− y|N+σp
dxdy





1/p

.

5.2. Navier–Stokes equations

The Navier–Stokes equations govern the flow of viscous, incompressible flu-
ids. The derivation of the equations may be found in a number of classical
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text books on fluid mechanics. See, for example, Landau and Lifshitz (1966),
Batchelor (1970) or Chorin and Marsden (1979).

Consider a domain Ω that is an open, bounded subset of R
N with N = 2

or 3. The boundary of Ω is denoted by Γ. For the present purposes it is
sufficient to assume that Γ is Lipschitz-continuous. For the precise definition
of a Lipschitz-continuous boundary see Grisvard (1985). We say that the
domain Ω is Lipschitz-continuous if it has a Lipschitz-continuous boundary.
Lipschitz-continuous domains may have sharp corners, but domains with
cuts or cusps are excluded. Many, but not all, of the domains encountered in
modelling fluid flows are Lipschitz-continuous. Examples of flows in domains
that are not Lipschitz-continuous include the flow over a thin plate, or the
flow past a sphere or cylinder resting on a plane. All the flows considered
in this review occur in Lipschitz-continuous domains.

The steady Navier–Stokes equations for flow in the domain Ω may be
written in the form

Ru · ∇u + ∇p−∇2u = f in Ω, (5.1)

together with the continuity equation (or incompressibility constraint)

∇ · u = 0 in Ω, (5.2)

and the boundary conditions

u = g on Γ, (5.3)

where u denotes the velocity field, p the pressure, f the body force per unit
mass acting on the fluid and R is the Reynolds number. All the quanti-
ties are assumed to have been nondimensionalized using suitable length and
time-scales. The body force, f , is assumed to be in H−1(Ω)N and the pre-
scribed boundary velocity, g, is assumed to be in H1/2(Γ)N and to satisfy
the compatibility condition

∫

Γ
g · n = 0, (5.4)

where n is the outward pointing normal on Γ.
Consider the weak form of the Navier–Stokes equations, that is, find a

pair (u, p) ∈ H1(Ω)N × L2
0(Ω) that satisfies

∫

Ω
R(u · ∇u) · v − p∇ · v + ∇u : ∇v = 〈f ,v〉, ∀v ∈ H1

0 (Ω)N , (5.5)

∇ · u = 0, in Ω, (5.6)

u = g, on Γ. (5.7)

(Here, : denotes the standard double contraction of two matrices or two
rank 2 tensors, so that ∇u : ∇v =

∑3
i,j=1

∂ui

∂xj

∂vi

∂xj
.)

The following theorem states that there is always at least one solution to
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the steady-state Navier–Stokes equations, and, further, that if the Reynolds
number is sufficiently small, the solution is unique.

Theorem 5.1. (See, e.g., Girault and Raviart (1986).) Let N ≤ 3 and
let Ω be a bounded domain in R

N with a Lipschitz-continuous boundary Γ.

Given f ∈ H−1(Ω)N and g ∈ H
1
2 (Γ)N , satisfying the condition (5.4), there

exists at least one pair (u, p) ∈ H1(Ω)N × L2
0(Ω) that satisfies (5.5), (5.6)

and (5.7).

Theorem 5.2. (See, e.g., Girault and Raviart (1986).) Assume that the
conditions of Theorem 5.1 hold. Then there is a positive number R0 de-
pending on Ω, f and g, such that if R < R0 the solution to (5.5), (5.6) and
(5.7) is unique.

5.3. Stokes equations

The Stokes equations, which are obtained from the Navier–Stokes equations
by removing the nonlinear term, are given by

∇p−∇2u = f in Ω, (5.8)

together with the continuity equation (or incompressibility constraint)

∇ · u = r in Ω, (5.9)

and the boundary conditions

u = g on Γ,

where u, p and f are as for the Navier–Stokes equations and r ∈ L2(Ω)
is the mass source term. For most practical flows there will be no mass
source term. However, this term is need for the later results on the Navier–
Stokes equations and so is retained here. The compatibility condition on
the boundary velocity now becomes

∫

Γ
g · n =

∫

Ω
r. (5.10)

The compatibility condition (5.4) must also hold for the Stokes problem.
The Stokes problem has a unique solution inH1

0 (Ω)N×L2
0(Ω) (Girault and

Raviart 1986, Theorem 5.1, p. 80). From now on, for the sake of simplicity,
we concentrate on problems with homogeneous boundary conditions so that
g = 0.

We now consider approximate solutions to the Stokes problem. To do
this we introduce finite element spaces Xh ⊂ H1

0 (Ω) and Mh ⊂ L2
0(Ω),

where Mh contains the constant functions. The approximate form of the
Stokes problem is as follows.
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Find a pair (uh, ph) ∈ Xh ×Mh such that
∫

Ω
∇uh : ∇vh − ph∇ · vh = 〈f ,vh〉, ∀vh ∈ Xh, (5.11)

−

∫

Ω
qh∇ · uh =

∫

Ω
rqh, ∀qh ∈Mh. (5.12)

It is assumed that the finite element spaces satisfy the following three
hypotheses (Girault and Raviart 1986, p. 125).

Hypothesis 5.1. (Approximation property of Xh) There exists an
operator Πh,u ∈ L((H2(Ω) ∩H1

0 (Ω))N ;Xh) and an integer l such that

‖v − Πh,uv‖1,Ω ≤ Chm‖v‖m+1,Ω ∀v ∈ Hm+1(Ω), 0 ≤ m ≤ l. (5.13)

Here l depends on the finite element method being used and m on the
smoothness of the solution to the problem.

Hypothesis 5.2. (Approximation property of Mh) There exists an
operator Πh,p ∈ L(L2(Ω);Mh) and an integer l such that

‖q − Πh,pq‖0,Ω ≤ Chm‖q‖m,Ω ∀q ∈ Hm(Ω), 0 ≤ m ≤ l. (5.14)

Hypothesis 5.3. (Uniform inf-sup condition) For each qh ∈Mh,
there exists a vh ∈ Xh such that

∫

Ω
qh∇ · vh = ‖qh‖

2
0,Ω, (5.15)

|vh|1,Ω ≤ C‖qh‖0,Ω, (5.16)

with a constant C > 0 independent of h, qh and vh.

The calculations presented in Section 6 were carried out using the Q2−P1

element (Fortin 1993) which satisfies (5.16), and for which l = 2. Thus for
sufficiently smooth v and q we have

‖v − Πh,uv‖1,Ω ≤ Ch2‖v‖3,Ω , ‖q − Πh,pq‖0,Ω ≤ Ch2‖q‖2,Ω. (5.17)

The following theorem establishes the convergence of the finite element
method for the Stokes problem.

Theorem 5.3. (Girault and Raviart 1986) Under Hypotheses 5.1, 5.2
and 5.3, equations (5.11) and (5.12) have a unique solution (uh, ph). In ad-
dition, (uh, ph) tends to the solution (u, p) of equations (5.8) and (5.9)

lim
h→0

{|uh − u|1,Ω + ‖ph − p‖0,Ω} = 0. (5.18)

Furthermore, when (u, p) belongs to Hm+1(Ω) × (Hm(Ω) ∩ L2
0(Ω)) for

some integer m with 1 ≤ m ≤ l, the following error bound holds:

|uh − u|1,Ω + ‖ph − p‖0,Ω ≤ Chm{‖u‖m+1,Ω + ‖p‖m,Ω}. (5.19)
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We now introduce the Stokes operator T̄ which is defined as a map from
H−1(Ω)N × L2

0(Ω) to H1
0 (Ω)N × L2

0(Ω) by

T̄ (f , r) = (u, p), (5.20)

where
∫

Ω
∇u : ∇v − p∇ · v − q∇ · u

=

∫

Ω
f · v + rq, ∀(v, q) ∈ H1

0 (Ω)N × L2
0(Ω). (5.21)

The approximate Stokes operator T̄h is defined as a map from H−1(Ω) ×
L2

0(Ω) to Xh ×Mh by

T̄h(f , r) = (uh, ph), (5.22)

where
∫

Ω
∇uh : ∇vh − ph∇ · vh − qh∇ · uh

=

∫

Ω
f · vh + rqh, ∀(vh, qh) ∈ Xh ×Mh. (5.23)

Theorem 5.3 implies that

lim
h→0

‖(T̄− T̄h)(f , r)‖H1
0 (Ω)N×L2

0(Ω) = 0, ∀(f , r) ∈ H−1(Ω)N×L2
0(Ω). (5.24)

5.4. Convergence theory for the Navier–Stokes equations

We now consider the behaviour of the nonlinear terms in the Navier–Stokes
equations. Our aim is to write these equations in a form to which we can
apply the theory of Brezzi, Rappaz and Raviart. The basic idea is to write
the Navier–Stokes equations so that the linearized equations take the form
of a compact perturbation of the identity. The reason for doing this is so
that the Fredholm alternative can be applied and the infinite-dimensional
system behaves like a finite-dimensional system at a simple singular point.
We will also see that the theory of Brezzi, Rappaz and Raviart allows us
to analyse the behaviour of approximations to the Navier–Stokes equations
at bifurcation points using the theory of the approximation of the Stokes
problem. Since we are considering a mixed finite element approach to the
discretization of the Navier–Stokes equations, the results for the Galerkin
approximation described in Section 4 are not directly applicable.

We define the map G : H1
0 (Ω)N × R 7→ L

3
2 (Ω)N by

G(u, R) = Ru · ∇u − f , (5.25)

where we now assume that f ∈ L
3
2 (Ω)N . The following lemmas hold.
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Lemma 5.1. G is a bounded operator on all bounded subsets of H1
0 (Ω)N .

Lemma 5.2. The Navier–Stokes equations may be written in the form

(u, p) + TG(u, R) = 0. (5.26)

Here T is the restriction of T̄ to L
3
2 (Ω)N × 0. Furthermore, since L

3
2 (Ω)N

is compactly embedded in H−1(Ω)N it follows from (5.24) that

lim
h→0

‖T − Th‖ = 0, (5.27)

where the norm is taken to be the norm on L(L
3
2 (Ω)N ;H1

0 (Ω)N × L2
0(Ω)).

Suppose (u0, R0) is a solution of the Navier–Stokes equations at which
there is a simple limit point. This means that the linearized Navier–Stokes
equations have a simple zero eigenvalue, so that there exists (ξ0, π0) ∈
H1

0 (Ω)N × L2
0(Ω) such that

(ξ0, π0) + T ·DG0 · ξ0 = 0, ‖ξ0‖1,Ω + ‖π0‖0,Ω = 1. (5.28)

By compactness and the Fredholm alternative, there exists (η0
′, ρ0

′) ∈
H−1(Ω)N × L2

0(Ω) such that

[I + T ·DG0]′(η0
′, ρ0

′) = 0, (5.29)

where [I + T ·DG0]′ denotes the adjoint operator of I + T ·DG0, and
∫

Ω
ξ0 · η0

′ + π0ρ0
′ = 1. (5.30)

Setting

(η0, ρ0) = T̄ (η0
′, ρ0

′), (5.31)

it is easy to check that (η0, ρ0) ∈ H1
0 (Ω)N ×L2

0(Ω) is the eigenvector for the
adjoint variationally posed eigenproblem and satisfies
∫

Ω
∇η0 : ∇v − ρ0∇ · v − q∇ · η0

+

∫

Ω
(u0 · ∇v + v · ∇u0) · η0 = 0, ∀(v, q) ∈ H1

0 (Ω)N × L2
0(Ω). (5.32)

Now we can apply the results from Section 4 to the Navier–Stokes equa-
tions.

Theorem 5.4. Assume that the Navier–Stokes equations have a simple
fold point at (u0, p0, R0) and that a mixed finite element method satisfying
Hypotheses 5.1, 5.2 and 5.3 is used to discretize the equations. Assume
further that the solution branch in the neighbourhood of (u0, p0, R0) lies in
Hm+1(Ω)N × (Hm(Ω) ∩ L2

0(Ω)) × R, and is parametrized by α. Then, for h
sufficiently small, we obtain the following properties.
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(i) The solution branch is of class C∞ with respect to α and the following
error estimate holds:

‖uh(α) − u(α)‖1,Ω + ‖ph − p‖0,Ω + |Rh(α) −R(α)|

≤ Chm{‖u(α)‖m+1,Ω + ‖p(α)‖m,Ω} (5.33)

with similar estimates for the approximation of the derivatives.

(ii) If, in addition, the fold point is quadratic, then the discrete problem
has a quadratic fold point, (uh

0, ph
0, Rh

0) say, and the following error
estimate holds:

‖uh
0 − u0‖1,Ω + ‖ph

0 − p0‖0,Ω + |Rh
0 −R0|

≤ Chm
1∑

k=0

{
‖u0(k)

‖m+1,Ω + ‖p0(k)
‖m,Ω

}
. (5.34)

(iii) Furthermore,

|Rh
0 −R0| ≤ C1h

2m
1∑

k=0

{
‖u0(k)

‖m+1,Ω + ‖p0(k)
‖m,Ω

}

+ C2h
m{‖u0‖m+1,Ω + ‖p0‖m,Ω} ×{

inf
ηh∈Xh

‖η0 − ηh‖1,Ω + inf
ρh∈Mh

‖ρ0 − ρh‖0,Ω

}
, (5.35)

where (η0, ρ0) is the eigenvector for the variationally posed adjoint
eigenproblem (5.32).

Proof. (i) Define (û
(k)
h (α), p̂

(k)
h (α)) by

(û
(k)
h (α), p̂

(k)
h (α)) = −Th

dk

dαk
G(u(α), R(α)). (5.36)

Clearly, since T does not depend on α,

(u(k)(α), p(k)(α)) = −T
dk

dαk
G(u(α), R(α)). (5.37)

This gives

‖(T − Th)
dk

dαk
G(u(α), R(α))‖

= ‖û
(k)
h (α) − u(k)(α)‖1,Ω + ‖p̂

(k)
h (α) − p(k)(α)‖0,Ω. (5.38)

The result now follows directly from Theorems 4.2 and 5.3.

(ii) Essentially the same as for part (i).

(iii) This result follows from Theorem 4.2(iii). We need to estimate
∣∣∣
∫

Ω
(T − Th)G

0 · (η0
′, ρ0

′)
∣∣∣ (5.39)
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and

‖[(T − Th) ·DG
0]′ · (η0

′, ρ0
′)‖H−1(Ω)N×L2

0(Ω). (5.40)

Let

(u, p) = TG0, (5.41)

(ûh, p̂h) = ThG
0. (5.42)

Then
∣∣∣
∫

Ω
(T − Th)G

0 · (η0
′, ρ0

′)
∣∣∣

=
∣∣∣
∫

Ω
∇(u − ûh) : ∇η0 − (p− p̂h)∇ · η0 − ρ0∇ · (u − ûh)

∣∣∣ (5.43)

=
∣∣∣
∫

Ω
∇(u − ûh) : ∇(η0 − ηh) − (p− p̂h)∇ · (η0 − ηh)

−(ρ0 − ρh)∇ · (u − ûh)
∣∣∣ (5.44)

≤ {|u − ûh|1,Ω + ‖p− p̂h‖0,Ω} {|η0 − ηh|1,Ω + ‖ρ0 − ρh‖0,Ω} . (5.45)

By definition,

‖[(T − Th) ·DG
0]′ · (η0

′, ρ0
′)‖H−1(Ω)N×L2

0(Ω) =

sup
v∈H1

0 (Ω)N

‖v‖
H1

0
(Ω)N

=1

∣∣∣
∫

Ω
(T − Th)DG

0v · (η0
′, ρ0

′)
∣∣∣, (5.46)

which can be estimated using a technique similar to that used in the first
part of the proof. ✷

Numerical results illustrating the superconvergence at a quadratic fold
point are given in the next section. We have gone into considerable detail
in the fold point case, but this theory can also be applied to symmetry
breaking bifurcation points and, provided the discrete equations possess a
Z2-symmetry, they will have a symmetry breaking bifurcation point close
to the bifurcation point in the continuous problem (see Brezzi et al. (1981b)
and Theorem 4.3). Both branches in the neighbourhood of the symmetry
breaking bifurcation point can be approximated to the same order of accu-
racy as for the fold point, and the parameter value at the bifurcation point
exhibits the same superconvergent behaviour as in the case of the fold point.
Numerical results illustrating this are given in the next section.

6. Demonstration of superconvergence results

Three nontrivial flows are used to illustrate the superconvergence results
developed in the previous section, at a Z2-symmetry breaking bifurcation
point, at a quadratic fold point and at a Hopf bifurcation point. In all three
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cases, the primitive variable formulation of the incompressible 2D Navier–
Stokes equations was discretized and solved using the Galerkin finite element
method. The isoperimetric quadrilateral Q2 − P1 elements introduced in
Sani et al. (1981) were used in all computations. This element is widely
recognized as being the most accurate element to use for two-dimensional
calculation (see Section 3.13.2 of Gresho and Sani (1998)). In this case, for
sufficiently smooth functions u and p one expects

‖u − Πh,uu‖ ≤ Ch2‖u‖3,Ω and ‖p− Πh,pp‖0,Ω ≤ Ch2‖p‖2,Ω

(see Hypotheses 5.1 and 5.2 in the previous section) and O(h4) supercon-
vergence for eigenvalues and bifurcation parameters.

6.1. Flow in a symmetric smoothly expanding channel

The flow of a Newtonian fluid in a two-dimensional channel with a sudden
symmetric expansion is a conceptually simple example in which symmetry
breaking plays a key rôle in the hydrodynamic stability problem at mod-
erate Reynolds number. As such it has attracted considerable attention,
and examples of recent numerical work include Drikakis (1997), Alleborn,
Nandakumar, Raszillier and Durst (1997) and Battaglia, Tavener, Kulkarni
and Merkle (1997). For small flow rates the flow is symmetric about the
midchannel, and two equally sized recirculating eddies exist downstream of
the expansion. In the laboratory, above a critical Reynolds number the
flow remains steady, but one of the eddies (the left-hand, say) is seen to be
clearly larger than the other, and the flow is therefore asymmetric about
the midplane. A second steady flow, in which the right-hand eddy is the
larger of the two, can also be observed but cannot be obtained by a gradual
increase in flow rate. Instead, it must be established by suddenly starting
the flow in the apparatus. Using the extended system technique described
in Werner and Spence (1984), Fearn, Mullin and Cliffe (1990) located the
Z2-symmetry breaking bifurcation point responsible for this phenomenon in
a channel with a 1 to 3 symmetric expansion, convincingly supporting their
laboratory experiments.

We examine the flow in a 2D channel with a smooth 1 to 3 expansion in
order to avoid the complications associated with the two concave corners in
the more usual flow domain. Our expansion is a cubic polynomial chosen so
that the sides of the channel have continuous first derivatives. Figure 6 is a
plot of the streamlines of the symmetric flow at a Reynolds number of 30,
below the critical value at which the symmetry breaking bifurcation point
exists. The Reynolds number is based on the inlet width and the mean flow
rate.

Beyond the critical Reynolds number the symmetric solution is unstable
to antisymmetric disturbances. Figure 7 shows a plot of the streamlines
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Fig. 6. Stable symmetric flow at Re = 30

Fig. 7. Stable asymmetric flow at Re = 40

of the flow along one of the asymmetric branches at a Reynolds number
of 40. The streamlines along the other asymmetric branch can be obtained
by reflection about the midchannel.

A bifurcation diagram using the cross-stream velocity at a point on the
centreline near the beginning of the expansion as a measure of the asym-
metry of the flow, is given in Figure 8. It shows a pitchfork bifurcation
with a critical Reynolds number near 33. Stable and unstable branches are
indicated by ‘s’ and ‘u’ respectively. The streamlines in Figures 6 and 7
correspond to points A and B in Figure 8, respectively.

Our best estimate of the critical Reynolds number Re⋆sbbp is
33.557505814927, for reasons that will be discussed later. We computed
the symmetric flow at Re⋆sbbp on five geometrically similar meshes and used
inverse iteration to determine the eigenvalue of the Jacobian matrix restric-
ted to the antisymmetric subspace that lies closest to the origin. The first
column in Table 1 indicates the number of quadrilateral elements on half of
the flow domain on which the computations were performed. The eigenvalue
nearest the origin converges towards zero as the mesh is refined, making it
easy to determine the convergence rate by evaluating the ratio of the small-
est eigenvalues on meshes with N and 4N elements. This ratio is clearly
approaching 16 and the convergence rate is therefore approaching h4. This
is consistent with the last result in Theorem 4.5, namely that |λ0

h − λ0| is
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Fig. 8. Bifurcation diagram for the symmetric smooth expansion

proportional to the eigenvalue of smallest modulus, which, as indicated in
the remark after Theorem 4.5, should tend to zero with rate O(h4).

The critical Reynolds numbers at the symmetry breaking bifurcation
points computed on six geometrically similar meshes are listed in Table 2.
The first column again indicates the number of quadrilateral elements on
half of the flow domain on which the computations were performed. The
third and fourth columns give the change in critical Reynolds number from
one mesh to the next finest and the ratio of these increments respectively.

Table 1. Convergence of the eigenvalue closest to
the origin at the symmetry breaking bifurcation
point with mesh refinement

No. of elements Smallest eigenvalue Ratio

32 –2.3426E-07
128 –2.9898E-04 anomalous
512 –3.1113E-05 9.6

2048 –2.2912E-06 13.6
8192 –1.5600E-07 14.7

32768 –1.0177E-08 15.3



Numerical analysis of bifurcation problems 89

The convergence rate of the critical Reynolds number based on the final
two mesh halvings is h4.00, where h is a measure of the mesh size, which
is the superconvergent rate expected from the result of Theorem 4.3. Ex-
trapolating the values computed on the finest two meshes assuming an h4

convergence rate gives Re⋆sbbp = 33.557505814927 as our best estimate of the
converged value of the critical Reynolds number.

6.2. Flow in a non-symmetric smoothly expanding channel

A closely related asymmetric problem was constructed by stretching the
domain below the ‘centreline’ of the symmetric channel in the previous ex-
ample by 10 per cent. The pitchfork bifurcation in the symmetric problem
is thereby disconnected. One of the asymmetric branches, the ‘primary’
branch, is continuously connected to the small Reynolds number flow, while
the other asymmetric flow occurs as a disconnected ‘secondary’ flow. The
lower limit of stability of the secondary flow occurs at a quadratic limit
point.

The cross-stream velocity at the same point along the centreline that was
used to construct Figure 8 was used to produce the corresponding bifurca-
tion diagram for the asymmetric smooth expansion which is given in Fig-
ure 9. The pitchfork has been disconnected and there is a fold at a Reynolds
number near 39.

The critical Reynolds numbers at the limit points computed on six geo-
metrically similar meshes are listed in Table 3. The first column indicates
the number of quadrilateral elements on the entire flow domain. This com-
putation cannot be performed on half of the domain since the flow at the
limit point is asymmetric. The third and fourth columns give the change in
critical Reynolds number from one mesh to the next finest and the ratio of
these increments respectively.

Table 2. Convergence of the symmetry breaking bifurcation points
with mesh refinement

N Resbbp(N) Resbbp(N) − Resbbp(4N)
Resbbp(N/4)−Resbbp(N)
Resbbp(N)−Resbbp(4N)

32 33.55741732 0.06344998
128 33.49396734 –0.05874498 –1.08
512 33.55271231 –0.00449556 13.07

2048 33.55720788 –0.00027932 16.09
8192 33.55748719 –0.00001746 16.00

32768 33.55750465
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Fig. 9. Bifurcation diagram for the asymmetric smooth expansion

The convergence rate of the critical Reynolds number based on the final
two mesh halvings is h4.09, where h is a measure of the mesh size. This value
is very close to the super-convergent rate predicted in Theorems 4.1, 4.2 and
5.4. Extrapolating the values computed on the finest two meshes assuming
an h4 convergence rate gives Re⋆fold = 38.740407816531 as our best estimate
of the converged value of the critical Reynolds number.

Table 3. Convergence of the quadratic fold points with
mesh refinement

N Re fold(N) Re fold(N) − Re fold(4N) Refold(N/4)−Refold(N)
Refold(N)−Refold(4N)

64 39.38265205 0.69629546
256 38.68635659 –0.04692872 –14.84

1024 38.73328531 –0.00663299 7.07
4096 38.73991830 –0.00046072 14.40

16384 38.74037902 –0.00002699 17.07
65536 38.74040674
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6.3. Flow past a cylinder in a channel

The flow past a bluff body and the appearance of a Karman vortex street
above a large enough Reynolds number is a classical problem in hydro-
dynamic stability and has been studied using a large number of different
experimental, analytical and numerical approaches. As just one example,
Jackson (1987) considered the 2D flow past a cylinder in an unbounded do-
main and computed the location of the Hopf bifurcation point where the low
Reynolds number steady symmetric flow loses stability to a time-dependent
flow. We choose to locate the cylinder along the centreline of a 2D channel
so that the lateral boundary conditions are well determined. The symmet-
ric flow that exists for low flow rates loses stability at a Hopf bifurcation
point whose critical Reynolds number and angular frequency depend upon
the blockage ratio, that is, the ratio of the cylinder diameter to channel
width. (See Chen, Pritchard and Tavener (1995) for a full description of
the problem.) For a blockage ratio of 0.3, the critical Reynolds number and
angular frequency at the Hopf bifurcation computed on three geometrically
similar meshes are listed in Table 4. Due to the complicated nature of both
the neutrally stable, steady symmetric flow and the null eigenvector, a large
number of elements are required before the asymptotic convergence rate is
observed.

We assume that, for each of the three computations reported in Table 4.

(ReHopf)i − (ReHopf)
⋆ = Ahpi i = 1, 2, 3,

(ωHopf)i − (ωHopf)
⋆ = Bhqi , i = 1, 2, 3,

where hi is a measure of the discretization. Solving for the unknowns
(ReHopf)

⋆, (ωHopf)
⋆, A,B, p and q, we find p = 3.89 and q = 4.53, indi-

cating the expected superconvergence in both these quantities, as predicted
by Lemma 4.1

Table 4. Convergence of the Hopf bifurcation
points with mesh refinement

No. of elements ReHopf ωHopf

10368 10.47482559098 3.443201635738
15552 10.47913658919 3.445954684625
20736 10.47989122928 3.446334713924
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7. Numerical implementation

In this section we discuss numerical techniques for the computation of paths
of regular solutions, singular points and the paths of singular points. We
shall describe the techniques used to produce the numerical solutions of
the Taylor–Couette problem described in Section 8. We shall also describe
briefly in Section 7.5 the alternative approach of minimal extended systems
using bordered matrices.

Consider the nonlinear system

F (x, λ) = 0 x ∈ R
N , λ ∈ R, (7.1)

where we assume F has been obtained by the discretization of a nonlinear
PDE. (To avoid cumbersome notation we change from the form Fh(xh, λ) =
0 used in Section 4, which is more suited to convergence analysis.)

7.1. Computation of solution paths

Here we give a brief account of the main ideas in a simple continuation al-
gorithm. This is based on Keller’s pseudo-arclength method (Keller 1977,
1987). There are many continuation methods and several packages are avail-
able free. We refer the reader to the review article on continuation and path
following by Allgower and Georg (1993) which contains an extensive listing
of the software available in 1992.

As in Section 3 we denote the solution set of (7.1) by

S := {(x, λ) ∈ R
N+1 : F (x, λ) = 0}. (7.2)

Often in applications one is interested in computing the whole set S or a
continuous portion of it, but in practice S is computed by finding a discrete
set of points on S and then using some graphics package to interpolate. So
the basic numerical question to consider is: Given a point (x0, λ0) ∈ S how
would we compute a nearby point on S? Throughout we use the notation
F 0 = F (x0, λ0), F

0
x = Fx(x0, λ0), etc.

If F 0
x is nonsingular, then a simple strategy for computing a point of

S near (x0, λ0) is to choose a steplength ∆λ, set λ1 = λ0 + ∆λ and solve
F (x, λ1) = 0 by Newton’s method with starting guess x0. We know from the
IFT that this will work if ∆λ is sufficiently small. However, this method will
fail as a fold point is approached, and for this reason the pseudo-arclength
method was introduced in Keller (1977).

In this section we shall assume that there is an arc of S such that at all
points in the arc

Rank[Fx|Fλ] = N, (7.3)

and so any point in the arc is either a regular point or fold point of S. The
IFT implies that the arc is a smooth curve in R

N+1, and so there is a unique
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tangent direction at each point of the arc. Let t denote any parameter used
to describe the arc, that is, (x(t), λ(t)) ∈ S, with (x0, λ0) = (x(t0), λ(t0)) ∈
S, and denote the unit tangent at (x0, λ0) by τ 0 =

(
dx
dt (0), dλ

dt (0)
)
.

Since F (x(t), λ(t)) = 0, differentiating with respect to t gives

Fx(x(t), λ(t))
dx

dt
(t) + Fλ(x(t), λ(t))

dλ

dt
(t) = 0,

τ 0 ∈ Ker[F 0
x|F

0
λ
]. (7.4)

Suppose now that τ 0 = [cT , d]T . We use this vector to devise an ex-
tended system which can be solved by Newton’s method without fail for a
point (x1, λ1) on S near (x0, λ0) for λ1 −λ0 small enough. The appropriate
extended system is

H(y, t) = 0 (7.5)

where y = (x, λ) ∈ R
N+1 and H : R

N+2 → R
N+1 is given by

H(y, t) =

[
F (x, λ)
cT (x− x0) + d(λ− λ0) − (t− t0)

]
. (7.6)

The last equation in system (7.6) is the equation of the plane perpendicular
to τ 0 a distance ∆t = (t− t0) from t0 (see Figure 10). So in (7.6) we in fact
implement a specific parametrization local to (x0, λ0), namely parametriza-
tion by the length of the projection of (x, λ) onto the tangent direction at
(x0, λ0).

With y0 = (x0, λ0), we have H(y0, t0) = 0 and

Hy(y0, t0) =

[
F 0
x F 0

λ

cT d

]
.

Since (cT , d)T is orthogonal to each of the rows of [F 0
x,F

0
λ
], the matrix

Hy(y0, t0) is nonsingular and so by the IFT there exist solutions of (7.6)
satisfying y = (xT , λ)T = (x(t)T , λ(t))T for t near t0. For t1 = t0 + ∆t and
∆t sufficiently small we know that F (y, t1) = 0 has a unique solution y =
y(t1) = (x1, λ1) and Hy(y(t1), t1) is nonsingular. Thus Newton’s method
will converge for sufficiently small ∆t. If we take as starting guess y0 =
y0 = (x0

T , λ0)
T , it is a straightforward exercise to show that (i) the first

Newton iterate is (x0, λ0)+∆t(c, d), that is, the first iterate ‘steps out’ along
the tangent, as one might expect, and (ii) all the Newton iterates lie in the
plane shown in Figure 10. Since length along the tangent at (x0, λ0) is used
as parameter this technique is called pseudo-arclength continuation (Keller
1977). In fact the arclength normalization given by the second equation in
(7.6) is usually altered to

θcT (x− x0) + (1 − θ)d(λ− λ0) − (t− t0) = 0 (7.7)

where θ is a weighting parameter, chosen to give more importance to λ
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when N is large. As a consequence the resulting continuation algorithm
moves round fold points more quickly. A different modification, but with
similar aims is discussed in Mittelmann (1986) where the scalar r = ‖x‖ is
used instead of x in (7.7).

For a discussion of the details of an efficient continuation algorithm, in-
cluding the solution of the bordered matrices that arise and step control
we refer the reader to Allgower and Georg (1993) and the references cited
therein. An introductory account is given in Spence and Graham (1999).
For our purposes it is sufficient to note that an efficient solution procedure
is needed for (N + 1)× (N + 1) systems with ‘bordered’ coefficient matrices
of the form

Hy(y, t) :=

[
Fx Fλ

cT d

]
. (7.8)

A common approach is to use a block Gaussian elimination algorithm
(see Keller (1977)). This works well if Fx is well conditioned, but near a
fold point it may fail to produce reliable results, as was discussed by Moore
(1987) and Govaerts (1991). An iterative refinement approach (see Govaerts
(1991)) works well in such cases.

7.2. Fold points: detection and computation

The theory for fold points is given in Section 3.1. If the fold is quadratic
then Theorem 3.1 has several important numerical implications. Assume S is
defined by (7.2) and that (7.3) holds. At an algebraically simple quadratic
fold point, an eigenvalue of the Jacobian Fx passes through zero, and so
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det(Fx) changes sign. Also, in the notation of Theorem 3.1, λt changes sign.
So a quadratic fold point can be detected by monitoring det(Fx) or λt along
the solution path (x(t), λ(t)). In fact, other tests are possible and this aspect
is discussed in Seydel (1994), Section 5.2.

Once located roughly a quadratic fold point may be computed in a number
of ways. We shall briefly describe its direct calculation using the extended
system

T (y) :=




F (x, λ)
Fx(x, λ)φ

lTφ− 1


 , y =



x

φ

λ


 ∈ R

2N+1 (7.9)

with l ∈ R
N \ {0}, since Theorem 3.1 shows that (x0,φ0, λ0) is a regular

point of (7.9) provided lTφ0 6= 0.
Let φ̃ be the approximation to φ with lT φ̃ = 1. Reordering the unknowns,

the Newton system for the correction (∆x,∆λ,∆φ) ∈ R
N+1 is




Fx Fλ O

Fxxφ̃ Fxλφ̃ Fx

0T 0 lT







∆x
∆λ
∆φ


 =



r1

r2

0


 , (7.10)

where O is theN×N zero matrix, and r1, r2 ∈ R
N . It is important to realize

that one need not solve this system directly. An efficient approach based
on solving four N -dimensional systems with the same coefficient matrix was
given in Moore and Spence (1980). Here we outline a slightly different
algorithm.

Introduce the new unknowns ∆x̂ ∈ R
N , ξ ∈ R defined by

∆x̂ := ∆x− ξφ̃, ξ := lT∆x (7.11)

and so the unknown ∆x̂ satisfies

lT∆x̂ = 0 (7.12)

since lT φ̃ = 1. Thus (7.10) becomes




Fx Fλ O Fxφ̃

lT 0 0T 0

Fxxφ̃ Fxλφ̃ Fx Fxxφ̃φ̃

0T 0 lT 0







∆x̂
∆λ
∆φ
ξ


 =




r1

0
r2

0


 . (7.13)

Note that, as φ̃ tends to the true null vector, the (1,4)-element tends to
the zero vector, and so the matrix becomes block lower triangular. One
could base a quasi-Newton method for solving (7.10) on this observation.
However, we take a different approach here. The matrix in (7.13) has the
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(nonstandard) block LU factorization
(
L11 0
L21 I

)(
I U12

0 U22

)
, (7.14)

where L11 and U22 are (N + 1) × (N + 1) matrices given by

L11 =

(
Fx Fλ

lT 0

)
, U22 =

(
Fx Fxxφ̃φ̃+ δ

lT 0

)

with δ ∈ R
N satisfying ‖δ‖ ≤ C‖Fxφ‖, for some constant C. Hence δ

tends to zero as the fold point is approached. Note that lTφ 6= 0, and at a
quadratic fold point F 0

λ
, F 0

xxφ
0φ0 /∈ Range(F 0

x). Thus Lemma 3.1 shows
that L11 and U22 are nonsingular at a quadratic fold point. Forward and
back substitution shows that the solution of (7.13) requires the solution of
2 systems with coefficient matrix L11, and 2 systems with coefficient matrix
U22. However, U22 differs from L11 only in the last column, and simple
manipulation converts a system with coefficient matrix U22 into a system
with coefficient matrix L11. One is left with a 2 × 2 system to solve for ∆λ
and ξ, from which ∆x and ∆φ are recovered. Overall the main work is the
solution of 4 systems with coefficient matrix L11. This is comparable to the
main work in the ‘minimal system’ approach in Section 7.5.

In a two-parameter problem F (x, λ, α) = 0 we may wish to compute a
path of quadratic fold points. To do this using the pseudo-arclength method
in Section 7.1 we require the solution of systems with the (2N+2)×(2N+2)
coefficient matrix




Fx Fλ O Fα

Fxxφ Fxλφ Fx Fxαφ

0T 0 lT 0
cT1 c2 cT3 d


 .

To do this, a block LU factorization is employed similar to that for the
quadratic fold point and an efficient algorithm requiring the solution of 6
linear systems all with coefficient matrix L11 can be derived. (The details
are left to the reader.)

The concept that the solution of the (2N + 1)× (2N + 1) linear Jacobian
system is accomplished using solutions of (N+1)×(N+1) systems has been
extended to many other situations: see, for example, the Hopf bifurcation
algorithms of Griewank and Reddien (1983) and Jepson (1981).

7.3. Z2-symmetry breaking bifurcations: detection and computation

Consider the Z2-symmetry breaking case. In the finite-dimensional setting
S is an N ×N matrix with

SF (x, λ) = F (Sx, λ), S2 = I, x ∈ R
N ,



Numerical analysis of bifurcation problems 97

and we may introduce symmetric and antisymmetric subspaces

R
N = R

N
s ⊕ R

N
a .

The theory is given in Section 3.4, where we see that, provided the non-
degeneracy condition B0 6= 0 holds (see Theorem 3.4), then a simple eigen-
value of the antisymmetric Jacobian Fx(xs(λ), λ)|

R
N
a

changes sign. Hence

det(Fx(xs(λ), λ)|
R

N
a

) changes sign, but Fx(xs(λ), λ)|
R

N
s

has no singularity.

In applications it is often the case that the Z2-symmetry is used to reduce
computational cost, so that to compute the path (xs(λ), λ) ∈ R

N
s × R one

forms only the symmetric Jacobian Fx(xs(λ), λ)|
R

N
s

. It is important to note

that in order to detect the symmetry breaking bifurcation one also needs
to form Fx(xs(λ), λ)|

R
N
a

, and then monitor the determinant or smallest

eigenvalue.
The computation of the Z2-symmetry breaking bifurcation using the ex-

tended system (3.39) is considerably easier than for a quadratic fold. If
(x0,φ0, λ0) ∈ R

N
s ×R

N
a ×R is an estimate of the bifurcation point, then one

step of Newton’s method applied to (3.39) produces a coefficient matrix




F
s
x O F s

λ

F a
xxφ0 F

a
x F a

xλ
φ0

0T lT 0




where F s
x denotes Fx(x0, λ0)|RN

s

, etc., and zsx ∈ R
N
s , z

a
φ ∈ R

N
a . Now, since

F
s
x is nonsingular, this matrix has the block LU factorization




F
s
x O 0

F a
xxφ0 I 0
0T 0T 1






I O −ws

O F
a
x F a

xxφ0ws + F 0
xλ
φ0

0T lT 0




where F s
xws + F s

λ
= 0. At the bifurcation point the matrix
[
F

a
x F a

xxφ0w
s + F a

xλ
φ0

lT 0

]
(7.15)

is nonsingular. (This is proved using Lemma 3.1, noting that B0 6= 0 (see
Theorem 3.4) and lTφ0 6= 0.) Standard forward and back substitution
produces the solution of the Newton system. The main work involves the
solution of two systems with coefficient matrix F s

x and two systems with
coefficient matrix (7.15).

The computation of paths of Z2-symmetry breaking bifurcation points in a
two-parameter problem F (x, λ, α) = 0 is accomplished in a similar manner.
The main work requires the solution of three systems with coefficient matrix
F

s
x and two systems with coefficient matrix (7.15).
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7.4. Hopf bifurcation: detection and computation

For the finite-dimensional problem (obtained perhaps after discretization
of an ODE/PDE) ẋ + F (x, λ) = 0, a Hopf bifurcation point may arise
on a branch of steady solutions when the Jacobian matrix has a pair of
pure imaginary eigenvalues (Theorem 3.5). This fact was used by Jepson
(1981) and Griewank and Reddien (1983) to compute Hopf bifurcations
using extended systems of the form

H(y) = 0, (7.16)

where

H(y) :=




F (x, λ)
Fx(x, λ)φ− ωψ

cTφ− 1
Fx(x, λ)ψ + ωφ

cTψ



, y :=




x

φ

λ
ψ

β




∈ R
3N+2 (7.17)

with H : R
3N+2 → R

3N+2. This is the real form of the extended system
(3.47) with V = R

N . Note that there are two conditions on the eigenvector
φ+iψ since a complex vector requires two real normalizations. Theorem 3.6
shows that under certain assumptions y0 = (x0

T , φ0
T , λ0, ψ0

T , ω0) ∈ R
3N+2

is a regular solution of (7.16).
Note that fold points also satisfy (7.16) since if (x0, λ0) is a fold point and

φ0 ∈ Ker(Fx(x0, λ0)) then y0 = (x0,φ0, λ0,0, 0) satisfies H(y0) = 0. In
fact y0 is a regular solution if the conditions of Theorem 3.1 hold.

Jepson (1981) and Griewank and Reddien (1983) showed that the lin-
earization of (7.16) could be reduced to solving systems with a bordered
form of F 2

x(x, λ) + β2I. This is natural since an alternative system for a
Hopf bifurcation can be derived by using the fact that the second and fourth
equations of (7.16) can be written as (Fx(x, λ)+β2I)v = 0 with v = φ or ψ.

To eliminate the possibility of computing a fold point rather than a Hopf
bifurcation point, Werner and Janovsky (1991) used the system

R(y) = 0, (7.18)

where

R(y) =




F (x, λ)
(F 2
x(x, λ) + νI)φ

cTφ

cTFx(x, λ)φ− 1


 , y =




x

φ

λ
ν


 ∈ R

2N+2 (7.19)

where R : R
2N+2 → R

2N+2, and where c is a constant vector. The last
equation in (7.18) ensures that the solution cannot be a fold point. The
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system R(y) = 0 is closely related to a system derived by Roose and
Hlavacek (1985), but (7.18) has several advantages when computing paths of
Hopf bifurcations if a second parameter is varying (see Werner and Janovsky
(1991)).

The extended systems in (7.16) and (7.18) can only be used when we know
we are near a Hopf point, and obtaining good starting values is difficult in
large systems. In fact the reliable and efficient detection of Hopf bifurcations
in large systems arising from discretized PDEs remains an important and
challenging problem.

When computing a path of steady solutions of ẋ + F (x, λ) = 0, using
a numerical continuation method it is easy to pass over a Hopf bifurcation
point without ‘noticing’ it, since when a complex pair of eigenvalues crosses
the imaginary axis there is no easy detection test based on the linear algebra
of the continuation method. In particular, the sign of the determinant of
Fx does not change. If N is small then the simplest test is merely to
compute all the eigenvalues of Fx during the continuation. For large N ,
say when F arises from a discretized PDE, such an approach will usually
be out of the question. The review article Garratt, Moore and Spence
(1991) discusses in detail both classical techniques from complex analysis
and linear algebra-based methods. It is natural to try to use classical ideas
from complex analysis for this problem since one then seeks an integer,
namely the number of eigenvalues in the unstable half-plane, and counting
algorithms are applicable. This is explored for large systems in Govaerts
and Spence (1996) but there is still work to be done in this area. A certain
bialternate product (see Guckenheimer, Myers and Sturmfels (1997) and
Govaerts (2000)) of Fx(x, λ) is singular at a Hopf bifurcation. This is a
very nice theoretical property, but the bialternate product is of dimension
N(N − 1)/2, and this is likely to limit its usefulness significantly when N is
large.

The leftmost eigenvalues of Fx(x, λ) determine the (linearized) stability
of the steady solutions of ẋ+F (x, λ) = 0 and one strategy for the detection
of Hopf bifurcation points is to monitor a few of the leftmost eigenvalues
as the path of steady state solutions is computed. (Note that the leftmost
eigenvalue is not a continuous function of λ: see Neubert (1993).) Standard
iterative methods, for instance Arnoldi’s method and simultaneous itera-
tion, compute extremal or dominant eigenvalues, and there is no guarantee
that the leftmost eigenvalue will be computed by direct application of these
methods to Fx. The approach in Christodoulou and Scriven (1988), Garratt
et al. (1991) and Cliffe, Garratt and Spence (1993) is first to transform the
eigenvalue problem using the generalized Cayley transform

C(A) = (A− α1I)
−1(A− α2I), α1, α2 ∈ R,

which has the key property that if µ 6= α1 is an eigenvalue of A then θ :=
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(µ − α1)
−1(µ − α2) is an eigenvalue of C(A). Also, Re(µ) ≤ (≥)(α1 +

α2)/2 if and only if |θ| ≤ (≥)1. Thus eigenvalues to the right of the line
Re(µ) = (α1 + α2)/2 are mapped outside the unit circle and eigenvalues to
the left of the line mapped inside the unit circle. In Garratt et al. (1991)
and Cliffe et al. (1993), algorithms based on computing dominant eigen-
values of C(Fx) using Arnoldi or simultaneous iteration are presented, with
consequent calculation of rightmost eigenvalues of Fx. These algorithms
were tested on a variety of problems, including systems arising from mixed
finite element discretizations of the Navier–Stokes equations. Quite large
problems can in fact be tackled. Indeed, in Gresho, Gartling, Torczynski,
Cliffe, Winters, Garratt, Spence and Goodrich (1993) the problem of the
stability of flow over a backward facing step is discussed in detail and the
rightmost eigenvalues of a system with over 3 × 105 degrees of freedom
are found using the generalized Cayley transform allied with simultaneous
iteration.

However, it was later noted (see Meerbergen, Spence and Roose (1994))
that

C(A) = I + (α1 − α2)(A− α1I)
−1

and so Arnoldi’s method applied to C(A) builds the same Krylov subspace
as Arnoldi’s method applied to the shift-invert transformation (A−α1I)

−1.
Thus, if Arnoldi’s method is the eigenvalue solver, it would appear that
there is no advantage in using the Cayley transform, which needs two pa-
rameters, over the standard shift-invert transformation (see Meerbergen et
al. (1994)). This is indeed the case if a direct method is used to solve the
systems with coefficient matrix (A− α1I). However, it turns out that if an
iterative method is used then the Cayley transform is superior to the shift-
invert transformation because the spectral condition number of the Cayley
transform can be more tightly bounded (see Meerbergen and Roose (1997),
Lehoucq and Meerbergen (1999) and Lehoucq and Salinger (1999)).

One can think of the approach in Cliffe et al. (1993) as the computation
of the subspace containing the eigenvectors corresponding to the rightmost
eigenvalues of Fx. A similar theme, derived using a completely different
approach, is described by Schroff and Keller (1993) and refined by Davidson
(1997). In these papers the subspace corresponding to a set of (say right-
most) eigenvalues is computed using a hybrid iterative process based on a
splitting technique. Roughly speaking, a small subspace is computed using
a Newton-type method and the solution in the larger complementary space
is found using a Picard (contraction mapping) approach. One advantage is
that the Jacobian matrix Fx need never be evaluated.

When using mixed finite element methods to solve the incompressible
Navier–Stokes equations a special block structure arises in the matrices due
to the discretization of the incompressibility condition. After linearization
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about a steady solution one obtains a generalized eigenvalue problem of the
form Aφ = µBφ where A and B have the block structure (see Cliffe et al.
(1993)),

A =

(
K C
CT 0

)
,

(
M 0
0 0

)
,

with K nonsymmetric, M symmetric positive definite, and C of full rank.
The shift invert transformation has the form (A− αB)−1B and the Cayley
transform, (A−α1B)−1(A−α2B). Though most of the linear algebra theory
for the transformations is unaltered, the fact that B is singular means that
there is a multiple eigenvalue at zero for the shift-invert transformation and
at one for the Cayley transform. Care is needed in the implementation of
numerical algorithms to ensure that these multiple eigenvalues do not give
spurious results (see Meerbergen and Spence (1997)).

Finally we note that Chapter 5 of Seydel (1994) contains an overview of
Hopf detection techniques.

7.5. Minimally extended systems

Griewank and Reddien (1984, 1989) (and with improvements Govaerts
(1995)) suggested an alternative way of calculating fold points (and other
higher-order singularities). This involves setting up a ‘minimal’ defining
system

T(y) =

[
F (x, λ)
g(x, λ)

]
= 0, y ∈ R

n+1, (7.20)

where g(x, λ) : R
n × R → R is implicitly defined through the equations

M(x, λ)

[
v(x, λ)
g(x, λ)

]
=

[
0
1

]
, (7.21)

and

(wT (x, λ), g(x, λ))M(x, λ) = (0T , 1), (7.22)

where

M(x, λ) =

[
Fx(x, λ) b

cT d

]
, (7.23)

for some b, c ∈ R
n, d ∈ R. (The fact that g(x, λ) is defined uniquely by both

(7.21) and (7.22) may be seen since both equations imply that g(x, λ) =
[M−1(x, λ)]n+1,n+1.) Note thatM(x, λ) is a bordering of Fx, as arises in the
numerical continuation method (Section 4). Assuming b, c, and d are chosen
so that M(x, λ) is nonsingular (see the ABCD Lemma 3.1) then g(x, λ) and
v(x, λ) in (7.21) are uniquely defined. (Note: if S is parametrized by t
near (x0, λ0), that is, (x(t), λ(t)) near t = t0, then v = v(x(t), λ(t)) and
g = g(x(t), λ(t)), and these functions may be differentiated with respect
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to t.) Also, if we apply Cramer’s rule in (7.21) we have (with M(x, λ)
nonsingular)

g(x, λ) = det(Fx(x, λ))/det(M(x, λ)), (7.24)

and so

g(x, λ) = 0 ⇐⇒ Fx(x, λ) is singular.

It is easily shown that quadratic fold points are regular solutions of (7.20).
To apply Newton’s method to (7.20), derivatives of g(x, λ) are required and
these can be found by differentiation of (7.21). When the details of an
efficient implementation of Newton’s method applied to (7.20) are worked
out then the main cost is two linear solves with M and one with MT . This
should be compared with the costs of computing a fold point using the
method described in Section 7.2. A nice summary of this approach is given
in Beyn (1991). A numerically convenient Lyapunov–Schmidt reduction
procedure can be accomplished using bordered systems (see, for example,
Janovsky (1987), Janovský and Plechác̆ (1992), Govaerts (1997)), and a
complete account is in the recent book by Govaerts (2000).

Finally, a difficulty that arises when implementing all types of extended
systems is that they require the evaluation of derivatives of the discretized
equations with respect to both the state variables and the parameters. The
higher the codimension of the singularity, the higher the order of the deriva-
tive required. Evaluating these derivatives is both tedious and error-prone.
An efficient method for computing the necessary derivatives for Galerkin
finite element discretizations which makes use of the symbolic manipulation
package REDUCE (Hearn 1987) is presented in Cliffe and Tavener (2000).

8. Taylor–Couette flow

The flow of a viscous incompressible fluid in the annular gap between two
concentric cylinders, commonly known as Taylor–Couette flow, has been in-
tensively studied for many decades and has served as an important vehicle
for developing ideas in hydrodynamic stability and bifurcation, and in tran-
sition to turbulence. The flow is most commonly driven by the rotation of
the inner cylinder with the top and bottom surfaces and outer cylinder held
stationary, and we will concentrate on this case exclusively. A number of
variants do exist in which the outer cylinder co-rotates or counter-rotates
with the inner cylinder (see, e.g., Andereck, Liu and Swinney (1986), Na-
gata (1986), Golubitsky and Stewart (1986), Iooss (1986)), or in which one
or both of the two ends rotate with the inner cylinder (see, e.g., Cliffe and
Mullin (1986) and Tavener, Mullin and Cliffe (1991), respectively), but we
will not consider them here.

In long Taylor–Couette devices, the flow at small rotation rates has no
obvious structure, as is illustrated by the photograph of a flow visualization
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experiment shown in Figure 11. Over the great majority of the length of
the cylinders the particle paths are essentially circles about the central axis,
although some small-scale, more complicated features always exist near the
ends of the apparatus. As the rotation rate of the inner cylinder is gradually
increased, a number of toroidally shaped ‘Taylor’ cells develop, which can be
readily observed using flow visualization techniques as shown in Figure 12.

When the cylinders are long, the onset of cellular flow apparently occurs
rapidly over a short range of Reynolds number, suggesting that they arise as
the result of a bifurcation. However, using laser Doppler measurements of
the radial velocities near the centre of the cylinders and also near one end,
Mullin and Kobine (1996) demonstrate that the rate at which cellular motion
develops depends strongly on how its presence or absence is determined.
For the boundary conditions discussed here, Taylor cells are steady and
axisymmetric when they first appear. The hydrodynamic problem for a
Newtonian fluid is given below:

R

(
ur
∂ur
∂r

+ uz
∂ur
∂z

−
u2
θ

(r + β)

)

+
∂p

∂r

−

(
1

(r + β)

∂

∂r

[
(r + β)

∂ur
∂r

]
+

1

Γ2

∂2ur
∂z2

−
ur

(r + β)2

)
= 0, (8.1)

R

(
ur
∂uθ
∂r

+ uz
∂uθ
∂z

+
uruθ

(r + β)

)

−

(
1

(r + β)

∂

∂r

[
(r + β)

∂uθ
∂r

]
+

1

Γ2

∂2uθ
∂z2

−
uθ

(r + β)2

)
= 0, (8.2)

R

(
ur
∂uz
∂r

+ uz
∂uz
∂z

)

+
1

Γ2

∂p

∂z

−

(
1

(r + β)

∂

∂r

[
(r + β)

∂uz
∂r

)

]
+

1

Γ2

∂2uz
∂z2

)
= 0, (8.3)

1

(r + β)

∂

∂r
[(r + β)ur] +

∂uz
∂z

= 0. (8.4)

The steady, axisymmetric Navier–Stokes equations have been nondimen-
sionalized using

r =
r⋆

d
− β, z =

z⋆

h
, u =

1

r1Ω

(
u⋆r , u

⋆
θ,
u⋆z
Γ

)
, p =

dp⋆

µr1Ω
,
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Fig. 11. Visualization of the flow in the
Taylor apparatus at a slow rotation rate.

(Thanks to T. Mullin)

Fig. 12. Visualization of the flow in the
Taylor apparatus at a larger rotation rate

for which cellular flows are observed.
(Thanks to T. Mullin)
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where d = r2 − r1, β = r1/d = η/(1 − η) and ⋆ denotes dimensional
quantities. Here r1 and r2 are the radii of the inner and outer cylinders,
respectively, h is the height of the cylinders and Ω is the rotation rate of
the inner cylinder. The three nondimensional parameters are the Reynolds
number, R = ρΩr1d/µ, aspect ratio, Γ = h/d and radius ratio, η = r2/r1,
where ρ is the density and µ is the molecular viscosity. Equations (8.1) to
(8.4) pertain in a region D = {(r, z), 0 ≤ r ≤ 1,−1/2 ≤ z ≤ 1/2}.

8.1. The infinite cylinder model

The earliest recorded experimental work is by Couette (1890) in which he
held the inner cylinder fixed and rotated the outer. Mallock (1896) repeated
Couette’s findings and also considered the case with a rotating inner cylin-
der and stationary outer cylinder. Rayleigh (1916) developed a stability
criterion for inviscid fluids and co-rotating cylinders, namely ω2r

2
2 > ω1r

2
1

to ensure stability (i.e., the angular momentum must increase radially), and
so explained the gross differences observed between Couette’s and Mallock’s
experiments.

The hugely influential work by Taylor (1923) compared laboratory exper-
iments with the results of a linear stability analysis. Taylor’s analysis was
based on the assumption that both cylinders were infinitely long. The first
advantage of this assumption is that it supports a simple exact solution for
all values of the Reynolds number. In this solution the axial and radial
velocities are zero and the azimuthal velocity is a function of the radius, r
only. Specifically v = Ar + B/r where A = (Ω2r

2
2 − Ω1r

2
1)/(r

2
2 − r21) and

B = (Ω1 − Ω2)r
2
1r

2
2/(r

2
2 − r21). Further, nearby solutions can be sought in

which the perturbation is periodic in the axial direction z, with the period
treated as a free parameter. The axially periodic disturbance that becomes
unstable at the lowest critical Reynolds number is assumed to be the one
that will occur in practice. Using this approach, Taylor was able for the first
time to obtain excellent agreement with experiment, both with respect to
the critical Reynolds number for the onset of Taylor cells, and with regard
to the axial wavelength of the cellular flow. Roberts (1965) has subsequently
tabulated the critical Reynolds numbers for a range of radius ratios. Synge
(1933) has extended Rayleigh’s result to viscous flows.

Taylor also recognized that the steady axisymmetric cellular flows that
are observed first on steadily increasing the rotation rate of the inner cylin-
der, themselves lose stability to an increasingly complicated series of time-
dependent flows as the rotation rate of the inner cylinder is further increased.
Much of the subsequent work on Taylor–Couette flow has concentrated on
ideas of transition to turbulence in this experimentally simple and (appar-
ently) theoretically accessible device. Reviews of much of the early work
are given by DiPrima and Swinney (1981) and Stuart (1986). For a more
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recent discussion of the complex time-dependent phenomena observed in the
Taylor–Couette system see Mullin (1995) and the references therein.

8.2. Finite cylinder models

Benjamin (1978), invoking a number of abstract results regarding the prop-
erties of viscous incompressible flows in arbitrary bounded domains D with
boundary ∂D (with v ·n = 0 on ∂D), departed from the established infinite
cylinder assumption. He sought to address the following three observations
that cannot be explained by the infinite cylinder model.

1. Cellular motion does not occur at a specific Reynolds number, but
cells develop near the top and bottom surfaces and spread inwards.
While this process may occur over a small range of rotation rates for
long cylinders, there is never an unambiguous critical Reynolds num-
ber. However, a simple ‘softening’ or disconnection of the bifurcation
in the infinite cylinder model is insufficient to explain the following
observations.

2. For a given length of cylinder, a unique flow exists upon a slow (quasi-
static) increase in the Reynolds number from zero. The number of cells
in this ‘primary’ flow is a function of the length of the cylinders. If 2N
cells develop for a certain length then (2N + 2) cells develop for some
greater length.

3. ‘Secondary’ cellular flows also exist. These flows differ from the primary
flow and cannot be obtained by a gradual increase in the Reynolds num-
ber, but are stable above a critical finite Reynolds number. Golubitsky
and Schaeffer (1983) show that when a pitchfork of revolution arising in
O(2)-symmetric problems is disconnected the secondary branches are
unstable.

Using results from the general existence theory for the Navier–Stokes equa-
tions, Leray–Schauder degree theory, and bifurcation theory, Benjamin pro-
posed the sequence of bifurcation diagrams shown in Figure 13 to explain
the process whereby the primary flow changes from a 2N -cell flow to a
(2N + 2)-cell flow as the aspect ratio is increased. The primary branch is
seen to develop hysteresis as the aspect ratio is varied. At a critical aspect
ratio, the folded primary and secondary branches connect at a transcritical
bifurcation point. As the aspect ratio is varied further, the transcritical
bifurcation point disconnects in the opposite manner and the formerly sec-
ondary branch is now continuously connected to the unique solution at small
Reynolds number.

Benjamin then examined the exchange of stability between primary two-
cell and four-cell flows in an annulus whose aspect ratio could be varied
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Fig. 13. Schematic sequence of bifurcation diagrams for the exchange between a
2N -cell primary flow and a (2N + 2)-cell flow with a continuous increase in the
aspect ratio. Stability and instability are indicated by ‘s’ and ‘u’ respectively

between 3.4 and 4.0, and observed the predicted folding of the primary two-
cell flow and the attendant hysteresis and (downward-facing) cusp-shaped
locus of fold points. Benjamin also observed ‘anomalous’ flows containing an
odd or an even number of cells, in which one or both of the end cells rotate
outwardly along one (or both) of the end walls. Such flows contradict the
usual argument based on Ekman boundary layers, which suggests that the
flow should always be inward along the stationary top and bottom surfaces.
Flows with outwardly spiralling flow along the end walls had never been
reported previously.

Since his arguments were based on properties in the abstract, Benjamin
contended that his ideas were relevant for cylinders of any length. Consider-
able subsequent experimental and numerical work supports his conjecture,
for example the experimental study of Lorenzon and Mullin (1985) which
compares stability properties of anomalous flows at aspect ratios 10 and 40.

The origin of even-celled anomalous modes was addressed by Schaeffer
(1980) who considered the exchange between 2N -cell and (2N+2)-cell flows
as the aspect ratio is varied. He constructed a model using a homotopy
parameter τ , to continuously connect flows with non-flux stress-free bound-
ary conditions (τ = 0) to those with realistic non-slip boundary conditions
(τ = 1). When τ = 0, an axially independent flow exists and pairs of cellular
flows can bifurcate from this ‘trivial’ flow. The cellular flows along each of
the two bifurcating branches differ by a translation of one-half wavelength.
These supercritical pitchfork bifurcations become disconnected for nonzero
τ . The ‘primary’ flow that is continuously connected to the flow at low
Reynolds number has normal (inward) flow along the top and bottom walls.
The flow with anomalous (outward) flow along the top and bottom walls
remains as a disconnected ‘secondary’ flow. Schaeffer’s model is strictly
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valid for N ≥ 2 only and, by employing perturbation techniques and ap-
plying Schaeffer’s boundary conditions at the top and bottom surfaces, Hall
(1980) examined the two-cell/four-cell interaction studied experimentally by
Benjamin (1978). Later, Hall (1982) determined explicit values for the con-
stants in Schaeffer’s model for the four-cell/six-cell exchange and correctly
predicted the cusp to face upwards in this case. Benjamin and Mullin (1981)
extended Schaeffer’s argument to consider flows with an odd number of cells.

Numerical bifurcation techniques have made a significant contribution to
this radical re-evaluation of a classic problem in hydrodynamic stability in
a number of ways. We consider first the four-cell/six-cell exchange and then
briefly discuss anomalous modes.

Four-cell/six-cell exchange mechanism

At a fixed radius ratio, two adjustable parameters remain: the Reynolds
number and the aspect ratio. The cusp-shaped locus of the limits of sta-
bility of the ‘normal’ four-cell and six-cell flows at a radius ratio of 0.6 was
determined experimentally by Mullin (1985), and his data are reproduced in
Figure 14. It is worthwhile mentioning the experimental technique used by
Mullin to investigate the four-cell/six-cell exchange mechanism (and also the
6/8, 8/10 and 10/12-cell exchange mechanisms). At aspect ratios above and
below the cusp-shaped exchange region, the secondary four-cell and six-cell
flows are only stable above a critical Reynolds number and were established
via sudden starts within certain narrow speed ranges. The Reynolds number
was then decreased in small steps allowing ample time for re-equilibration
between speed changes. The secondary flows eventually collapsed at a crit-
ical value of the Reynolds number along AT for four-cell flows and along
HE for six-cell flows. Within the cusp-shaped region a gradual increase in
speed from a small value resulted in a four-cell flow which suddenly jumped
to become a six-cell flow when HT was crossed. This six-cell flow remained
stable upon decreasing the Reynolds number until HE was reached, at which
point the six-cell flow collapsed back to a four-cell flow. In this manner a
definite hysteresis was observed, although smaller and smaller speed changes
and longer and longer settling times were required to obtain repeatable ob-
servations as the non-degenerate hysteresis point H was neared. Point T is
a transcritical bifurcation point (see Figure 13(c)) where the upper (sub-
critical) fold point on the folded primary branch and the (supercritical) fold
point on the secondary branch merge.

Complementary finite element computations by Cliffe (1988) were per-
formed as follows. At a fixed aspect ratio of 4, the four-cell primary branch
was computed up to a Reynolds number of 300 using arclength continu-
ation. The aspect ratio was then increased to 6 at which aspect ratio the
four-cell flow is no longer the primary flow, but a secondary flow that ex-
ists only above a finite Reynolds number. This lower limit was found by
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Fig. 14. Numerical and experimental comparison of the four-cell/six-cell
exchange. The solid line is the computed locus of fold points on the ‘normal’

four-cell and six-cell branches. Experimental measurements of the collapse of the
four-cell and six-cell flows are indicated by ‘+’. T is a transcritical bifurcation

point and H is a hysteresis point

decreasing the Reynolds number (at fixed aspect ratio 6) until a fold point
was encountered. The locus of fold points was then computed in the
Reynolds number/aspect ratio plane using the extended system described in
Section 7.2 and appears in Figure 14. The cusp-shaped exchange region is
delimited by non-degenerate hysteresis point H and transcritical bifurcation
point T, which were subsequently located more precisely using extended sys-
tem techniques similar to those discussed in Section 7 and described in detail
in Spence and Werner (1982) and Jepson and Spence (1985a), respectively.
It can be seen from Figure 14 that the computed lower limit of stability
for the four-cell flow agrees well with the experimental data for aspect ra-
tios exceeding that at the transcritical bifurcation point, T. There is also
excellent agreement in the hysteretic region, but for aspect ratios less than
approximately 5.35, the experimentally determined lower limit of stability
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Fig. 15. Numerical and experimental comparison of the four-cell/six-cell
exchange. The solid line is the locus of fold points on the ‘normal’ four-cell and
six-cell branches. The dashed line is a path of symmetry breaking bifurcation
points and the chained line is the a path of turning points on the asymmetric

branches. Experimental measurements of the collapse of the four-cell and six-cell
flows are indicated by ‘+’. T is a transcritical bifurcation point and H is a
hysteresis point. C+ is a coalescence point and D is a double singular point

for six-cell flows lies considerably above the computed path of fold points
on the six-cell secondary branches.

As shown by Cliffe (1983) and Cliffe and Spence (1984), the primary
six-cell flow is invariant with respect to a Z2-symmetry operator which is
essentially a reflection about the midplane of the cylinders. A symmetry
breaking bifurcation point was found on the six-cell secondary branch at
an aspect ratio of 5. The locus of symmetry breaking bifurcation points in
the Reynolds number/aspect ratio plane was computed using the Werner–
Spence extended system, and is shown in Figure 15. It agrees convincingly
with the experimentally determined points at which the six-cell flow col-
lapses with decreasing Reynolds number.
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Details near the double-singular points D appear in Figure 16. The sec-
ondary bifurcation point crosses the lower (supercritical) fold point on the
‘S’-shaped six-cell branch at a double singular point D. At the quartic bi-
furcation point Q the symmetry breaking bifurcation changes from being
supercritical to subcritical with increasing aspect ratio. A pair of asym-
metric solution branches intersect on the symmetric solution branch at the
coalescence point C−, then merge and disconnect from the symmetric branch
with increasing aspect ratio. An isola (see Golubitsky and Schaeffer (1985),
p. 133) of asymmetric solutions develops with increasing aspect ratio from
the coalescence point C+, in Figure 15. All three singularities are described
on page 268 of Golubitsky and Schaeffer (1985). Full details of the exchange
mechanism appear in Cliffe (1988). For our purposes it suffices to observe
that the experimentally determined loss of stability of six-cell flows is clearly
associated with the breaking of their midplane symmetry.
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A second double singular point arises far from the cusp region. It lies just
outside the region of parameter space shown in Figures 14 and 15, where
the locus of symmetry breaking bifurcation points is tangential to the locus
of fold points and the symmetry breaking bifurcation point crosses from
the unstable to the stable symmetric solution surface. Langford (1979),
Guckenheimer (1981) and Golubitsky et al. (1988, Chapter 19) all discuss
a more general class of problems, but here we simply repeat the argument
of Mullin and Cliffe (1986) to explain why a path of axisymmetric Hopf
bifurcations may be expected to emanate from such a double singular point.

Consider the situation in which a Z2-symmetry breaking bifurcation point
crosses from the stable to the unstable side of the symmetric solution surface
as a parameter (e.g., aspect ratio) is varied as shown in Figure 17. The sym-
bols +S, –S, +A and –A along the symmetric solution branches indicate the
signs of the smallest (most unstable) symmetric and antisymmetric eigen-
values respectively. While the eigenvectors on the asymmetric surface need
not be strictly symmetric or antisymmetric, we retain this notation on the
asymmetric solution branches for clarity. By continuity arguments, there
must be two unstable eigenvalues along asymmetric branches near the sym-



Numerical analysis of bifurcation problems 113

metry breaking bifurcation point in Figure 17(b). However, sufficiently far
from the bifurcation point, these branches retain the stability they enjoyed
when the symmetry breaking bifurcation point lay on the stable symmetric
solution surface in Figure 17(a). The simplest way to resolve this conflict
is via Hopf bifurcation on the asymmetric branches. A path of Hopf bifur-
cation points emanates from the double singular point and the frequency of
the periodic orbit approaches zero at the double singular point.

The path of Hopf bifurcation points arising from the double singular point
remote from the hysteresis point in the four-cell/six-cell exchange, was com-
puted for a (different) radius ratio of 0.5 using the extended system technique
outlined in Section 7.4 and described in detail in Griewank and Reddien
(1983). Both the stable asymmetric flows and the axisymmetric singly pe-
riodic flows were subsequently observed in experiments. Figures 18 and 19,
reproduced from Mullin, Cliffe and Pfister (1987), demonstrate the excellent
agreement between finite element computations and experiments both with
respect to the critical Reynolds number and in regard to the frequency of
the periodic flow near the Hopf bifurcation point.

This example argues strongly for complementary theoretical, experimen-
tal and numerical studies. Benjamin’s theoretical arguments suggested that
conducting experiments in short cylinders would be profitable in order to
limit the multiplicity of the solution set. The disparity between experimen-
tal and numerical work then showed that a consideration of the symmetric
solution set alone was insufficient to explain the details of the exchange
mechanism and that the hitherto ignored possibility of symmetry breaking
must be addressed. Once confidence in the numerical approach was estab-
lished by quantitative comparison with experiment, numerical predictions
of stable periodic flows were subsequently confirmed by careful experiment.

The special case of one-cell/two-cell interaction was first examined by
Benjamin and Mullin (1981) and was re-examined in greater detail by Cliffe
(1983) and Pfister, Schmidt, Cliffe and Mullin (1988). This study again
provides an excellent example of the mutual reinforcement of experimen-
tal and computational approaches. Numerical work led to the experimental
discovery of a new two-cell flow and new axisymmetric periodic flows, and ex-
perimental work suggested the presence of a Takens–Bogdanov point which
was subsequently located numerically.

Anomalous modes

Benjamin and Mullin (1981) examined the N -cell/(N+1)-cell exchange pro-
cess and experimentally determined the lower limits of stability for anoma-
lous flows with 2 to 7 cells. Cliffe and Mullin (1985) presented experimental
and numerical comparisons of the ranges of stability of anomalous four-
cell flows and streamline comparisons for anomalous three, four and five-cell
flows and the normal four-cell flow. Cliffe, Kobine and Mullin (1992) demon-



114 K. A. Cliffe, A. Spence and S. J. Tavener

150 160 170 180 190 200 210 220 230
5.2

5.25

5.3

5.35

5.4

5.45

5.5

5.55

5.6

Time−dependent phenomena near a double singular point

Reynolds number

A
sp

ec
t 

ra
ti

o

E

G

F

A

D

B C

Fig. 18. Numerical and experimental comparison of the critical Reynolds numbers
for the onset of time-dependent flows. AB is a path of supercritical fold points,
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axisymmetric periodic flows, ‘+’ the onset of wavy periodic flows with azimuthal
wave number 1, and ‘•’ the axisymmetric modulation of the m = 1 periodic mode

strated that the lower limit of stability of the N -cell anomalous modes in
cylinders with aspect ratios N are essentially the same. This suggests that
their stability is governed by the stability of the two anomalous cells near
the top and bottom boundary. Benjamin and Mullin (1982) showed that
for N > 10 the interior parts of the normal and anomalous flows are very
similar. Cliffe et al. (1992) also demonstrated how the range of stability
of anomalous modes decreases dramatically with radius ratio, and thereby
suggested why they had not been observed in experiments that attempted
to approximate the infinite cylinder model.

To summarize, numerical computations have made significant contribu-
tions to our understanding in the following areas.
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1. The mechanisms by which the primary flow changes as the aspect ratio
is varied when non-slip boundary conditions are imposed at the top
and bottom surfaces.

2. The existence and stabilities of anomalous modes.
3. The connection between time-dependent phenomena and bifurcations

of the steady solution set.

The Taylor–Couette system has also been studied extensively using nu-
merical bifurcation techniques by H. B. Keller and his collaborators. Bol-
stad and Keller (1987) used a streamfunction-vorticity formulation of the
axisymmetric Navier–Stokes equations, a finite difference discretization and
a multigrid solver to compute the stability of anomalous modes having two
to six cells. Anomalous modes were obtained by performing continuation
in the Schaffer homotopy parameter as described above. Good quantitative
agreement with the results of Cliffe and Mullin (1985) was obtained. Meyer-
Spasche and Keller (1980), Frank and Meyer-Spasche (1981), Meyer-Spasche
and Keller (1985) and Specht, Wagner and Meyer-Spasche (1989) all used
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continuation techniques to compute flows in the Taylor–Couette apparatus
applying axially periodic boundary conditions. They examined the onset of
cellular flow, and the exchange between flows with different even numbers of
cells as the axial period was varied. The later problem was also investigated
numerically by Tavener and Cliffe (1991). Schröder and Keller (1990) con-
sidered the Navier–Stokes equations in a rotating reference frame and used
continuation methods to compute the onset and nonlinear development of
wavy-Taylor vortex flows, again assuming axially periodic boundary condi-
tions. They compared their results very favourably with the long cylinder
experiments of Coles (1965).

A parallel research effort has concentrated on spherical Couette flow in
which the fluid is confined between concentric spheres and driven by the
rotation of the inner sphere. Schrauf (1983, 1986), Marcus and Tuckerman
(1987) and Mamun and Tuckerman (1995) have all performed computa-
tions of the flow using at first continuation and then more sophisticated
numerical bifurcation techniques. All studies have shown the breaking of
the midplane symmetry to play a crucial rôle in the stability of steady so-
lutions. Yang (1996) uses a time-dependent code to solve the flow between
concentric spheres with additional, non-physical symmetry constraints until
convergence is almost achieved. He then removes the extra constraints and
allows the time-dependent code to converge. In this manner, by essentially
choosing the initial condition sufficiently close to the desired solution, he is
able to compute multiple solutions at a single point in parameter space, if,
of course, the symmetries of the various flows are known a priori.

9. Other applications

Recognizing that the literature on hydrodynamic stability and bifurcation
phenomena is vast, we attempt simply to give a flavour of some of the
other applications of numerical bifurcation techniques to problems in fluid
mechanics and apologize to those authors whose work we do not mention.

9.1. Rayleigh–Bénard–Marangoni convection

The study of the motion arising in a thin layer of fluid heated from below
has a long history originating with the work of Bénard (1901). This is a
fundamental problem in heat transfer with widespread applications for both
large- and small-scale industrial processes. Block (1956) and Pearson (1958)
showed that the hexagonal rolls observed by Bénard (1901) were due in fact
to temperature-dependent surface tension forces, rather than to buoyancy
forces as assumed by Rayleigh (1916). The origin of the forces driving
convection depends upon the depth of the fluid, with surface tension forces
dominating in sufficiently thin layers. Motion due to buoyancy forces is now



Numerical analysis of bifurcation problems 117

commonly known as Rayleigh–Bénard convection and motion due to surface
tension forces as Marangoni–Bénard convection.

Cliffe and Winters (1986) used the techniques described in Section 7 and
Spence and Werner (1982) and Jepson and Spence (1985a) to compute
the onset of (buoyancy-driven) Rayleigh–Bénard convection in finite two-
dimensional rectangular domains. Their study focuses on the rôle played
by the symmetries of the problem and on the exchange of stability between
flows with different number of convection rolls as the aspect ratio is changed.
Winters, Plesser and Cliffe (1988) computed the onset of cellular flows due
to the combined effects of buoyancy- and temperature-dependent surface
tension in two-dimensional rectangular domains. They consider both limit-
ing cases: when the surface tension is independent of temperature and flow
is driven by buoyancy alone, and when the density is independent of temper-
ature and the flow is driven by surface tension forces alone. They examined
the exchange of primary flows with aspect ratio for the latter case. Dijk-
stra (1992) computed the complex exchange processes between competing
cellular states in two-dimensional rectangular domains as their aspect ratio
varied. He considered the effect of surface tension forces in the absence of
gravity. Relaxing the assumption that the free surface be horizontal and
rigid, Cliffe and Tavener (1998) examined the effect of surface deformations
on two-dimensional Marangoni–Bénard convection. Locally varying chem-
ical species concentrations can also give rise to surface tensions gradients,
and Bergeon, Henry, BenHadid and Tuckerman (1998) examined the com-
bined effects of temperature and species concentration on two-dimensional
free-surface flows.

9.2. Double diffusive convection

Rayleigh–Bénard convection arises due to the inverse relationship between
temperature and the local density of the fluid. Chemical species concentra-
tions can also affect the local density and complicated instability phenomena
can arise when there is a competition between the effects of temperature and
species concentrations. Both heat and chemical species are convected with
the flow and both diffuse, but usually at very different rates. The fluid
motion that arises due to a combination of these two effects is commonly
known as double-diffusive convection. It is a nonlinear, multiparameter
problem in which multiple solutions exist and is particularly suitable for
study by numerical bifurcation techniques. Xin, LeQuere and Tuckerman
(1998) and Dijkstra and Kranenborg (1996) considered two different real-
izations of doubly diffusive systems in rectangular containers. Motivated by
material processing concerns, Xin et al. (1998) considered the case of hori-
zontal temperature and concentration gradients. Dijkstra and Kranenborg
(1996) considered a stable vertical chemical species (salt) concentration and
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a horizontal temperature gradient, with a view to understanding vertically
layered temperature and salinity structures found in the ocean. Dijkstra and
Molemaker (1997) later examined thermohaline-driven flows in a more com-
plicated model problem arising from considerations of ocean circulations.
Implementation details of the methods used by Dijkstra and his colleagues
are discussed in Dijkstra, Molemaker, Vanderploeg and Botta (1995).

9.3. The Dean problem

A fundamental understanding of the fluid flow in curved tubes has consid-
erable biological as well as industrial interest. The nature and stability of
flows in curved tubes or ducts is commonly known as the Dean problem,
following the pioneering work of Dean (1928). Centrifugal forces produce
a component of flow perpendicular to the tube axis and spiralling motions
result. Flows with both two and four counter-rotating cells have been ob-
served. Winters (1987) performed a computational study of flows in curved
ducts with rectangular cross-section using the numerical bifurcation tech-
niques outlined in Section 7. He demonstrated the connection between the
two-cell and four-cell flows and predicted that, amongst the multiple solution
set, only two-cell flows should be stable with respect to both symmetric and
antisymmetric disturbances. An experimental study by Bara, Nandakumar
and Masliyah (1992) investigated Winter’s predictions using a duct with
square cross-section and a fixed radius of curvature. Direct comparisons
proved to be difficult as Winter’s computations assumed a fully developed
flow and it was apparent that the flow was still developing when it reached
the end of the curved experimental section which extended some 240 de-
grees. It is also hard to design an experiment to test satisfactorily whether
a flow is stable with respect to symmetric disturbances but unstable with
respect to antisymmetric ones.

Nandakumar and co-workers have applied extended system techniques of
the type discussed in Section 7 to examine a number of related hydrody-
namic stability problems. Implementation details (of at least one of their
approaches) appear in Weinitschke (1985). Nandakumar, Raszillier and
Durst (1991) computed the fully developed pressure-driven flows arising in
a square duct that is rotating about an axis perpendicular to the axis of
the duct. Spiralling flows similar to those in curved ducts are obtained. An
understanding of such flows has application to the design of turbomachinery.
With heat exchangers in mind, Nandakumar and Weinitschke (1991) com-
puted the fully developed pressure-driven flows in a horizontal rectangular
duct along which a constant temperature gradient is imposed. Flow perpen-
dicular to the axis of the duct is driven in this instance not by centrifugal
forces but by buoyancy. The combined effects of duct curvature and duct
rotation was studied in Selmi, Nandakumar and Finlay (1994).
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10. Concluding remarks

It is inevitable that in a review article of this type many aspects of the
numerical solution of bifurcation problems will be omitted or at best are
covered only briefly. We discuss some of these omissions now and also suggest
areas for further research.

We do not provide any details of numerical continuation for multipa-
rameter problems, say following paths of codimension 1 singularities (e.g.,
hysteresis points) or calculation of ‘organizing centres’ (see Golubitsky and
Schaeffer (1985), Golubitsky et al. (1988)) – these techniques can be inferred
for the discussion in Section 7 and the quoted references. Also, we do not
discuss mode interactions, like Takens–Bogdanov points (see, for example,
Werner and Janovsky (1991), Spence, Cliffe and Jepson (1989)) and double
singular points (Aston, Spence and Wu 1997), even though they are im-
portant in understanding complex phenomena in applications. Complicated
symmetries have also been avoided (see Vanderbauwhede (1982), Golubitsky
et al. (1988)) but an understanding of the relationship between symmetry
and the presence of multiple solutions is vital especially in problems in fluid
mechanics and nonlinear elasticity.

Also, our discussion of the important topic of minimally extended systems
(in Section 7.5) is very brief. Our defence is that, to the best of our knowl-
edge, these methods have not yet been used in large-scale fluid mechanics
applications.

In the applications discussed in this paper stability assignments have been
determined by eigenvalue techniques, that is, by checking when a certain lin-
earization has real or complex eigenvalues which cross the imaginary axis.
As seen in Section 8 on the Taylor–Couette problem these techniques can
give excellent agreement with laboratory experiments. However, as is dis-
cussed in Trefethen, Trefethen, Reddy and Driscoll (1993) there are several
classical fluids problems when eigenvalues do not predict the correct stabil-
ity results. For very non-normal problems one should consider whether the
pseudo-spectra (Trefethen 1997) of the linearization provide a more accu-
rate tool to analyse stability. Certainly, in cases where numerical methods
are to be used as a design tool, without complementary experimental re-
sults, it would only be prudent to consider estimating the pseudo-spectra of
the linearization to help provide estimates of the reliability of any stability
prediction.

Tuckerman and co-workers, for example Mamun and Tuckerman (1995)
and Bergeon et al. (1998), use software developed for time-dependent prob-
lems in a novel and effective way to implement Newton’s method for the
calculation of stable and unstable steady states and periodic orbits in the
discretized Navier–Stokes equations. The key idea involves the interplay
between an implicit/explicit discretization of the time-dependent problem
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and the discretized steady state equation. A short paper (Hawkins and
Spence 2000) discusses the problems of the detection of Hopf bifurcations
using these techniques. We refer to the above references for details, though
we mention that their approach is closely related to that in Davidson (1997),
where a preconditioned version of the recursive projection method in Schroff
and Keller (1993) is analysed. The power of the recursive projection method
applied to fluids problems has been illustrated in von Sosen (1994) and Love
(1999).

The reliable detection of Hopf bifurcations in large-scale problems is an
important subject only briefly touched on in Section 7.4. Efficient and re-
liable methods for the detection of the loss of stability due to a complex
pair of eigenvalues crossing the imaginary axis still need to be developed for
problems arising from discretized partial differential equations. Though pre-
conditioned iterative techniques (e.g., domain decomposition) are the norm
for general 3D problems, these techniques are rarely used for eigenvalue
calculation (but see the recent review by Knyazev (1998) where symmetric
eigenvalue problems are discussed).

The calculation of periodic orbits in large-scale problems, say, arising
from discretized partial differential equations, remains a major challenge.
One possible approach is described by Lust, Roose, Spence and Champ-
neys (1998). For small-scale problems, numerical methods are well devel-
oped for ‘long time’ dynamical phenomena, for example homoclinic orbits
and Lyapunov exponents, and there are several software packages available
which compute such phenomena (see, for example, Khibnik, Yu, Levitin
and Nikoleav (1993), Kuznetsov and Levitin (1996), Doedel et al. (1997)).
A major area for future work is to extend these techniques to large-scale
problems, perhaps by first projecting onto a small-dimensional subspace of
‘active’ variables and then applying the standard small-scale techniques.

A review of this type inevitably reflects the interests, expertise and bias
of the authors. There are certainly omissions and some important topics
and results receive only a brief mention. However, we hope that this review
will inform the reader of the mathematical tools needed and the challenges
awaiting those who attempt to provide a rigorous numerical analysis of bifur-
cation problems. We also aim to stimulate further interest in this interesting
and hugely important area. Finally, we hope to show by our detailed discus-
sion of the Taylor–Couette problem that reliable numerical methods provide
an essential tool when attempting to solve challenging problems from appli-
cations.
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Birkhäuser, Basel.

G. Moore (1980), ‘Numerical treatment of nontrivial bifurcation points’, Numer.
Funct. Anal. Optimiz. 2, 441–472.

G. Moore (1987), Some remarks on the deflated block elimination method, in Bi-
furcation: Analysis, Algorithms and Applications (T. Küpper, R. Seydel and
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numérique d’un problème aux limites nonlinéare’, Numer. Math. 37, 445–454.
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