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Introduction

Elasticity theory, even in its simplest guise, linear with respect to geometrical deformations
and with respect to material properties, has few so-called “closed form” solutions. The need
for solving numerically elasticity problems and the advent of fast and powerful computing
machines seem even to have partly robbed such types of solutions of their interest. It is now
often easier and faster to produce numerical results of a given problem by using modern
discretization methods than to have to compute the special functions involved in a closed form
presentation. In the end the value of such presentations lies in the ease with which they can be
manipulated to exhibit the influence of the design parameters, whereas a similar computer
study of the influence of design is still a long and costly process. Structural optimization, which
is the goal of such studies, receives nowadays a good deal of attention; its costeffective imple-
mentation will largely depend on the speed and accuracy with which the more classical problems
can be solved, namely the determination, for a given design, of its statical and dynamical
response to external loads or displacements of supports.

Matrix structural analysis

Not so long ago the concept of a “structure” was essentially that of an assemblage of
simple types of elements, mostly bars and beams capable of transmitting axial loads, trans-
verse shear loads, bending and possibly torsion moments. For such elements the classical theory
of elasticity provided accurate foundations for good engineering approximations, allowing
their behavior as ‘‘transmitters” to be described by a finite number of displacement and conju-
gate force coordinates. Thus a structure could be naturally conceived as a system with a finite,
although possibly large, number of degrees of freedom, and design in force transmission prob-
lems, like bridge engineering, consisted mainly in adopting a more or less complicated topology
of interconnexions between the constitutive elements.

Matriz structural analysis is essentially concerned with the mathematical formulation of
the interconnexions and the resultant properties of the structure in terms of the kinematics of
straining and external and internal equilibrium. Its extensive development was stimulated by
its natural compatibility with electronic computer software. Its achievements remain of utmost
importance in the more general context of the finite element method.

Indeed it may be suspected that the finite element idea emerged from a desire to adapt the
available arsenal of matrix methods to structures of less particular nature. Many structures are
determined primarily by constraints due to the functions they perform; the shape of aircraft
wings is largely dominated by aerodynamic considerations: torsional stiffness requirements
are generally more efficiently met by using stressed-skin construction; containers and roofs
lead naturally to shell-type construction. Thus, to save the concept of a structure as a finite-
dimensional system made of interconnected elements, it becomes necessary to conceive the
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element as a discretized model of a piece of elastic continuum and to generalize the concept of
connexion to extensive, and no more punctual, interfaces. .

There are of course other advantages to this scheme that explain its growing success.
Modern aerospace structures have very complex geometries; this does not inhibit the finite
element method, whose pieces can be taylored to fit all the geometrical accidents. Furthermore
the simpler the individual pieces, the easier a discrete representation of their elastic behaviour
in terms of shaping functions. Local changes in the nature of the material or modifications in
its behaviour are also easier to take into account by the subdivision process. Finally, in the
presence of unsatisfactory results, it is often possible to localize the defects in idealization or
discretization and to correct them while saving a large part of the previous calculations.

Force and displacement method

One of the distinctions that matrix structural analysis contributed to underline is that in
the choice of either displacements or redundant forces as basic unknowns to solve for. Denoting
by
g the column vector of generalized displacements
p the column vector of conjugate external forces,
e the column vector of generalized strains,
s a column vector of conjugate generalized stresses,

we may write the basic equations of matrix structural analysis as:

kinematics 8%q = e, 1)
statics 8s = p, (2)
stress-strain s=Je, e=Fs. (3)

Equation (1) is a discretized form of the linearized strain measures of a continuum
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presented here in cartesian coordinates (x;, x,, x;) and introducing the matrix differential
operator D whose elements are partial differential operators D; = 8/ox;.

Equation (2) is a discretized form of the equilibrium equations of a continuum: volume
equilibrium

D' +¢=10 ’ (5)
with ¢ the stress vector conjugate to £ and ¢ the vector of body loads, and surface equilibrium
NTg =1t (6)

with ¢ the vector of surface tractions. N is derived from the operator D by substituting the
direction cosines #n; of the outward normal in place of D;. Equation (3) is a discretized form
of the stress-strain relations ,

¢ = He, ' (7
where H is a Hookean matrix of elasticity moduli. The duality between kinematics and statics
in a continuum is prefigurated by the appearance of the same differential operator D in (4)
and (5), and this is confirmed by the equality between internal and external virtual work:

[6%edV = [oTDudV = [(NT6)TudS — [ (DTo)TudV = [tTudS + [¢TudV  (8)
R R 8§ R 8§ R
by, in succession, using (4), integrating by parts and then using (5) and (6). If the region R over

which the integration is performed is subdivided into finite elements, the result implies that
there is no contribution to virtual work from the interfaces. This will be the case if we adhere
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to the exact transition conditions between face + and face — of an interface:
' ut = u-, (9)
4 t-=0 (10)
expressing respectively continuity of displacements and reciprocity of surface tractions. This
explains why the discretized forms (1) and (2) show the same duality by the presence of a single
matrix operator ST, the structural kinematical matriz. Passing from internal to external virtual
work in discretized form -
eTs = (87q)T s = ¢TSs = ¢Tp (11)
we can see that their equality implies the truth of (2) if (1) is known and conversely.

The study of kinematical and statical properties of a structure is fundamentally related to
the problems of inverting Eqgs. (1) and (2). The solutions to the homogeneous problems introduce
important concepts

8%7¢ = 0—>¢q = Rr rarbitrary, (12)
Ss =0-—>s= Xz =z arbitrary. : (13)

In (12) R is a base matrix of kinematical modes of the structure (all modes involving no strain
such as rigid body modes and possible mechanisms). In (13) X is a base matrix of self-stressing
modes of the structure (all modes involving no external forces). The columns of B and X are
maximal sets of linearly independent solutions. Between the number of elements of the different
vectors

vy =mn(g), o=mn(s), o=n(r) and &= n(x)

the following relation holds

y—po=o0—¢&. (14)
From (12) and (13) follow, by definition
STR =0, (18)
SX = 0. (16)
Since problem (1) for ¢ is singular, there are existence conditions for a solution
XT8Tqg = 0 — XTe = 0. (17)

They are, in discretized form the compatibility equations for strains. Similarly the existence
conditions for a solution of problem (2) are
RTSs = 0+ RTp = 0. (18)
They are the global equilibrium conditions for the applied external forces. Assuming the
existence conditions to be satisfied, the problems have the following general solutions
q= 8T+ Rr, ‘ (19)
S = 8*p + Xz, (20)
where the first terms are particular solutions. Computing virtual works
sTe = pT8*Te + 2TXTe = pT8*7e
by virtue of (17}, and
Tq — stT*e + pTRT — stT*e
by virtue of (18).

As strains are compatible and external forces in equilibrium, both expressions must be
equal. Consequently if a pseudo-inverse matrix S* has been found for problem (2), its transpose
8*7 can serve as pseudo-inverse ST* for the solution of problem (1) and conversely. The auto-
matic computation of the matrices involved in the solution (19) and (20) will be discussed in
the next section. The displacement method consists in presenting the elastic problem in the form

p=8s = 8Je = (8J8T) ¢ = Kq (21)
resulting from a successive application of (1), (3) and (2).
K = 8J8*
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is the symmetrical structural stiffness matriz. Its core J is normally positive definite so that
the solutions of the homogeneous problem Kq = 0 are the same as those of (12), and the exis-
tence conditions are the same as (18): global equilibrium of the applied loads. In most appli-
cations B = 0, that is the structure is at least isostatically restrained, in which case K is non
singular and invertible. In practice the solution is carried out on computer by any form of
Gaussian elimination procedure or by conjugate gradient methods. For very large problems
recourse has to be made to substructure techniques. If the structure has kinematical freedoms,
the pseudo-inversion of the now singular problem (21), leading to a solution of type

g = K*p + Rr ' (22)
akin to (19), can be carried out by the same techniques as will be discussed in the next section.
Once ¢ is determined, the strains and stresses follow from (1) and (3).

The force method is most easily presented as an application of the principle of minimum
complementary energy. The most general state of stress of the structure being given by (20),
the stress energy is

1
?STFS = %pTS*TFS*p + 2TXTFS*p —;—xTXTFXx
the first part of which may be ignored as independent of the unknown redundancy coordinates z.

Minimization of the energy with respect to x gives
XTFXx = —XTFS*p (23)
and this can be inverted because XTFX is positive definite (¥ is positive definite and X has
linearly independent columns). Backsubstitution of the solution into (20) solves the problem of

stress determination. If displacements are needed, they can be found through (3) and (19).
The combined method consists in minimizing the total complementary energy

—;— sTFs — pTq

bhus assuming the displacements to be imposed and incorporating the equilibrium constraints
(2) by means of a Lagrangian vector multiplier A:

%STFS + AT(p — 8s) — pTq = min!

Minimization with respect to p identifies 1 — ¢. Minimization with respect to s yields
Fs = 874 = 87%q
a relation which is directly obvious from (1) and (3). This and the equilibrium Eq. (2) are then

solved together
. FSTY[ s 0
5o ll%)=1o) 4

The partioned matrix remains symmetrical, and is positive semi-definite.

The Gauss-Jordan algorithm

For structures made of assembled beams the determination of redundancies was tradition-
ally done by releases, that is by cutting members or at least some of their load transmission
capabilities, until the internal forces in the released structure could be determined by statics.
This procedure which largely relies for its success on physical intuition becomes too slow,
tedious and prone to error for the large arrays of more complicated finite elements. The auto-
matic determination of all the self-stressing states by the computer itself was a considerable
step towards salvation of the force method, it is due independently to Denke [12] and Robinson
[18]. As will be shown the method used is still richer in the answers it provides, being capable
of determining simultaneously the kinematical degrees of freedom that can play an important
role in dynamic analysis, and the pseudo-inverse matrices of singular problems. The Jordan
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version of the Gauss elimination algorithm can be presented as follows when applied to the
transpose of the structural kinematical matrix: a » X» non singular premultiplier P is determin-
ed step by step by selection of pivots to transform § into a matrix

. Icr—é Q
PS_[O 0} (26)

having ¢ last rows of zeros (whereby p is actually determined by the algorithm and consequently
& = ¢ — v + p) and where I,_; is the identity matrix in ¢ — § = » — ¢ dimensions, @ being
a (0 — &)X & matrix. P itself is structured as _
NO :
P=[71] (26)

where N is a non singular (v — g) X (v — g) matrix, L is non singular p X ¢ and lower triangular,
T is pX (v — p). Problem (2) becomes equivalent to

sqy + @S = Npyy, (27)
. 0 = Tpyy + Lpe), (28)
where s and phave been split to suit the partitioning of P and .PS. The homogeneous problem
(18) has clearly, from (27), the solution sy, = x arbitrary s;) = —@Qz and we can take
_[—@
X = [ | (29)
Equation (28) is also clearly the existence conditions (18) and we can take
RT = (T L). (30)
Finally the complete Eq.(27) compared to (20) yields
NO
f
S [ 0 0] (31)
and it is easily verified that by using in (19), (30) and -
NT O
§Tx — 9T —
8 [ 0 0] (32)

Eq. (1) is correctly satisfied.

The Gauss-Jordan algorithm gives at least one computationally automatic answer to the
inversion problems of (1) and (2) and consequently to the use of a Force program. It does not
however provide the answer to the search of compact self-stressing states [6]. Compact self-
stressing states are those which concern a minimum number of elements within the structure,
their use minimizes coupling between self-stressing states and provides optimum conditioning
of Eq.(23). Again, if the structure is dismantled and then reassembled by progressive addition
of elements, the compact self-stressings can be discovered, the problem is to replace tedious
manual processes of search by some improved version of the Gauss-Jordan algorithms. Research
has proceeded in the direction of weighting of the matrix elements and pivot choices [25],
proper sequencing of the elements is certainly one of the important factors.

The option between displacements methods and force methods depends at first glance on
the relative sizes of the systems of Eqs.(21) or (23) and this, in turn, depends primarily on the
topology of interelement connexions. There are other important factors to consider. The dis-
placement method can bypass the construction of the structural kinematical matrix by setting
up directly the structural stiffness matrix and this may be viewed as economical. On the other
hand the structural kinematical matrix is independent of the elasticity characteristics of the
elements, hence of those dimensions, thicknesses ... areas, that do not affect the geometry
of interconnexions. A single Gauss-Jordan analysis remains valid in optimization studies with
respect to such design parameters. This may give the force method a regain of favour.
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Displacement and equilibrinm models

Except for the early introduction of the concept of shear-panel to deal in a simple manner
with stressed-skin construction, a scientific elaboration of finite element models did not start
before 1960, about 10 years after matrix methods were already well established.

The variational principles of elasticity theory played an important role in the mathematical
theory of finite element models.

Discretization of the displacement field by a Rayleigh-Ritz process was of course directly
applicable to each element, the new problem was to establish the correct transitional conditions
at interfaces. The simplest concept in theory, not always so easy to realize in practice, is to
adopt the continuity condition (9) suggested by the continuum approach. This was certainly
intuitive in the first real two-dimensional finite element of the literature [10].

The property of continuity of displacements at interfaces is called conformity. Accordingly,
conforming displacement models have their displacement patterns defined by local (nodal)
displacements on their boundaries in such a way that identification of nodal displacements on
an interface produces complete interface continuity. :

The continuous, piecewise differentiable approximation to the displacement field, provided
by conforming displacement models, has the interesting property of underestimating the strain
energy of a structure submitted to prescribed loads under zero displacements of supports. It
overestimates it when the loads are removed but the supports are given prescribed displacements.

Another, rather intuitive, property that is usually incorporated in displacement models is
the existence of rigid body modes amongst the displacement degrees of freedom. Although ex-
‘perience has shown that this requirement is not necessary for convergence of the displacement
field with reduction in element size, its satisfaction has invariably produced better results.

The idea that another mathematical model of finite element could produce reverse bounds
to the strain energy was investigated later [14, 17] on the basis of the variational principle of
stresses, or minimum of the complementary energy. Indeed the work of Friedrichs [2], showing
how the minimum problem of one functional could be transformed into the maximum of an-
other, then that of Prager and Synge on approximations in function space [5, 11] generalizing
early considerations by Trefftz [1], led immediately to this possibility. Its application to finite
elements required again the correct type of transitional conditions at interfaces. The one that
was directly suggested by continuum theory was the reciprocity condition (10). When it is
enforced, finite elements are called diffusive.

Accordingly diffusive equilibrium models have their discretized stress field, in equilibrium
with body loads, defined entirely by stress resultants (the generalized forces) of boundary
surface tractions.

Reciprocity of the stress resultants entails complete reciprocity of the boundary surface
tractions. '

Building up a library of elements of both types, which conform to displacement and diffusive
equilibrium, enables the same structure to be analyzed twice with complementary effects; it
is the principle of dual analysis [27].

The exact and unknown value of the strain energy can be bracketed between the numerical
estimates provided by each finite element analysis, thus one has available a quantitative
estimate of energy convergence. Numerical brackets for local displacements and even for local
stress values are obtainable in principle by introducing corresponding singularities in the prob-
lem [9]. This procedure has however up to now shown itself to be too expensive for current
use. "

Because the displacement method and conforming displacement models are both intimately
related to the variational principle of displacements, or minimum total potential, and similarly
with respect to the variational principle of stresses for the force method and diffusive -equili-
brium models, there has been an unfortunate tendency to obliterate the distinction between mo-
dels and methods. Let it be stressed that diffusive equilibrium models are easily provided with
a stiffness matrix so that their assemblages can be solved, and have been solved, using a
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displacement method. Conversely, self-stressing states of arrays of conforming displacement
models can be found by Gauss-Jordan techniques and a force program used for their numerical
evaluation. This allows dual analysis to be performed with only one type of computer soft-
ware.

There is however the interesting observation that the topology of element connexions has
a tendency to favour the force method for equilibrium models and the displacement method for
displacement models, although the differences in problem sizes diminish with increasing
sophistication of the models.

Strong and weak nodal connexions

Another important distincetion brought forward by the nature of the models is the so-called
strong or weak character of the generalized variables. In displacement models the nodal dis-
placements are called strong because, once their numerical values are known, any local value
of the displacement field is determined. On the contrary the equivalent nodal forces are weak
because they are determined from virtual work considerations. If ¢ denotes the boundary nodal
displacements of an isolated element, the cartesian components of the displacement field of
that element is representable in the form

Uy ()
uy(x) | = u(x) = Q=) ¢ + B(x) b, (33)
Ug(x)

where @Q(z) is a matrix of assumed functions (generally low order polynomials) called shaping
functions or weighting functions and B(x) a matrix of bubble functions, so-called because they
vanish on the boundary and do not consequently influence the motion of the element boundaries.
The bubble coordinates b can obviously be determined by energy minimization at the element
level, since they are unconnected to the neighboring elements. The generalized boundary forces
g, conjugate to ¢, and the generalized body loads f, conjugate to the bubble coordinates, are
defined by virtual work computation over the domain  of the elements and its boundary 6E':

Efuch av + aé uTt dS = qTg + bTf (34)
with, as a consequence of (33),
g= [QT¢dV + [QTtds, (35)
E oE
f= [ BT$adv. (36)
E

Thus the generalized loads are weighted averages of the real body load and surface traction
distributions. The knowledge of their numerical values determines the distributions only within
equivalence classes.

Recognition of this weak character of generalized loads suggests at once that the stress
information might be of the same nature. As a matter of fact the strong stress information de-
ducible by differentiation of the displacement field through (4) and (7) is sometimes difficult
to interpretate.

In correspondance with (35) and (36) it is easily demonstrated that the effect of discretizing
displacements is to replace the local equilibrium Egs.(5) and (6) by their weighted averages
using the same weighting functions. Thus, as is well known, the Rayleigh-Ritz process becomes
identical with a Galerkin process of weighted residuals of the equilibrium equations. This has
led to the obvious extension of using the more general Galerkin approach with finite elements
in field problems where no variational principle is known to exist.

In equilibrium models the situation is reversed. The local stresses are completely fixed by
the generalized forces and consequently the body loads and surface tractions with which they
are in equilibrium, The virtual work process now yields weighted averages for the conjugate
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displacements which become the weak variables. Perhaps the idea that from the kinematical
viewpoint the elements are only weakly interconnected does not appeal to engineers, which
might explain the relative dearth of equilibrium elements in present day literature. However it
would seem that in the majority of applications the engineer is more concerned about stresses
and that a certain fuzziness in the displacement information is no repealing disadvantage.
While equilibrium equations are here exactly satisfied, the Galerkin type of weighted residual
approach applies to the compatibility equations for strains.

Hybrid models

The Friedrichs transformations, when applied to elasticity theory furnish a host of more
general types of variational principles. From the finite element viewpoint the liberation from
transitional constraints like (8) and (9) by Lagrangian multipliers is of equal importance as
the liberation from the strain displacement constraints (4) inside of the element. The different
possible combinations lead to a bewildering variety of hybrid elements, only few of which have
been experimented. In this connexion one should mention the contributions of Pian [16],
Jones [15] and Prager [19].

Elements of hybrid character may possess interesting convergence properties, unfortunately
they do no more provide bound estimates for the strain energy.

Plate bending models. Static-geometric analogies

The acceptance of the Kirchhoff-Love assumption in the bending theory of thin plates or
shells has posed real difficulties in attempts to enforce conformity. Not only the transverse
deflection of the plate but also its normal slope must be continuous at an interface. To obtain
thisitisnecessary to construct a superelement, that is a small aggregate of elements whose outer
boundary motion can be determined in terms of local deflections and slopes ensuring conformity
[22].

It is characteristic of such elements that, at their corners, the curvature tensor is not single-
valued. Several authors have produced conforming plate or shell bending elements of apparently
simpler type. However they use higher order connexions, adding partly or in toto local values
of the curvature tensor. Not only does this preclude loading modes associated with curvature
discontinuities but it makes it impossible to connect rationally elements which are not coplanar.
This limits severely their use in complex geometrical situations. By contrast, the plate bending
diffusive type of equilibrium element is quite simple [20, 23]. _

Kirchhoff plate bending and plate stretching are known to be related by static geometric
analogies. Exchanging the roles of stresses and strains, the equilibrium equations of bending
go over into the compatibility equations of stretching and conversely. As a result the trans-
verse deflection distribution of bending can serve as Airy function to give an equilibrium state
in stretching. The cartesian component of displacement in stretching can serve as stress-func-
tions to satisfy the bending equilibrium equations. The recognition that conformity and diffusi-
tivity for finite elements also exchange their roles in the analogies [21] led directly to the con-
cept of setting up diffusive equilibrium models from their analogues, that is discretizing direct-
ly the stress-functions. As a matter of fact the discretization of stress functions brings us back
to the “Gegenstiick-Verfahren’’ of T'refftz, where it was applied to the Prandtl torsion function.
Because the volume equilibrium equations were automatically satisfied by the very existence
and differentiability of the torsion function, T'refftz was able to show that an underestimate of
the torsional rigidity occured when the torsion function satisfied simply the boundary condi-
tions, that in fact satisfies surface equilibrium. His method for obtaining an overestimate is
however too complicated. Instead of requiring satisfaction of the differential equation governing
the torsion function, which is tantamount to requiring compatibility of strains, discretization
of the conjugate warping function in the conjugate variational principle of displacements yields
the same overestimates with much less effort,



28 B. Fraeijs de Veubeke

Conclusions

In this brief survey, there are many topics that could not be touched upon by lack of time
and space. The isoparametric elements developped mainly by the finite element group at
Swansea [30]; they furnish conforming displacement models with curved boundaries. Elasto-
dynamics, where the extension to a continuum of a variational principle of Toupin [8], the
complementary energy analogue to Hamilton’s principle, allows diffusive equilibrium elements
to prove their efficiency as eigenvalue economizers [26]. The recent penetration of finite ele-
ment procedures.into geometrically non-linear elasticity problems and in the much wider field
of material non-linearities. Finally the controversial subjects of convergence and finite dif-
ferences versus finite element methods. Those are important aspects, where conjugate efforts
by mathematicians and engineers are needed to bring in a far more mature state of the art some
fundamental guidelines, that satisfy both mathematical rigour and physical understanding.

Lack of space is also responsible for the limitations in the list of references. A much wider
cross-section of the enormous body of papers available can be found by consulting the references
[18, 24, 28 and 29]. ‘
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