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The numerical and analytical study of bifurcation and multicellular

flow instability due to natural convection between narrow horizontal

isothermal cylindrical annuli at high Rayleigh numbers

Daniel Bartholemew Fant

Under the supervision of Joseph M. Prusa
From the Department of Mechanical Engineering

Iowa State University

This-restafcIffort deals with a numerical and analytical study

of multicellular flow instability due to natural convection between

narrow horizontal isothermal cylindrical annuli.

Buoyancy-induced steady or unsteady flow fields between the annuli

are determined using the Boussinesq approximated two-dimensional (2-0)

Navier-Stokes equations and the viscous-dissipation neglected thermal-

energy equation. The vorticitystream function formulation of the

NavierJStokes equations is adopted.

Both thermal and hydrodynamic instabilities are explored. An

asymptotic expansion theory is applied to the Navier-Stokes equations in

the double-limit of Rayleigh number approaching infinity and gap width

approaching zero. This double-limiting condition reduces the governing

equations to a set of Cartesian-like boundary-layer equations. These

equations are further simplified by considering the extreme limits of .

Pr * and Pr - 0. The former limit yields an energy equation which 0"

retains the nonlinear convective terms, while the vorticity equation ................:

reduces to a Stokes-flow equation, signifying the potential for thermal

instability. In the latter limit, the nonlinear terms in the vorticity

, D.1*
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equation remain, while the energy equation collapses to a one-dimensional

conduction equation, signifying the potential for hydrodynamic

instability.

Thermal instability of air near the top portions of narrow annuli

is considered for various size small gap widths. For these narrow gaps,

the Rayleigh numbers corresponding to the onset of steady multicellular

flow are predicted. Numerical solutions of the 2-0 Navier-Stokes

equations also yield hysteresis behavior for the two-to-six and two-to-

four cellular states, with respect to diameter ratios of 1.100 and 1.200.

In contrast, an unsteady hydrodynamic multicellular instability is

experienced near the vertical sections of narrow annuli when the Pr - 0

boundary-layer equations are solved numerically.

In addition, analytical steady-state perturbative solutions to the

boundary-layer equations are obtained. These results compare favorably

to related numerical solutions of both the Navier-Stokes and the Pr - 0

simplified equations.

In all cases, finite-differenced solutions to the governing

equations are obtained using a stable second-order, fully-implicit

time-accurate Gauss-Seidel iterative procedure.

J 4: X'? 4 i < - - ; L ; ';. ,: , : : :
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NOMENCLATURE

a Inner cylinder radius

b Outer cylinder radius

c Specific heat

er Unit vector in radial direction

Unit vector in angular direction

f f, dimensionless stream function in Navier-Stokes

equations

f Dimensionless stream function in finite-Pr boundary-

layer equations

g g, acceleration of gravity

h Heat transfer coefficient

hb, hf Variable radial increments

k Thermal conductivity

kbpkblkf~kfl Variable angular increments

k Equivalent thermal conductivity (actual heat flux
eq divided by conductive heat flux)

p Pressure

q Local heat flux

r b-a dimensionless radial coordinater b-a

t dimensionless time in Navier-Stokes equations
a

t RaI/2 t, dimensionless scaled time in finite-Pr

boundary-layer equations

Ra 1/2
t (-) t, dimensionless scaled time in zero-Pr

boundary-layer equations

*% a.aa~aa1J5V.;.%.~a~. ~ ~ a~' ~aa-a



vi

u 7-, dimensionless radial velocity in
Vaye G(r + )

Navier-Stokes equations

u Dimensionless radial velocity in finite-Pr boundary-

layer equations

w (! =( --- , dimensionless angular velocity in

Navier-Stokes equations

v Dimensionless angular velocity in finite-Pr boundary-

layer equations

w (L-), dimensionless vorticity in Navier-Stokes
V

equations

w Dimensionless vorticity in finite-Pr boundary-layer
equations

Al,A2,...,H4 Coefficients in asymptotic expansion solution

F Dimensionless stream function in zero-Pr boundary-

layer equations

Dimensional body force term

G b-a dimensionless gap number in Navier-Stokes

equations V

G Ra1/4 G, dimensionless scaled gap number in finite-Pr

boundary-layer equations

1/4

G (-) G, dimensionless scaled gap number in zero-Pr 
Ol

Pr
boundary-layer equations

ga 3 (T -To )
Gr, Gr

2  , Grashof number

a 2

gs(b-a) 3(Ti-T 0 )
Grba 2 , Grashof number based on gap width

H hf/hb, radial increment ratio

K kf/kb, angular increment ratio

f b9



vii

NR Number of nodes in radial direction

NS Number of nodes in angular direction

Nu qa/{k(Ti-T )}, local Nusselt number

Nu Mean Nusselt number

Nb} -1, conductive Nusselt number
NUCOND a(n

P, Q Dummy variables

Pr v/c, Prandtl number

R -a/S, stretched inner radial coordinate

ga 3(Ti-T )

Ra V 10, Rayleigh number

RATR Rayleigh number characterizing the onset of

multicellular transition

Rab~a 1) , Rayleigh number based on gap width

S Source term in numerical method

T-T o

T -, dimensionless temperature in Navier-StokesT i  T To

equations

T Dimensionless temperature in finite-Pr boundary-

layer equations

Ti  Inner cylinder temperature

T Outer cylinder temperatureo

W Dimensionless vorticity in zero-Pr boundary-layer
equations

D/Dt Total time derivative
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Greek symbols

k
thermal diffusivity

Coefficient of thermal expansion

Boundary-layer thickness

S Convergence criterion, or dimensionless eccentricity

variable

a T-a-, dimensionless local shear-stress

14.

Y Dimensionless average shear-stress

xParameter in finite-difference equations

IDynamic viscosity, or parameter in finite-difference

equation

v -, momentum diffusivityP

i, dimensionless angular coordinate

p Density

TLocal shear-stress, or time increment in numerical

method

Arbitrary dependent variable

r Parameter in finite-difference equations

Q1' Q2 Relaxation parameters in numerical method

V Gradient differential operator

VI,V2,V Parameters in finite-difference equations

V2, 2  Second-order differential operators
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Superscripts

m Iteration number

n Time level

Subscripts

BL Boundary-layer

c Inviscid-core

i Radial position, or heated inner cylinder surface

j Angular position

o Cooled outer cylinder surface

O,,,,8,10,12 Node position in computational molecule
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1. INTRODUCTION

From a practical standpoint, the study of natural conrec",

between horizontal isothermal concentric cylinders has a wi e

of technological applications, ranging from nuclear reactors arc

thermal storage systems to cooling of electronic components, a'r r'

fuselage insulation, underground electrical transmission lines arc er

the flow in the cooling passages of turbine blades (Tsui and Tremblay,

1984).

However, in a different perspective, the work set forth in this

research effort was undertaken to gain a more practical understanding

of the effects of nonlinearity with regard to natural convective flow

instabilities. Still not well understood is the influence of Orandtl

number variations on the nonlinear processes involved in triggering

either thermal or hydrodynamic types of instabilities. Also of

relevance is the aspect of nonuniqueness, which allows the possibility

of hysteresis behavior associated with thermal-convective

instabilities. These important issues and concerns are addressed and

studied in this thesis.

In light of the above, the work in this thesis is separated into

three main areas.

First, a stable second-order finite-difference solution to the

2-D Navier-Stokes equations is implemented in order to investigate

possible hysteresis behavior in relation to multicellular thermal

instability near the top of narrow horizontal annuli for air.

A r -
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The second area of work involves an asymptotic expansion theory

applied to the 2-D Navier-Stokes equations in the double-limit of

Rayleigh number approaching infinity and gap width approaching zero. ,

In this double-limit, the Navier-Stokes equations are reduced to

Cartesian-like boundary-layer equations. Analytical steady-state

solutions to these simplified equations are also obtained, and the

results are compared to related 2-D Navier-Stokes numerical data.

Moreover, in order to obtain further insight into the nonlinearity

associated with extreme Prandtl number variations, limiting boundary-

layer equations for Pr - 0 and Pr are derived.

Thirdly, the Pr - 0 simplified boundary-layer equations are

solved numerically to investigate the full effects of nonlinearity,

which were believed to cause an unsteady hydrodynamic multicellular

instability between the vertical portions of narrow horizontal annuli.

Before delving into deep analysis and discussion of these topics,

an intensive literature review and derivation of the applicable

governing equations are presented in Chapters 2 and 3, respectively.

Finally, the key results and conclusions of this work are given in

Chapters 6 and 7.

de

%.
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2. LITERATURE REVIEW

Natural convection phenomena between horizontal isothermal

concentric cylinders have been scrutinized experimentally, analytically,

and numerically throughout the past few decades. In the 1960s, most

work was experimental in nature. In the '70s and '80s, many numerical

studies dominated the literature due to the advent of the modern computer.

Analytical studies, in general, have been much more limited.

This thesis concentrates on the high Rayleigh number/small-gap

flow regime. It has been found that while numerical studies in the low

to moderate Rayleigh number range are quite abundant and agree rather

favorably with related experimental work, the numerical work in the

high Rayleigh number multicellular flow regime (usually associated with

narrow gaps) has been much less exhaustive. This is due to the fact

that many computational schemes either could not resolve the transition

to the laminar multicellular flow field, or they became unstable just

prior to it. Analytical approaches, especially with regard to the

high Rayleigh number/small-gap flow regime, have been virtually

unexplored.

To better understand how the various studies were conducted and

evolved, this literature survey will be essentially divided into three

main categories; namely, the analytical analyses, the experimental

approaches, and the numerical studies. In addition, three sections will

be included near the end of this chapter to further support some of the

assumptions and findings relevant to this present study. These

- . - ' . . Sd .. d
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sections will touch upon variable fluid property effects, flow

bifurcation, and natural convective flow between vertical slots.

Although many of the reviews will relate to the pretransition, non-

multicellular flow studies, their inclusion is necessary to fully

appreciate some of the follow-up work described in this thesis.

The basic flow field normally encountered between horizontal

isothermal concentric cylinders (see Figure 6.3a) is the bicellular

kidney-shaped pattern that results strictly from buoyancy effects:

density differences occur due to the inner cylinder being hotter than

the outer one. The lighter, hotter fluid begins to rise in a boundary-

layer manner near the warmer inner cylinder while ascending more

uniformly in the inviscid core region near the center of the annulus.

Finally, it separates and impinges upon the top of the outer cylinder

via the thermal plume. The cooler, more dense fluid, then, descends

along the outer cylinder and regains its upward cyclic ascent near the

lower oortion of the annulus. A similar kidney-shaped flow pattern will

also occur when the inner cylinder is cooled and the outer one heated.

Other interesting flow patterns are possible and will be discussed in

the sections that follow. Symbols will be either directly defined or

their meaning may be found in the Nomenclature.

2.1. Analytical Studies

Eight analytical studies pertaining to natural convective flow

between horizontal concentric cylinders were found in the literature

search. Of the eight, seven involved perturbation methods and only

%N
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one dealt with linearized stability theory. All but one related to the

relatively small Rayleigh number domain.

Mack and Bishop (1968) used a Rayleigh number power series

expansion to obtain a steady-state solution for natural convection

between 2-D horizontal isothermal cylinders. The dimensionless

vorticity-transport and energy equations were assumed to govern the flow

field in this analysis. They eioanded temperature (T) and the stream

function (') in the following mf,'ier:

T E AJTj(r,e) (2.1a)

j=O

= AJ4j(r,e) (2.1b)
j=l

where A signified the Rayleigh number and G the angular coordinate.

The first term in their expansion represented the creeping-flow

solution and was in agreement with that obtained by Crawford and

Lemlich (1962). The expansions for temperature and stream function

were carried out to three terms. It was estimated that for Pr - 1,

the convection terms were negligible in comparison to the conduction

terms for Rayleigh numbers ranging up to approximately 104 and R (the

radius ratio) in the range of 1.15 to 4.15. Vertical symmetry was

assumed, and for Pr > 1, the flow resulted in the single-cell kidney-

shaped pattern for moderate Rayleigh numbers. But for A ~ 0 (104), the

second and third terms in the stream function expansion started to

outgrow the first term, so any resulting flow patterns were deemed

,owe~~V I-*.Ct'F%
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invalid. For the case of Pr .02 (liquid mercury), A : 300 and

R = 2.0, a multicellular flow was reported. Two weak secondary cells

formed at the top and bottom, while a stronger primary cell formed near

the center of the annulus. At the time though, experimental results for

the larger gap low-Prandtl number range were unavailable; hence, their

multicellular flow pattern could not be fully supported. Note that a

similar perturbation analysis was performed for spherical annuli in

Mack and Hardee (1968). Their flow field patterns were very similar

to those obtained in the concentric cylinder geometry.

Rotem (1972) studied the conjugate problem of conduction within

the inner cylinder coupled with convective motion in the gap. Through

a trial-and-error procedure, he was able to obtain the following

expansions for stream function and temperature:

= G G 2,a + Pr G 3 + PrGb

W i 1  GP 2+PG 2  3 3

+ Pr2 G3 c + .... (1 < r < R) (2.2a)
3

T = To + RT+RGTa 2RAl A2+ RAT2 b + RAGT3 + .... (2.2b)

where G was the Grashof number based on (R-l), RA represented the

Rayleigh number, and R the outer-to-inner radius ratio. The first term

in these expansions corresponded to the creeping-flow solution.

Rotem (1972) carried out the stream function expansion to two terms

and calculated three terms for the temperature perturbation expansion.

.f , ;' .'.i ,- [" ; ".'-.-.. ' -. .- . :.,. -. -p
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Through his results, Rotem (1972) confirmed the basic single-cell

solution and reinforced the idea that one should be careful in reporting

counter-rotating cells with an asymptotic method, since this usually

signifies that the expansions are starting to diverge. He did not

investigate the extreme Prandtl number cases, but he did express the

fact that further transformations were needed to eliminate Pr as an

independent parameter and render the equations free from singularities

in the limits of Pr - 0 and Pr - o. Such has been obtained, for

example, in his analysis on natural convection above unconfined

horizontal surfaces (Rotem and Claassen, 1969).

Hodnett (1973) used a perturbation method to analyze the same

problem as Mack and Bishop (1968), except that his analysis was in

terms of primitive variables. He extended his work in order to determine

how large R could be, at a given value of Grashof number, for the

problem to remain conduction dominated. He found that convection was

negligible only when R satisified

R3 Zn-I R = O[(G)-l] (2.3)

where cG represented his Grashof number and c was given by

Ti - TO

T
0

while G signified a natural convective type Reynolds number.
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Huetz and Petit (1974) performed a theoretical study of free

convection in a horizontal annulus for low values of Grashof number.

Their governing equations were written in the same form as Mack and

Bishop (1968), and vertical symmetry was also assumed. They expanded

stream function and temperature in a power series with respect to

Grashof number (Gr), where Gr was based on the inner cylinder radius.

Two case studies were investigated. Case I related to a constant heat

flux imposed on the inner wall and constant temperature on the outer

wall, and vice-versa for case II. For Pr - 1, only monocellular flow

was obtained in both cases I and II, regardless of the radius ratio for

Grashof numbers less than 1,000. However, for Pr = .02, R = 2.0, and

Gr = 15,000 (or Ra = 300), a multicellular flow was observed. Secondary

cells formed at the top and bottom of the annulus with the primary cell

in the center, but the secondary cells did not appear simultaneously.

In case I, the bottom cell appeared first, and in case I, the upper

cell appeared first. Thus, the results of this study further support

the multicellular flow recognized by Mack and Bishop (1968).

Custer and Shaughnessy (1977a) investigated natural convection

within a horizontal annuli for very low Prandtl numbers by solving the

dimensionless thermal energy and vorticity equations with a double

perturbation expansion in powers of Grashof and Prandtl numbers. The

stream function and temperature expansions were written as:

)(r,) Z Pm rr,) (2.4a)

n=o m=0 ro nm
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T(r,e) E z Pr GrTroT k (r,e) (2.4b)
j=0 k=0 0 j

For a fairly large gap of R = 5 and Pr - 0, they reported that the

center eddy fell downward as the Grashof number increased, which was

contrary to the behavior of fluids for Pr > .7. For this same size

gap, at Gr 12,000, they observed the formation of a weak eddy nearr
o0

the top of the inner cylinder. For R = 2, at Grro = 120,000, two weak

eddies formed near the top and bottom of the annulus while the

stronger kidney-shaped one remained in the center. Vertical symmetry

was again assumed for this problem. These conclusions also help to

confirm the multicellular flow pattern observed by Mack and Bishop

(1968). Custer and Shaughnessy also stressed that only numerical

solutions to the full nonlinear equations, or experiments, could

actually establish the true existence of this multicellular flow field.

Custer and Shaughnessy (1977b) continued to study the problem

described in the above review. In this analysis, the dependent

variables in the governing equations were represented by the following

partial spectral expansions:

Oo

7(r,3) = n (r) sin no (2.5a)

n=l

T(r,o) nZ gn(r) cos no (2.5b)

n.O
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The use of these expansions resulted in ordinary differential equations

governing fn(r) and gn(r). The equations were solved numerically and

their results were based on the series being truncated after three

terms. For Pr = .01 and Ra < 50 (or Gr < 5,000), they obtained the

following correlation for their heat transfer data (note that Ra and Gr

were based on the inner cylinder radius):

at R = 2.00, keq = 1 + 5 x 10-8 Ra2 0 1 4  (2.6a)

at R = 4.00, keq = 1 + 1 x 10 . 4 Ra1.935 , (2.6b)

where keq signifies the average equivalent thermal conductivity and

represents the actual mean heat flux divided by the heat flux for pure

conduction. For a radius ratio of 1.1, they found that k was equaleq

6
to 1 out to a Grashof number of approximately 10 . Also, for all the

cases studied, only the single-cell flow field resulted in the vertical

half of the annulus.

Walton (1980) utilized a multiple-scales linearized stability

theory to study the instability of natural convective flow between

narrow cylindrical annuli. First, he represented the basic flow by

expanding the stream function (f')) and temperature (T) in terms of the

dimensionless gap width, c:

( ,T) 0 ,T0 ) + C(' lT + E2(2,T2) (2.7a)

. '....-._-.. . .. - .-. - -...-,.. . .. ... .... ..... , ...-..-.. ... . -. - - . d.o.- .'.-.-. .-.- - -



where

r- r.
1 0 and l << 1 (2.7b)

ri

He then let ' and T' represent small perturbations to P and T given

in Eq. (2.7a). By using the dimensionless forms of the vorticity and

energy equations, he was able to consider the stability of the basic

flow to small disturbances, via linearized stability theory. He

determined that the convective flow became unstable at a critical value

of the Rayleigh number, R, (associated with a particular wavenumber)

given by:

R=R +eR + (2.8)

where, for Pr .7, Rc  1707.762 and R= 258.4. Thus, as c 0,

R - 1707.762. According to his results, the narrow-gap annulus

collapsed to the horizontal flat plate B~nard problem as the gap width

tended to zero. Hence, for Pr - 1, a thermal-type instability should

arise near the top of the annulus.

Jischke and Farshchi (1980) studied the boundary-layer regime for

laminar free convection between 2-D horizontal annuli at the large

Rayleigh number limit. They divided the flow field into five

physically distinct regions, valid for the high Rayleigh number

limiting condition. They assumed a stagnant regime for the bottom part

of the annulus; a boundary-layer type behavior near the inner and

outer cylinders; an inviscid core region in the center portion of the
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annulus; plus a thermal plume section along the vertical line of

symmetry above the inner cylinder, where the inner boundary-layer joins

up with the outer boundary-layer. Their governing equations were

written in terms of primitive variables, and they employed a zeroth-order

asymptotic expansion to represent the velocity and temperature fields

within the annulus. For the boundary-layer regime, they assumed (from

free convective boundary-layer studies of a single horizontal cylinder)

that the velocity and temperature fields would scale as:

u Ra1/4

vv V 0 + ..

T T +.... (2.9)

where u signified the radial velocity and, v, the tangential velocity

component. Their simplified equations, resulting from the Ra -

limit, were solved by means of an integral method in the limit of

Pr - -. They compared their heat transfer results to those of Kuehn

and Goldstein (1976a) for a radius ratio of R = 2.6, Pr = .706 and

4
Ra = 4.7 x 10 . Qualitatively, their basic flow field and results were

very similar, but significant deviation was apparent in their plots of

the variation of local Nusselt number with angular position on the

inner cylinder. Their best agreement was achieved near the top of the

inner cylinder, at e = 1800. They seemed to have captured the

essential features of the flow field in their boundary-layer analysis,

.9 " * ' ' ' ' ' ' ' ''-- . .. ... - - - ': u 
'
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although only bicellular-type flows were studied. The authors of this

article did not investigate the narrow-gap limit of their Ra

equations.

2.2. Experimental Studies

Most of the articles in this section relate to natural convection

between either concentric cylinders or spheres. Various flow patterns

have been investigated in the experimental work, ranging from the

multicellular flow prevalent in the narrow gaps to the unsteady type

flows originating in the larger gaps. Studies include both 2-D and 3-D

phenomena over a range of fluids such as air, water, liquid mercury, oil

and glycerin.

Liu et al. (1962) studied natural convection heat transfer for air,

water and silicone oil (0.7 < Pr < 3,500) between horizontal

cylindrical annuli. They considered five different geometries with

radius ratios of R = 1.154, 1.5, 2.5, 3.75 and 7.5. For the larger

radius ratios, all three fluids experienced a slow sideways oscillation

near the top of the cylinders as the Rayleigh number (Rab-a) exceeded

some limiting value, and this valt.-. decreased with gap size. For the

smaller gap, R = 1.154, a multicellular type flow (near the top) was

observed for air and silicone oil, at Rab-a of approximately 2,000

and 18,000, respectively. A kidney-shaped flow pattern was maintained

below the counter-rotating cells that formed near the top of the

annulus. They speculated that for gaps smaller than R = 1.154, the

Bdnard critical Rayleigh number (Rab-a  1700) would be approached.

b-a

-p - . ~~ *% .. -. . . . . . . ~. . . .
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Bishop et al. (1964) investigated natural convective heat transfer

between concentric spheres. They examined two radius ratios, R = 3.14

and R = 1.19. For the larger gap, only the kidney-shaped flow pattern,

similar to that seen for concentric cylinders, was observed. No

sideways oscillations were noticed. But in the smaller gap, R = 1.19,

two counter-rotating cells appeared near the top at a Raba of about

3,600. However, due to the spherical geometry, the two secondary cells

almost immediately began to coalesce into an elongated shape and soon

became indistinguishable. Although the geometries are different,

the multicellular flow observed in the narrow spherical annuli supports

the same type of flow seen by Liu et al. (1962) in the narrow

cylindrical annuli.

Grigull and Hauf (1966) used a Mach-Zehnder interferometer to

measure the temperature field between horizontal cylindrical annuli

filled with air. From these measurements, they were able to obtain the

local Nusselt numbers for a particular gap size and Grashof number. They

discussed three different regimes of convective flow:

1. A 2-D pseudo-conductive regime for Gr < 2,400. Here,
b-a

conduction effects were dominant, although some convective

motion was evident.

2. A transitional regime with 3-D convective motion, for

2,400 < Grb-a < 30,000. For the intermediate-size gaps,

(1.2 < R < 2.0), the flow field transitioned to a form of

3-D vortices in unsteady oscillatory motion.

% -.

I l i I " l' i I -'-'- .... " . .... . .. .... .. " " "
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3. A 2-D fully-developed laminar convective motion regime

p for 30,000 < Grb-a < 716,000. The 2-D motion was considered

steady for the larger gap widths in this particular range of

Grashof numbers. They did notice that as Grashof number

increased, the centers of the kidney-shaped cells moved

closer to the upper portion of the annulus.

Vivid flow pictures (observed by cigarette smoke) were included for all

three convective flow regimes.

Bishop et al. (1966) extended their study of 1964 (Bishop et al.,

1964) to include the effects of various radius ratios, ranging from

R = 1.19 to R = 3.14. In their experiments, they confirmed the

occurrence of counter-rotating cells previously observed in the smallest

gap width, R = 1.19. For the relatively narrow gaps (slightly greater

than R = 1.19) in the high Grashof number range, they observed a

boundary-layer type flow near the walls of the annulus, coupled with a

slower, more uniform type of fluid motion near the center. Also, from

their measured heat-transfer data for four different radius ratios,

they obtained two Nusselt-Grashof number correlations that fit their

data to within 15.5 percent.

Lis (1966) studied the flow behavior in simple and obstructed

annuli using the Schileren technique with both sulphur hexafluoride

and nitrogen as the working fluid. The six axial spacers used in the

obstructed annuli provided for enhanced heat transfer effects (compared

to the simple annuli) due to more efficient mixing near the upper parts

of the annulus. Also, for 2 < R < 4, the flow pattern became unstable
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at the higher Rayleigh numbers and random oscillations developed near

the top of the gap (for the unobstructed annuli).

Bishop and Carley (1966) performed photographic studies of natural

convective air patterns between concentric cylinders. They observed an

oscillatory flow for R = 3.69, that started at Raba 270,000 (a much

larger value than that indicated by Liu et al. (1962) for the same size

gap). They also tried to reproduce the multicellular flow field

observed by Liu et al. (1962) for the small gap, R = 1.154. They used

a gap width of .688 inches, and for Rayleigh numbers (Raba) up to
b-a

20,000, no type of multicellular flow occurred. Either the gap size

was too large, or a much higher Rayleigh number was needed to observe

the cells with their particular apparatus.

Bishop et al. (1968) re-examined experimentally, for air, the

oscillatory flow in the larger size cylindrical annuli. For gap widths

of R 3.70, 2.46 and 1.846, they observed that the oscillations

started at Rayleigh numbers (Rab-a) of approximately 240,000, 150,000

and 35,000, respectively. Using the data from these three gaps, they

obtained empirical correlations for the period, wavelength and

amplitude of the oscillations.

Powe et al. (1969) experimentally studied the natural convective

flow of air between h'.rizontal concentric cylinders for various radius

ratios. They characterized the flow into three basic regimes:

1. 2-D multicellular flow for R < 1.2,

II. 3-D spiral flow for 1.2 < R < 1.7, and

III. 2-0/3-0 oscillatory flow for R > 1.7.

.o
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Regimes II and III were unsteady. The multicellular flow field in

Regime I remained steady for a small number of cells, but as the

Rayleigh number increased and the chain of cells near the top stopped

forming, slight oscillations about the vertical center-line occurred.

Yin et al. (1973) experimentally investigated the natural

convective flow patterns between isothermal concentric spheres for air

and water. For air, with R = 1.4 and Rab-a = 5930, they observed two

steady counter-rotating cells near the top of the annulus. With the

larger gaps (R = 2.17 and 1.78), for both air and water, the familiar

kidney-shaped pattern resulted for relatively small Rayleigh numbers.

But as Rayleigh number increased, an unsteady flow behavior was

initiated.

Kuehn and Goldstein (1976a) studied the natural convective flow of ,

air and water between isothermal concentric cylinders both

experimentally and numerically. A Mach-Zehnder interferometer was used

to obtain temperature profiles for both air and water with an annulus

of R = 2.6. Heat transfer correlations were found by using a least-

squares regression analysis. For air,

S .159R 272 , 2.1 x 104 < Ra < 9.6 x 10 (2.10)
eq b-a b-a

and for water,

k =.234 Ra 2.3 x l0 < Ra < 9.8 x 10 (2.11)
eq b-a b-a

4 . . . . . '.'. % .V '' .]'. ~ % .
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At similar Rayleigh numbers, the temperature distributions for air and

water were essentially the same. The flow field remained steady and

symmetric for all Rayleigh numbers investigated at R = 2.6. There was

no sign of any type of multicellular flow behavior.

Kuehn and Goldstein (1978) studied the effects of eccentricity and

Rayleigh number on natural convection heat transfer between horizontal

annuli filled with pressurized nitrogen. A Mach-Zehnder interferometer

was again used to obtain interferograms of the working fluid. For an

eccentric geometry of ev/L < (meaning the inner cylinder is set I.

above the concentric center), the overall heat transfer rates were

within ten percent of that for concentric cylinders at the same Rayleigh

number. But local changes in the heat transfer rates were significant

where the cylinder walls were nearly touching. When the inner cylinder

was closest to the bottom of the outer cylinder (v /L = -.623), an

unsteady thermal plume behavior was witnessed, with the flow eventually

transitioning to turbulence upon further increase in Rayleigh number.

Warrington and Powe (1985) experimentally examined natural

convection between concentrically located isothermal spherical,

cylindrical and cubical inner bodies, surrounded by a cubical

enclosure. To within 15 percent of their experimental data, mean

Nusselt number correlations were obtained for all three

configurations. In comparison to heat transfer data from spherical

annuli, they found that cubical enclosures with a spherical inner

body yielded larger Nusselt numbers for a given Rayleigh number

and aspect ratio. Also, for the higher Rayleigh numbers, a

'N

-,'.,'.." .'.." ." ," .*-. ,.' .'.'.o -.'." ." ." ." ." ," .- .- - " % - , , - , , -%- - .% w% - ¢ -% -.. ,."." .- - .- ,. . .- ",p
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multicellular flow field was encountered for the cubical enclosures

with cylindrical inner bodies.

2.2.1. Heat transfer correlations

Some basic correlations are presented in McAdams (1954) for

natural convection from single horizontal cylinders. He observed that

the heat transfer data for single cylinders should approach that

obtained with concentric cylinders in the limit as R . McAdams

also presented expressions for natural convective heat transfer between

horizontal and vertical enclosed air spaces. All of his correlations

b
took on the form Nu = a(Ra) , where b was typically 1/4 for laminar

flows and 1/3 for turbulent-type flows.

Itoh et al. (1970) proposed a new method for correlating heat

transfer coefficients for natural convection between horizontal

cylindrical annuli. They claimed that heat transfer coefficients (hiV

ho) are well correlated by the mean Nusselt number, Nu, and the mean

Grashof number, Grm , defined as follows:

hi[r in(r /ri)] h o[r on(r /ri)]
1 01 0 0 0 (2)u =  = =k(2.12)

k k

ga(T 1 - T2 )( r iro )zn(r0/ri)] 
(1

Grm = 2 (2.13) "

With these definitions, any resulting heat transfer data (for laminar

flow) could be represented by

Nu c1 Gr Ml
4  (2.14a)

VI
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where cI is a constant value.

Powe (1974) examined heat transfer correlations given by Liu et al.

(1962) and Scanlan et al. (1970) to determine the bounding effects of

heat loss by free convection from concentric cylinders and spheres,

respectively. For various Rayleigh numbers, he calculated limiting

bands at which the empirical equations were valid. Beyond these limits,

the equations either collapsed to the conduction solution for small gap

widths, or to natural convective flow of a single cylinder (or sphere)

exposed to an infinite atmosphere, for the larger gap sizes.

Raithby and Hollands (1975) proposed a heat transfer correlation

for isothermal concentric cylinders. Based on their experimental data

for air, water and silicon oil, they obtained the following correlation

(valid for the convection-dominated flow regime):

k = .386 [Pr/(.861 + Pr)] 1/4 Racc1/4  (2.14b)
eq c

where

[Zn (Do/Di)] 4

Racc ( ) 3 / 5  3 /5)5' Raba (2.14c)(b-a) 3  (I/D i 35+ I/Do035) -

and b-a = annulus gap-width. They mentioned that the correlation

worsened as the annular gap spacing increased, but appeared to be

highly satisfactory for the relatively narrow and intermediate size

gaps.

-U ~ *~'. I-. U'~L/..*...L/~V 1.'. ~ I1N %~%.V!
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Kuehn and Goldstein (1976b) obtained correlating equations for

heat transfer between horizontal concentric cylinders. For R = 2.6

and .01 < Pr < 1,000, the following expression (for the mean inner-

diameter Nusselt number) represented their heat transfer data to

within 2 percent:

2

2

+ [(.518 Ra1/4 [+(559) 3/51-5/12)15+(1 Ra1/3)15 1/15

S Di Pr D Pri

Zn

2

2 5/3+(587 G Ra1/4 )5/313/5 15/(3.1 Ra1/3 )15}1/151(( -e-2 5 / + . 7 G Do 01 + . R Do

(2.15)

where

[(I + 0.6 ++ (A 2.6 pr7)-5]
- I/5

Pr-7

and Rai, Rao signify the Rayleigh numbers evaluated at the inner

and outer cylinder diameters. They also discussed that as the diameter

of the outer cylinder increased, the heat transfer approached that of

a single horizontal cylinder. They found that to have heat transfer

within 5 percent of a free cylinder required D0 /Di - 360 at

7 -Ra = 10 and D /Di > 700 for Ra = 10
D 1

N4 1i
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Boyd (1981) used a unified theory to correlate steady laminar

natural convection heat transfer between horizontal annuli. His

correlations were successfully extended to annuli with irregular

boundaries. For isothermal concentric cylinders, he suggested the

following relationship for the mean Nusselt number based on the gap

width, A:

Nu. C4 P
r  Ral/4  (2.16)

where

n* C5 + C6 Pr

and C4, C5 and 06 were constants that depended on related heat transfer

data. These constants were evaluated using data from Keuhn and

Goldstein (1976a). The result is given by

n* 1/4 .

Nu, .796 Pr Ra (2.17)

where

n*= .00663 - .0351 Pr- 1/
3

1 7
According to Boyd, this expression was valid for 10 Ra 10

.706 < Pr < 3100, and .125 < < 2.0; where represented the aspect
r706o_ _ e- an rr n t

ratio for the annulus. *
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2.3. Numerical Studies

As previously mentioned, most of the numerical studies for

natural convection between horizontal annuli pertain to the bicellular

solutions associated with the low to moderate Rayleigh numbers.

Although the reviews in this section will be rather concise, particular

attention will focus on the finite-differencing methods used, especially

with regard to the numerical representation of the nonlinear convective

terms.

Crawford and Lemlich (1962) studied natural convection of air

between horizontal cylindrical annuli. They numerically examined three

different radius ratios, R = 2, 8, and 57, and confined their study

to extremely low Grashof numbers, the so-called creeping flow solution.

In their numerical method, conventional central-differencing was used

throughout, and the stream function and temperature were calculated

using a Gauss-Seidel iterative procedure. Vertical symmetry was

assumed and their results revealed the characteristic kidney-shaped

circulation pattern.

Abbott (1964) discussed a numerical method for solving the same

problem as Crawford and Lemlich (1962), except for very narrow annuli.

He studied four types of narrow gaps, R = 1.0256, 1.0170, 1.0084 and

1.0040. Abbott began his solution process by first obtaining solutions

to the conduction-dominated energy equation and the creeping-flow

(negligible convective acceleration terms) momentum equation. He then

used these results to approximate the convective terms in the full set

of governing equations. Thus, by linearizing the equations in terms

. . . .5- - - -.. V . .-5. * -.. .- - _:i-"-, :.- -
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of the unknowns, he was able to obtain successive approximations to the

nonlinear terms. He solved for the unknown temperatures and stream

functions by using a matrix inversion technique. His results represent

only slight convective perturbations to the creeping-flow solution.

For all cases, he obtained the basic kidney-shaped flow pattern.

Powe et al. (1971) obtained the first semblance of a secondary

air flow captured numerically in narrow horizontal annuli. They assumed

vertical symmetry and used a complete central-difference representation

for the nonlinear convective terms in the governing energy and

vorticity-transport equations. Their equations were formulated for

the steady-state case. Moreover, their numerical solutions could only

capture the flow field up to the point where the stream function changed

its sign (signifying counter-rotating flow). After this point, their

code would no longer converge. Thus, they could not fully resolve the

multicellular flow field for the narrow gaps, but they were able to

make estimates of the transitional Rayleigh numbers. Using this

approach, they estimated a transitional Rayleigh number of

Ra = 452,000 for R = 1.2. Their mean Nusselt numbers were not at all

affected by the appearance of these unresolved secondary flows.

Charrier-Motjtabi et al. (1979) used an ADI scheme to numerically

solve for the natural convective flow field between horizontal annuli.

Coupled with the energy equation, they used the stream function-

vorticity approach to analyze the flow. Also, a fictitious time was

defined so as to more readily achieve the steady-state condition. They

did not mention what type of finite-differencing was employed for the
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nonlinear convective terms. For the narrow gap of R = 1.2 and Rayleigh

numbers up to Ra = 875,000, no multicellular flow field was observed

for air. However, for Pr = .02 and R = 2.0, they obtained a

multicellular flow similar to that described by Mack and Bishop (1968).

Astill et al. (1979) obtained numerical solutions for natural

convection in concentric spherical annuli. They considered fluids with

Prandtl numbers between .7 and 5.00, and radius ratios from 1.03 to

2.00. Pure central-differencing was used to obtain approximations to

the steady-state stream function and energy equations. The system of

equations was solved using a Gauss-Seidel iterative procedure with

under-relaxation, and vertical symmetry was again assumed. They mainly

observed the typical kidney-shaped pattern for all fluids and gaps

studied. However, for air and R = 1.1 and 1.2, they resolved a second

vortex formation occurring at Ra b-a = 25,000 and 8,000, respectively.

These counter-rotating cells were seen experimentally by Bishop et al.

(1964), but at a much lower Rayleigh number for R = 1.2.

Caltagirone et al. (1979) also performed a numerical study of

natural convection between spherical annuli filled with air. They

used an ADI scheme to solve for the stream function, temperature and

vorticity fields. They considered vertical symmetry and radius ratios

between 1.15 and 3.00. Using "zero" initial conditions, only

5
bicellular solutions were found for Rayleigh numbers up to 10. But

upon using an initial temperature distribution of the form

T a sin (7r) cos (be) (2.18)
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(where 'a' was an amplitude value and 'b' a characteristic wavenumber),

the converged flow field for R = 2 and Ra = 50,000 experienced a

counter-rotating cell near the top of the half-annulus. Associated

with this secondary flow was a rise in the mean Nusselt number.

But, this multicellular flow field was probably unrealistic, since

this type of flow has only been observed experimentally for the very

narrow spherical annuli, R < 1.4.

Kuehn and Goldstein (1980b) studied the effects of Prandtl number

and diameter ratio on natural convection between horizontal cylindrical

annuli. They employed an explicit finite-difference scheme to solve

the energy, stream function and vorticity equations for steady laminar

flow. They used a hybrid technique for the nonlinear terms, which

switched from central to upwind differencing when the mesh Reynolds

number constraint was exceeded. For large Prandtl numbers, a fully-

developed boundary-layer with an impinging thermal plume resulted,

whereas, as Pr - 0, the temperature distribution approached the pure

conduction limit. Also, the mean Nusselt number asymptotically

approached the single horizontal cylinder value as R - -. The authors

derived a correlation valid for laminar flow over .001 < Pr < 1,000

and 1.0 < R < (although the correlation fit best for Pr = .7):

L' %



27

2
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"5 18  R a 1/ 4  [1 +  
(.55 }" 2( •19

( .518 Ra594 3/5 -5/12

D Pr1

9,n 1 (2.1 9a)

.587 RaI/4

2

N'uD. =n (DoDi) (2.19b)

1COND

15 15 1/15
(Nu 5  + Nu0  ) (2.19c)

1 iCOND 1CONV

where Ra D and Ra D are the same as those described in Eq. (2.15).

Over their range of data, they reported a maximum deviation of 13

percent occurring for Prandtl numbers near .02.

Projahn et al. (1981) solved the energy and the vorticity-stream

function equations numerically by using a strongly implicit method as

described by Weinstein et al. (1970). The convective terms were written

in divergence form and were differenced using a corrected upwind scheme

obtained from Jacobs (1973). In their analysis of natural convection

between concentric and eccentric cylinders, they reported that for a

negative (downward) vertical displacement of the inner cylinder, the

a-

a .' ' Z ' ' ' - € . ' ' ' . - ' ' ' - . - - - - - . - - - - . . . . , . , . . , , . . , .
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mean Nusselt number was always greater than that in the concentric case.

Also, for Pr = .7 and R = 2.6, they obtained a counter-rotating cell

near Ra = 12,000, but attributed this cell formation to their

assumption of symmetrical boundary conditions.

Ingham (1981) solved a set of equations similar to that described

by Projahn et al. (1981), but Ingham's equations were formulated in a

more general fashion to account for either the concentric spherical or

cylindrical geometry. He assumed steady-state and vertical symmetry

and used central-differencing throughout, except for the nonlinear

terms where he employed a cleverly weighted second-order upwind-

differencing scheme. He tested for steady multicellular flows by

considering a spherical radius ratio of R = 1.19 with Pr = .7, and

for a range of values of Ra up to 2.5 x 10, he did not obtain any sign

of a multicellular structure.

Farouk and Guceri (1982) were the first to study turbulent natural

convection numerically between 2-D horizontal concentric cylinders.

They used a k - 6 turbulence model and obtained steady-state results

that were in good agreement with experimental data. All of their

test cases pertained to R = 2.6 with vertical symmetry assumed, and

6 7
they considered Rayleigh numbers (based on gap width) up to 10 - 10

Cho et al. (1982) studied the natural convection of air in

eccentric horizontal isothermal cylindrical annuli. They solved the

problem using bipolar coordinates with the assumption of vertical

symmetry. Central-differencing was employed for all the derivatives,

including the nonlinear terms. They numerically investigated a

S*...-t'*..-.-...-..-... .. - .. . .. , .. -..... . , . . , , . . ..... ,....''' A . . ,~b ... . . .
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radius ratio of R =2.6 with varying degrees of eccentricity, for

4
Raleigh numbers (based on gap width) less than 5.0 x 10 . Their

.a

numerical results agreed rather well with experimentally obtained

interferograms. It was observed that the average heat transfer £

increased as the inner cylinder moved downward along the vertical

center-line.

Prusa and Yao (1983) numerically examined natural convection

between eccentric horizontal cylinders, similar to that described in

the above with Cho et al. (1982). However, they employed a unique

radial transformation method that allowed them to study various

eccentricities while avoiding any type of singular behavior in the

limit of zero eccentricity. They also developed a convenient variable
'a

mesh routine which provided the flexibility of concentrating grid

nodes within the boundary-layer and thermal plume regions. Central-

differencing was used throughout, along with a stable corrected second- -

order central difference scheme to represent the nonlinear terms. They

obtained very good agreement with experimental and analytical data, and

confirmed the fact that the overall heat transfer could be reduced or

enhanced with respect to the upward or downward shift of the inner

cylinder about the vertical center-line. In addition, they appeared to

be the first to determine the critical eccentricity associated with

minimum heat transfer for various Grashof numbers.

Chandrashekar et al. (1984) studied natural convective flow of a

Boussinesq heat-generating fluid between two horizontal concentric

cylinders. They investigated the effects of two driving mechanisms -

., ., , .... .-..-. .. a- .- . ,_,, ,.... .....-.................. ...... ...... .............. .-... . . .. _ .:-:-,
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an externally imposed temperature gradient across the annulus, coupled

with a uniform internal heat generation. The parameter that

represented the ratio of the internal heating to the applied temperature

difference was denoted by S, where the S = 0 limit corresponded to

the isothermal concentric cylinder case. They assumed vertical

symmetry and marched numerically in time to achieve the steady-state

condition. The governing equations were solved with an ADI scheme on

a uniform mesh, and central-differencing was used throughout. They

found that as S increased from zero, a transition took place (for

Pr = .7) from a unicellular to a bicellular circulation in each half-

cavity. For this transition, the critical value of S depended on both

the Rayleigh number and the radius ratio.

Tsui and Tremblay (1984) used an unsteady code to obtain steady-

state solutions for natural convective air flow between horizontal

annuli. They employed an ADI scheme to solve the energy and

vorticity-stream function equations. They assumed vertical symmetry

and used a relatively coarse mesh of 16 radial nodes together with

21 angular nodes. For moderate size Rayleigh numbers, they achieved

steady-state results for three radius ratios, R = 1.2, 1.5 and 2.0.

In all of these cases, they obtained the steady-state kidney-shaped

flow pattern.

Lee (1984) studied laminar convection of air between concentric

and eccentric heated rotating cylinders. His numerical method

involved a mesh transformation technique coupled with the introduction

of false transient time terms that facilitated steady-state solutions
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to the problem. He studied a radius ratio of 2.6 at different Rayleigh

numbers, Reynolds numbers, and eccentricities. His governing equations

were solved with an ADI method and all spatial derivatives were

approximated by second-order central-differences. Second-order

upwind-differencing was used on the convective terms. For Ra = 25,000,

he obtained a multicellular type flow when the inner cylinder was

shifted upward next to the outer cylinder (c = 2/3). When the inner

cylinder was rotated, various patterns of skewed cells resulted.

Rao et al. (1985) investigated natural convective flow patterns in

horizontal cylindrical annuli. They appear to be the first group of

researchers that fully resolved numerically the counter-rotating

cells for air, which are experienced at high Rayleigh numbers in the

narrow type gaps. An unsteady formulation of the (2-D) energy and

d vorticity-stream function equations was used, and they solved the

equations using an ADI scheme with central-differencing throughout.

For R = 1.175 and a Rayleigh number (Ra) of approximately 750,000,

they obtained two counter-rotating cells near the top of the half-

annulus. They reported a jump in the steady-state mean Nusselt number

when the flow made the transition from unicellular to multicellular

flow. Numerically, they could not resolve any type of oscillatory

flow for the larger gap widths, but they did experimentally verify

the 3-0 spiral flow associated with the intermediate size gaps.

Hessami et al. (1985) studied natural convection in a wide

horizontal annulus with a radius ratio of R 11.4. They obtained



32

experimental and numerical data for air, glycerin and liquid mercury

in the ranges of .023< Pr < 10,000 and .03 < GrDi < 3 x 106. The

influence of variable versus constant fluid properties was also

explored numerically.

Experimentally, they observed the regular kidney-shaped pattern

for air, and a multicellular flow pattern for the liquid mercury case,

similar to that described by Mack and Bishop (1968). Numerically, they

assumed vertical symmetry and used a basic central-differencing scheme,

except for the convective terms which were discretized by using a

hybrid-differencing technique developed by Spalding (1972). This

hybrid scheme collapsed to first-order accuracy upon exceeding the mesh

Reynolds number constraint. Globally, the heat transfer computations

for air, mercury and glycerin did not change with variation of fluid

properties. However, local estimates of the Nusselt number did

exhibit significant discrepancy for glycerin between the constant and

variable fluid property cases.

Ozoe et al. (1985) performed a 3-D numerical analysis of natural

convection in a spherical annulus for Pr = 1 and Ra = 500. By

imposing a sinusoidal temperature field on the outer cylinder, they

were able to obtain both symmetrical and unsymmetrical cell formation.

They solved the governing equations with an ADI scheme, using

central-difference approximations at all points.

;-% ', .'d '4" 9. -. ' .-. ,',
" .
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2.4. Variable Fluid Properties

Since the mathematical model in this thesis is based upon the

Boussinesq approximation, the effects of variable fluid properties and

viscous dissipation on laminar natural convective flows should be

addressed. The reviews in this section will consider some of these

effects with regard to various surface geometries.

Sparrow and Gregg (1958) analyzed the influence to variable fluid

properties on an isothermal vertical flat plate. They reported that

laminar free convection heat transfer under variable property conditions

could be accurately computed by using constant property results when

evaluated at an adequate reference temperature, Tr' For air and

liquid mercury, the film temperature, Tf, given by

Tf = (Tw + T)/2 (2.20)

was valid for most applications. However, specific reference

temperature relations were derived and are listed below.

For gases:

T = T - .38 (T - T ) (2.21a)

r w w

and for liquid mercury:

Tr = Tw - .3 (Tw  T.) (2.21b)

w ?). 22b



34 A

Gebhart (1962) considered the effects of viscous dissipation on

natural convective heat transfer for vertical surfaces subject to both

isothermal and uniform-flux surface conditions. For such fluids as

liquid sodium, gases and water, the standard practice of neglecting

viscous dissipation for natural convective type flows was quite valid,

especially in the laminar regime. But, he found that important viscous

dissipation could result when the flow made the transition to
A

turbulence. Also, he discussed the fact that significant viscous

dissipation might occur for laminar flows subject to large

decelerations or high rotative speeds.

Gray and Giorgini (1976) determined that for gases and most

liquids, in geometries such as vertical plates and horizontal cylinders,

the strict Boussinesq approximation was valid for Rayleigh numbers

17
(based on the fluid layer depth) up to 10 , nearly 13 decades above

the transition point for turbulence (provided << 1).
p

Clausing and Kempka (1981) experimentally investigated natural

convective heat transfer from a vertical isothermal heated surface to

gaseous nitrogen. They found that variable properties caused

virtually no influence in heat transfer rates in the laminar regime,

whereas dramatic increases were seen in the turbulent regime.

Hessami et al. (1984) studied the effects of variable fluid

properties on natural convective heat transfer between horizontal

concentric cylinders, for R = 2.6. They concluded that for air,

the constant fluid property assumption was quite valid (for Rayleigh

numbers based on gap up to 9 x 104), and could probably be extended to A.
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all gases. In contrast, for glycerin, significant differences in the

temperature field resulted between the constant and variable fluid

property assumptions, although average values of the Nusselt number

were very similar.

Mahony et al. (1985) investigated variable property effects on

the laminar natural convection of air between horizontal cylindrical

annuli. They numerically computed velocity and temperature profiles

for R = 1.5, 2.28, 2.6 and 5.0, with Rayleigh numbers based on gap

width up to 1.8 x lO5 . They claimed that the Boussinesq approximation

was valid for a temperature difference ratio, eo , of less than .2,

where o was given as

TH -T c

co H T (2.22)

c

But for all the numerical studies discussed in the previous section,

e was smaller than .1; hence any related heat transfer results were

not affected by the constant property assumption. They also mentioned

that since relatively low velocities are encountered in laminar

natural convection, the variable property assumption should usually

prove of little influence on calculated heat transfer rates.

2.5. Flow Bifurcation

Due to the tendency of multicellular flow to occur between narrow

horizontal concentric cylinders at high Rayleigh numbers, flow

bifurcation with related hysteresis behavior is definitely possible.
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This section will briefly touch upon some articles that aid in the

description of nonuniqueness and the bifurcation phenomena associated

with various flows.

Coles (1965) experimentally studied flow transition between

vertical concentric rotating cylinders. The so-called Taylor

instability resulted when the inner cylinder achieved some critical

speed. At certain speeds, Coles was able to observe both singly and

doubly-periodic type motion. In this paper, Coles claims that "the

property of nonuniqueness is most vividly demonstrated by the

existence of a number of hysteresis loops, in which the flow changes

from one state to another and back again as the speed of the inner

cylinder is slowly increased and then decreased." He mentions that this

same kind of behavior is possible with the cellular convection patterns

that occur between horizontal heated surfaces.

In Benjamin (1978), some of the basic theory associated with

bifurcation phenomena in steady flows is described. First, he points

out that an instability phenomenon probably exists if a precise

critical value of some parameter can be related to the onset of

cellular motion. Then, a secondary mode of motion is usually realized

after the primary flow becomes unstable due to some type of disruptive

instability. He also stated that the Rayleigh number (in the B~nard

problem) played a role similar to that corresponding to the Reynolds

number in the Taylor problem.

Benjamin and Mullin (1982) observed fifteen different kinds of

steady multicellular flow produced in a Taylor apparatus with the
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outer wall stationary. They discussed various forms of bifurcation

that might result due to sudden changes in the flow field induced by

variations in the Reynolds number. And, they noted that depending on

the particular cellular mode initiated at the outset, many different

paths to turbulence could be followed.

Nandakumar and Masliyah (1982) investigated the occurrence of dual

solutions in curved ducts through a numerical solution of the Navier-

Stokes equations in a bipolar-toroidal coordinate system. The Dean

number was the critical parameter used in this study, and was given by: .5

Dn - Re/R 1/2 (2.23)
c

where Re represented the Reynolds number and R c the dimensionless radius

of curvature of the duct. In addition to the Dean number, the shape of 0

the duct was also varied systematically in order to study the

bifurcation of a two-vortex solution into a two and four-vortex

solution. They found that flow bifurcation was possible irrespective

of the shape of the tube, but it was much easier to obtain a dual -'
.5

solution when the outer surface of the duct was nearly flat.

Cliffe (1983) numerically studied the flow in a Taylor apparatus

where the length of the annulus was shortened so that only one or

two Taylor cells would result. He solved the Navier-Stokes equations

with a finite-element method and then, applied the methods of

bifurcation theory (see Keller, 1977) to obtain multiple solutions of

the equations as the Reynolds number and aspect ratio varied. At a

'

.5



38

Reynolds number of 175, he obtained three distinct flows: a stable

two-cell flow, an unstable asymmetric flow, and a stable single-cell

flow. His numerical method was able to resolve the extremely delicate

hysteresis effect, and he claimed that his method was powerful enough

to capture the more complicated flows observed in the Taylor experiment

for moderate aspect ratios.

Nandakumar et al. (1985) studied laminar mixed-convective flow in

horizontal ducts of rectangular, circular and semicircular cross-sections.

In all cases, dual solutions of two and four-vortex patterns were

observed. The governing equations, subject to the Boussinesq

approximation and an axially uniform heat-flux condition, were solved

numerically with central-differencing used for both the diffusive and

convective terms. For the case of the rectangular duct with a 21 x 21

uniform grid, flow hysteresis with respect to both average Nusselt

number and friction-factor occurred when the flow made the transition

from a two to a four-vortex steady solution. The fluid in this case

was air, Pr = .73.

Kolodner et al. (1986) experimentally studied the flow patterns

associated with Rayleigh-B~nard convection in rectangular containers

having an intermediate aspect ratio of about 10 to 5, for Prandtl

numbers between 2 and 20. In their experiments, they observed 2-D

skewed-varicose and knot type instabilities, which were found to

trigger successive transitions between time-independent flow patterns.

In the larger Rayleigh number regime, for Pr < 10, the flow

instabilities appeared to have an intrinsic oscillatory-like time

%5
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dependence.

Also related to flow bifurcation is the phenomena of strange

attractors. In some systems that experience a bifurcation by way of

a flow instability, an ordered route to chaos has been reported (see

Ruelle and Takens, 1971; Newhouse et al., 1978; Giglio et al., 1981;

Brandstater et al., 1983; Grebogi et al., 1983; and Guckenheimer,

1986). A typical sequence of events is as follows. First, the system

behaves in a time-periodic manner after the onset of the initial

instability. Then, upon further increase of a system parameter (such

as Reynolds or Rayleigh number), a cycle of periodic-doubling is

usually observed, until finally, chaotic behavior sets in via small-

scale spectral-broadening.

Some of these strange but ordered characteristics seem to have

been numerically predicted in this present study. A description of

the numerical technique and related results will be given in

Chapters 5 and 6, respectively.

2.6. Natural Convection in Vertical Slots

Based upon the work set forth in this thesis, it appears that a

multicellular instability may occur in the vertical sections of very

narrow horizontal cylindrical annuli. Because of this likelihood,

several papers dealing with laminar natural convection in vertical

slots will be reviewed in order to shed more light on the

manifestation of this unique type of hydrodynamic instability.

p
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Elder (1965) performed an experimental study of natural convection

for a liquid (Pr = 1,000) in a vertical slot with isothermal walls

(the left wall being hottest). Unicellular flows resulted when the

Rayleigh number based on gap width was less than 105. But for the

larger aspect ratio (narrow gap) slots, with Rayleigh numbers slightly

5
greater than 10 , a steady 'cats-eye' patterned secondary flow became

superimposed on the basic unicellular flow. And, upon further
6I

increasing Rayleigh number to above 106, Elder (1965) reported the

emergence of a tertiary flow with counter-rotating type cells.

Elder (1966) numerically solved the same problem as described

above, except in this case, he considered only the moderate-size

vertical slots. He was able to duplicate the basic flow field

obtained in his experiments, but was not able to resolve the secondary

flow that was present in his previous work. Elder mentioned that the

nonlinear terms began to dominate the motion as Rayleigh number

increased, and he was able to numerically show the development of the

boundary-layers and the fully-developed boundary-layer flow.

Vest and Arpaci (1969) analytically investigated the stability

of natural convection in a narrow vertical slot. By using linearized

hydrodynamic stability theory, they were able to obtain a neutral

stability curve for the conduction-dominated flow regime. For .01 < Pr

< 10, the variation of the critical Grashof number was found to be less

than .7 percent. Hence, for Prandtl numbers in this range, they

determined a single critical Grashof number of 7,880 at a wavenumber

of 2.65. Also, their analytically obtained stream function plots for
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the secondary flow qualitatively agreed with related flow pictures

obtained experimentally.

Thomas and Vahl Davis (1970) numerically studied natural convection

between vertical cylindrical annuli, with the inner cylinder being at

a higher temperature than the outer. (Note that a similar study with

more basic results can be found in Vahl Davis and Thomas, 1969.)

They solved the unsteady vorticity and energy equations using an ADI

scheme. For an aspect ratio of H = 25 (length of annulus to gap

width), and a Rayleigh number of 22,500 (based on gap width), they

observed an unsteady type of multicellular flow for Pr = 1.0. This

phenomena was similar to that reported by Elder (1965), except that

Elder's secondary flow maintait.:d the steady-state condition.

Korpela et al. (1973) used linear stability theory to examine

the stability of the conduction regime for natural convection in a

vertical slot. For Pr < 12.7, they claimed that the instability set

in as horizontal cells. They observed a critical Grashof number of

7,932, at a wavenumber of 2.65, for Pr = 0. This particular type of

instability was thought to be hydrodynamic in origin, resulting from

the vorticity distribution of the base flow.

Korpela (1974) studied a problem similar to that described above,

except in this case, he assumed that the narrow slot was maintained

at an angle 6 with the vertical. For Pr < 12.7, he found that the

instability set in as transverse travelling waves for small angles of

inclination, and that longitudinal cells formed as 6 reached a certain

value. In the range of .24 < Pr < 12.7, he determined that the

*V*V *V~ %*. ~ ~. . . .;. % -. -h-. ~ % *% ~ .,'
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instability would lead to horizontal cells for angles close to the

vertical, whereas longitudinal cells would result as the slot was

further inclined. For Pr < .24, he claimed that only horizontal

cells were possible and that the stability of the flow was mainly a

function of Pr tan 6.

Pepper and Harris (1977) numerically obtained 2-D natural

convective flow patterns in rectangular and annular vertical cavities.

The energy and vorticity equations were written in divergence form and

were solved using central-differencing with a strongly implicit

proch: re. 'or the rectangular slot with an aspect ratio of 10, for

Pr = 1,000, they obtained a weak multicellular flow pattern at a

5
Rayleigh number (based on gap width) of approximately 5 x 10

Seki et al. (1978) performed an in-depth experimental analysis of

natural convection in narrow vertical rectangular cavities. They

considered transformer oil, water and glycerin as the working fluids.

All three fluids yielded a multicellular type of secondary flow at a

certain Rayleigh number, Ra based on the height of the slot. For

oil, as the temperature differe ice was increased, they noticed a

tertiary flow with counter-rotating cells, until finally, the flow

near the upper region of the hot wall became unsteady and turbulent.

For the oil, for an aspect ratio of 15, the secondary motion

began at RaH = 6 x 108 and the transition to turbulence took place at

about RaH = 1.5 x 1010. They concluded that the flow field more easily

shifted from laminar to transitional flow as the Prandtl number

decreased and the cavity width increased. Another interesting

...............................-....



43

description of these secondary and tertiary motions can be found in

Vahl Davis and Mallinson (1975).

Using linear theory, Choi and Korpela (1980) studied the stability

of the conduction regime for natural convection in a vertical annulus.

They found that for all Prandtl numbers, the instability set in as

an upward travelling wave. Hence, stationary cells were no longer

possible as with the vertical slot geometry. For low Prandtl numbers,

the larger the curvature, the more stable the flow, while the reverse

was true for the higher Prandtl number fluids. From experimental data,

the measured wavelength of the cells was in good agreement with their

linear analysis.

Orszag and Kells (1980) studied the role of two- and three-

dimensional finite-amplitude disturbances in the breakdown of plane

Poiseuille and plane Couette flows. To determine the evolution of

these disturbances, they solved the 3-D time-dependent Navier-Stokes

equations using spectral methods with Fourier and Chebyshev polynomial

series. They claimed that the 3-D finite-amplitude effects produced

strong inflexional velocity profiles that eventually caused the

transition to turbulence; whereas the 2-D disturbances proved to be

much less destabilizing, and seemed powerless for Reynolds numbers

below 3,000. The contour velocity plots due to the 3-D disturbances

evolved into a 'cats-eye' pattern very similar to that observed by

Lee and Korpela (1983) and Elder (1965) in their study of multicellular

natural convective flow in a vertical slot.

,.,.
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Lee and Kurpela (1983) succeeded in numerically resolving

multicellular natural convective flow in narrow vertical slots. They

attributed their success to the 4th-order differencing method of

Arakawa (1966), which was used in approximating the nonlinear

convective terms. The important buoyancy term for the vertical slot

geometry was represented by the single component, 3T/3x, in the

vorticity-transport equation. This resembled the buoyancy term

obtained in the boundary-layer equations of Chapter 4 of this thesis,

where the term reduced to simply aT/3r at t = 900 (see Figure 3.1 and

Eq. (4.25b)). They were able to obtain steady multicellular flow for

Prandtl numbers ranging from zero to 1,000. However, as the Prandtl

number increased, the aspect ratio (H) had to be increased

significantly in order to trigger the multicells. For Pr = 0, and

H = 15, they obtained a secondary-flow transition to six cells at a

Grashof number (based on gap width) of 8,000. This number agreed

quite well with their analytical prediction of 7,932 derived in

Korpela et al. (1973). The six cells formed in the vertical slot

appeared fairly constant in strength. They were not sure whether a

further transition to periodic flow was possible for this 2-D flow or

whether the next physically important structure was a 3-D steady or

periodic-type flow.

2.7. Concluding Remarks

This literature review discusses the various assumptions and

solution methods employed by researchers in studying natural convection
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between horizontal concentric cylinders. Some contradictory

conclusions and results have been highlighted. Of particular

importance, experimenters have verified that for air at high Rayleigh

numbers, a multicellular flow is possible near the top of narrow

horizontal cylindrical annuli. However, not all numerical investigators

confirmed this fact. It seemed that the transition to multicells could

not be captured due to either first-order upwind differencing of the

convective terms, or a lack of numerical stability experienced when

approaching high Rayleigh numbers. Thus, it appears that at least

second-order accuracy is a prerequisite for resolving this multicellular

type of instability. In addition, for this geometry there appears

to be a void in the research regarding the possibility of related

hysteresis behavior associated with the transition to multicells.

Also from this literature review, it can be seen that the

potential multicellular flow in the vertical portions of narrow

horizontal annuli, as described in this research effort, has not been a

examined.

,'
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3. MATHEMATICAL ANALYSIS

In this study, the Boussinesq approximated Navier-Stokes equations

and the viscous-dissipation neglected thermal-energy equation will be

used to determine the buoyancy-induced steady or unsteady flow fields

between horizontal isothermal concentric cylinders. The Boussinesq

approximation states that density perturbations are only felt in the

body force terms and can be neglected in the acceleration and viscous

components. Furthermore, the vorticity-stream function formulation of

the Navier-Stokes equations will be adopted. Using this approach

completely eliminates the pressure gradient terms and automatically

satisfies the conservation of mass principle. An added advantage is

that stream function and vorticity contours are well-suited for

visualizing and analyzing the flow.

3.1. The Physical Model

a. The model is unsteady and two-dimensional (see Figure 3.1).

b. Initially, the fluid is at rest.

c. The cylinders are assumed horizontal and isothermal, with the

inner cylinder temperature exceeding the outer.

d. Laminar fluid motion is induced by buoyancy effects. The

fluid is Newtonian.

e. All material properties are assumed constant. Density

variations are allowed to occur via the Boussinesq

approximation.

SI
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1800

Figure 3.1. 2-D concentric cylinder geometry
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3.2. The Complete Set of Governing Equations

Before formally deriving the dimensional and nondimensional forms

of the governing equations, the complete system of equations will be

given below. This is done to provide for easy access when the equations

are numerically solved or referred to in subsequent chapters of this

thesis. The dimensionless system of coupled partial differential

equations is

Thermal-energy:

2 TfT 3fT 1 2+ (r + !)- al / r = { r

TtG DrT ; rar2

+ (r + !)- IT-+ (r + L)-2 1
2 T} (3.1a)

Vorticity:

2-w 1-1 3f 3@w 3£f 3w)

Pr {G2  + (r + ) (afa f -r-)

= Pr {2w + (r + L)-) Iw + (r + L)-2 a2w

ar2  G 3r G 2

+ G(Ra) (sin T + cosp 2T
3r (r 1 ) (3.1b)

Stream function:

32f 1 lf 12 2

a2f+ (r + !l@+ (r + -2 -p- G2w (3.1c)
G r G -_-

while the related boundary conditions are

WA'.-
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p.

at r 0 (inner cylinder):

T 1 2.f

G arf

f: 0 (3.1d)

at r 1 (outer cylinder):

T= 0

12
W 1 a2f I

f :0 (3.1e) "

The derivation and explanation of important terms and symbols, together

with the boundary and initial conditions, follow in the next two

sections.

3.3. The Dimensional Formulation

3.3.1. Governing equations in primitive variables

Four governing equations are needed in order to describe the

transport of mass, momentum and energy between the horizontal

concentric cylinder geometry. These equations are written in terms of

primitive variables using polar coordinates (r,ip) (see Figure 3.1).

The bar over the variable signifies a dimensional quantity. The radial

and angular coordinates are given by r and p, respectively. T is the

...
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temperature and t denotes time. The radial velocity is represented by "'

u and the angular or tangential velocity is given by v. P is the .,

pressure term, while ,o and at are the momentum and thermal diffusivities,.,

respectively. Lastly, p is the density and F is the body force term

in the equations of motion. The 2-D governing equations in primitive

variables are

Equation of continuity:

u + + 3v 0 (3.2a)

ar r r p

Equations of motion:

-2
Du -2 - + V2- u 2 - -

Du v _ -l_ + (Vu u- - - ) + F (3.2b)- -2 -2  r

Dt r 3r r r

Dv + uv..-l jp + v( 2  v 2 au -,"

4- - _ - -2 +r2v) + (3.2c)

Ot r pr aW r r DIP

Equation of thermal-energy:

Dit V2 T (3.2d)

Dt

where D/Dt, the substantial or material derivative, represents a

combination of the local and convective changes of a particular property

(usually associatea with the acceleration terms), and is given by

D _ + +

Dt 3t 3r r 3q.
S

o'4

"9
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Also, 12 (the 2-D cylindrical Laplacian) is given by

2: 2 + + 1 2 2(3.3)

ar r ar r

The centrifugal acceleration term, v2/r, in Eq. (3.2b), represents

the effective force per unit mass and volume in the radial direction,

resulting from fluid motion in the angular direction. Whereas, uv/r in

Eq. (3.2c) designates the Coriolis acceleration, and represents the

effective force (per unit mass and volume) in the angular direction

when fluid motion occurs in both the radial and angular directions.

It should be noted that these two terms arise automatically upon

transformation from rectangular to cylindrical coordinates (Bird et al.,

1960). The F terms in Eqs. (3.2b) and (3.2c) are due to the buoyancy

force. They can be evaluated with the aid of the Boussinesq

approximation, which allows density to be variable only in the body

force terms of the momentum equation. The corresponding change in

fluid density with temperature is related by

, -Po - (T - T0)

where po0 T represent property values evaluated at some known

reference state (e.g., the initial density and temperature of the

fluid within the annulus), and B is the coefficient of thermal S

expansivity, which becomes the negative reciprocal of absolute

%$
* p* * * '.4** *~********~* ~ * -. ~.. ~
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temperature for an ideal gas. One can regard the expression for p as

the first two terms of a Taylor-series expansion about T . The net
:!L _ 

0
body force term, Po g j, can now be broken down into its radial and

angular components:

- To)J = -g(T - T )Cosp e-g( -T0) 0 r

+ ga(T - T )sin e (3.4)

where g is the acceleration of gravity.

The Boussinesq approximation is normally considered quite accurate

when dealing with laminar-type flows, especially for Prandtl numbers

ranging from near zero to one and for small AT (AT - 0 (150C) or less)

(Gray and Giorgini, 1976; Hessami et al., 1984; Mahony et al., 1985).

As a final note, the viscous dissipation term has not been included

in the thermal-energy equation. This term is usually only significant

in high-speed flow applications, or for laminar flows subject to large

decelerations (Gebhart, 1962).

3.3.2. Governing equations using the stream function-vorticity approach

The stream function (f) is defined in such a way so as to

automatically satisfy the continuity equation. It is valid for all

two-dimensional flows, both rotational and irrotational, and can be

defined as:

- - -
u - _ and v - (3.5)

r p

I
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The number of dependent velocity variables has now been reduced by one.

Physically, for 2-D incompressible flows, the volumetric flow rate
,5

between two streamlines is given by the difference in f.

To further simplify the remaining governing equations, the

vorticity-transport equation will be derived by taking the curl of the

Navier-Stokes equations. To begin, the equations of motion for a

Newtonian fluid of constant density and viscosity will be written in

vector form (which is valid for any coordinate system):

at + (v - v + ' 2 F B (3.6)

Note that V +- e. in 2-D cylindrical coordinates, and v

rr ~

represents the velocity vector. Next, the convective term in Eq. (3.6)

is expanded using the following vector identity:

(v • 7)v -V(v v) -v x (V x v)

Then, since vorticity (which physically represents the rotation of

an infinitesimal fluid particle) is given by

and by utilizing other appropriate vector identities along with the

continuity equation, one obtains the following result:

°.
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t+ (V • )w = (w V V)v + VVw + V x FB (3.7)

The left side on Eq. (3.7) describes the total rate change of particle

vorticity. (w • V)v, which represents the rate of stretching of

vortex lines, is identically zero for 2-D flows since the vorticity

vector in the 2-D case is always perpendicular to the plane of flow.

2-
OV w signifies the net rate of vorticity diffusion due to viscous

effects. The last term, V x FB9 represents the rate of internal

vorticity generation due to body forces, which result from significant

density perturbations in natural convective flows (Panton, 1984).

Note the fact that the pressure term does not appear explicitly in the

vorticity equation. Thus, the vorticity and stream function (velocity)

fields can be determined without any prior knowledge of the pressure

distribution (Currie, 1974).

Using the result of Eq. (3.4) to evaluate V x FB, and upon

substituting the stream function for the velocity terms, the final form

of the vorticity-transport equation is obtained, namely:

w + 3(f,w) - ~sn T++ (3.8aB_ w +I__ _ :g(sin __T + cos' 1) + v2w (3.8a)

at r 3(r, ) 3r r 3

and likewise, the thermal-energy and stream function equations

simplify to:

2T + (fT) C 2 (3.8b)

at r a(r,f)

I
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2?

W V f (3.8c)

where V2 is the same as in Eq. (3.3), and the Jacobian, a(P,Q)/a(x,y),

is defined as

3 =y ax ay ay 3x .'

Equations (3.8a, b, and c) are the three coupled governing equations

that describe the dependent variables w, T, and f for the horizontal

annulus.

3.3.3. Boundary conditions

The energy, vorticity, and stream function equations are all

second-order partial differential equations. Therefore, two boundary

conditions (in each spatial coordinate) for each equation are needed

to properly define a well-posed mathematical problem. For

temperature, isothermal cylinders are assumed, with the inner

cylinder being hotter than the outer one. Thus,

T T at r a

and

T = T at r = b , (3.9a)
0

where Ti is greater than TO .

Since both u and v are identically zero at the stationary cylinder

walls due to the no-slip condition, the vorticity boundary condition

'-9
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becomes:

-
2i -

w =7:- at r = a and r = b (3.9b)

Again, because of no-slip at the walls, the stream function must remain

constant and can be taken as:

f = 0 at r = a and r = b (3.9c)

Since the complete annular cylindrical space (0-27T) is being analyzed,

the following boundary conditions (in I) are needed because of

continuity at zero and 27r radians:

¢o = 
2Tr

and - 0 1 for any given r, a < r < b (3.9d)3(3.9d)iPo BP 2rr

where takes on values of either temperature, vorticity, or stream

function.

For certain cases (as will be described in the numerical analysis

of Chapter 5), symmetry about the vertical axis will be assumed. In

these cases, the condition defined by Eq. (3.9d) will be replaced by

the following symmetrical boundary conditions:

f w = 0 and-- - 0 at P - 0 and 7 radians (3.10)
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3.3.4. Initial conditions

Since initially there is no fluid motion, the initial conditions

for this problem are straightforward. Thus,

f = w = 0 and T = T( 3.11a)

throughout the annulus, except at the walls where:

T = T. and T = T (3.11b)
1 0

at r = a and r = b, respectively.

Prescribed initial conditions, other than "zero" fluid motion,

will be used in this study when checking for hysteresis loops. These

conditions will be briefly discussed after the nondimensional formulation

is derived in the next section.

3.4. The Dimensionless Formulation

The advantages of casting equations in dimensionless format are

that first, it helps transform the mathematical or numerical results

into a simpler (normalized) form, thus allowing for better graphical

interpretation. Second, measurement scales are no longer an intrinsic

part of the physical quantities, so that any laws governing physical

variables are valid for ill iilerent ),easurement systems (Panton,

1984 . Most i~rnortart , n(ndimensionalized, fewer

variables are rou'pi: rc W' Us needed to

specify a ar' " . .. r .'' -r'I.

.7... . .. . . . . *.. **-~~**K . %
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3.4.1. Coordinate transformation

The radial coordinate is nondimensionalized so that the outer

boundary at r = b is transformed into the unit circle r = 1 (see

Figure 3.2). The inner boundary, r = a, is transformed into the pole,

r = 0. The following is then obtained:

r = r- a = (coordinate (3.12a)

b -a transformation)

and the other independent variable, time, is scaled as

t =t V-2(3.12b)

a

3.4.2. Governing equations

The remaining dependent variables are now scaled to produce the

following dimensionless set of dependent variables:

T T0
T = T (temperature) (3.12c)

1 0

a2

w = w a (vorticity) (3.12d)

f =- (stream function) (3.12e)

Equations (3.12) can now be substituted into Eqs. (3.8a-c),

yielding the following nondimensional governing equations:

• ...- -..-. ..- .-. -...y ..... ., ...- -. --.- -...-. ... ... -. .-. ....., ..- -.. -.. ..o- ..- -,- ... .-.... -. .I
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-49

Op)

400

Figure 3.2. Dimensionless coordinate system for the concentric

cylinder geometry
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Pr{ w+ (r + I)-I r v

aT +cosWb aT

+ Ra {sin -+( + -') I (3.13a)

3r (r + -1)-W

Tt G 3~(r,flT) -

V2 f = G2w (3.13c)
2

where

2+ (r + 1-a

2 ar 2  G 3 r G 2

and again,

W Q =P _ VQ P 2

ax ay ay ax

Also,

Pr = (Prandtl number) (3.13d)

gaa 3 (Ti - To) (Rayleigh number

Ra = based on the inner (3.13e)
V a radius, a)

and G = b - a (gap number) . (3.13f)
a

G was chosen such that as the inner radius (a) approached the outer

radius (b), the gap number would tend to zero.
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.e

Therefore, the three dimensionless groups brought forth from this

analysis are G, Pr, and Ra. These three variables will be used to

simulate the various flow conditions and geometries under consideration.

The Rayleigh number alone is normally considered the critical parameter

which predicts the onset of thermal and/or hydrodynamic instability

(variations of this will be discussed in Chapter 4), and can be

interpreted as the ratio of the destabilizing buoyant forces to the

stabilizing viscous forces. The Prandtl number characterizes the

fluid, and the gap number identifies the geometry.

In the formulation of Eqs. (3.13), the variables w, f, and t were

nondimensionalized with v instead of a. This was done in the hope that

for Pr < 1, the numerical stability of the problem would be enhanced.

For these low range Prandtl numbers, investigated in this study, the

flow field should be thermal-diffusion dominated. This is consistent

with the thermal-energy equation (Eq. 3.13b); that is, as Pr decreases

from one, the diffusion-side of Eq. (3.13b) increases. Representing

the equations in this nondimensional form better supports diagonal

dominance when the equations are solved numerically, since less

emphasis is given to the left-hand side (off-diagonal contributing)

nonlinear terms.

The Jacobian terms in Eqs. (3.13a and b) can also be written in

terms of the velocity variables, where u and v are:

- 1 a (radial velocity) (3.14a)

G(r + )
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and

• v = f v () (tangential velocity). (3.14b)

With these substitutions, the dimensionless governing equations in

(3.13) become:

Energy:

2 3T 3T vG 3T
G + uG 3 (+ 1)

I (r+ -)3

1 32T 1 3T 1 32T

Pr r2  13r 12 2 (3.15a)= r r (r + ) r (r + 2

Vorticity:

Pr {G2 w + w vG w
Tt ar (r + WBi

a Pr {2 w  I N 1w a 2wPr r+ (r+ - }

-." 2 r - )I (r + _)2 3 2

1T 1od 3T
G 1

G(Ra) {sin T + osP aT (3.15b)r +l)3

Stream function:

+ 1 I a 1 2 f 2+ 1 r 1 2f G w (3.15c)

3r (r + )r (r +) 2

--
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Equations (3.15a-c) were written in the above form so as to facilitate

the asymptotic analysis that will follow in Chapter 4, in which the

double-limit of Ra and G 0 is examined.

3.4.3. Boundary conditions

The nondimensional boundary conditions for this problem are

obtained by substituting Eqs. (3.12) into Eqs. (3.9). They are given

in Eqs. (3.1d) and (3.1e) for r = 0 and 1, respectively.

The continuity boundary condition applies at zero and 27T radians,

and is similar to that described in Eq. (3.9d), except that

dimensional variables are now nondimensionalized. Likewise, if

vertical symmetry is assumed, one gets:

fw 0,'T _0 at= 0 and radians (3.15d)

3.4.4. Initial conditions

The dimensionless initial conditions are essentially the same as p

those listed in Eqs. (3.11). That is, for the entire annulus,

T f = w 0 , (3.16a)

except at the isothermal walls, where:

T = I at r =0

and

T = 0 at r = 1 (3.16b)
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Again, these initial conditions arise by assuming that initially the

fluid is motionless, or Ra = 0. Thus, the problem initially reduces

to the I-D steady-state conduction case for a cylindrical annulus.

However, when numerically searching for transitional Rayleigh numbers

and hysteresis behavior, initial conditions other than "zero" are

used. These procedures will be outlined in detail in Chapter 5.

- . . -...
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4. ASYMPTOTIC ANALYSIS

In this chapter, a high Rayleigh number/small-gap asymptotic

expansion theory is described in which the 2-D Navier-Stokes (N-S)1

equations collapse into cartesian-like boundary-layer equations.

The purpose of this analysis was to gain a deeper understanding

of the transitional tendency toward multicellular flow in narrow gaps,

especially with regard to the mechanism that triggers the multicells.

To understand this mechanism, key points had to be resolved: (1) does

the source of instability originate from thermal or hydrodynamic

effects, and (2) once determined, do these effects ever coexist or does

one always outweigh the other?
N'

Also from this asymptotic analysis, results were obtained which

serve as convenient checks for the pretransitional nurierical results

generated in the flow bifurcation study of this research effort.

At the high Rayleigh number limit, the annular flow field can be

divided into an inner and outer boundary-layer with an inviscid core

in the center. In general, the boundary-layers are noninteracting,

which disallows an inviscid core solution to be arbitrarily set.

Also, since inviscid flows are nonunique, the correct core solution must

be chosen in order to avoid a singularity at separation (Goldstein,

1948). Since the correct inviscid solution is usually not known a

priori, one needs a type of interactive boundary-layer theory which

1Throughout this chapter, the 2-D N-S equations refer to those

outlined in Eq. (3.15).

1"1
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supports separation. A good way of devising such a theory for this

particular geometry is to look for the point where the boundary-layers

merge. Then, the inviscid core can be asymptotically matched with the

boundary-layer to verify the small-gap boundary-layer structure.

Work begins with the construction of inviscid core expansions for

Ra - and G - 0. This construction is necessary to facilitate a valid

match of the core and boundary-layer tangential velocities, which, in

turn, provides for the correct scaling of the boundary-layer variables.

4.1. The Inviscid Core

For finite values of the coordinates, the viscous terms in the

2-D N-S vorticity equation can be neglected in the limit as Ra 0..

This results in an inviscid vorticity equation in which the buoyancy

forces are balanced by the convective acceleration forces at

steady state. Since vorticity is represented as the curl of the

velocity field, and because the gap scaling has been taken care of in

the nondimensionalization, one can assume that velocity expands like

vorticity, which gives

w ~ u ~ v - Ra I/12

c uc V

by inspection of the inviscid vorticity equation. More formally, the

following expansions can be substituted into the inviscid vorticity

equation to provide the same result to leading order, namely,
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uIN 6 u +6 uN +
c 0 00 1

vc =6f v+ 6,v +

T Y YT + Y T + *. (4.1)
0 0 1

where 6 1/2
whre6 Ra .Likewise, upon substituting the expansions for f

and w into the stream function equation, one gets

TO-6 0 - R /

Similarly, because velocity scales become large as Ra - ,the viscous

terms in the energy equation can also be neglected. Assuming that

temperature is of order one in the core, from the anticipated match

with the wall boundary-layers, Y 0 - 1. Thus, to first order, the

inviscid core expansions become:

1/2
%4uc= Ra u0 +0(1)

Vc v0 +0

wc =Ra1' w0 + 0(1)

fN Ra' fN + 0(0)c 0

T +=0TR+ 1/2) (4.2)
0

With these expansions, the inviscid governing equations, for a finite-
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gap inviscid core, take on the following form (to first order in the

limit as Ra - )

Energy:

G-T+ G u 0  + G V T 0 (4.3)
atr r +- 1 (43)

Vorticity:

r2 aw  w0  G aw 0
Pr {G - + u0 G - + 1

at r +-

3T0 CO DT

G {sini-+ 1 wi (4.4)
Dr r + a

Stream Function:

2 2o
+_ 1 afo 1 22

2 + 1r + - G w (4.5)
r 2  r + G (r + 1)2 3 2 0

*G

where t = Ra 1 2t.

With the above time-scaling factor, the local acceleration terms

are retained in the governing equations. Although steady-state

analytical solutions are sought, the unsteady terms enable one to solve

the equations numerically by marching in a time-accurate fashion. Thus,

the capability exists for resolving either steady or unsteady effects

within the resulting flow field. Also of importance, the Rayleigh

number dependence, which was one of the key dimensionless parameters

in the 2-D N-S equations, has been completely factored out in

Eqs. (4.3) and (4.4).

,''.''% .. 'v_,. , , ,± 6 _" ' 
'

"" '" " " "- 4 '"*" U '
.

' '
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'
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Considering the limit as G 0 0, the curvilinear metrics drop out

and new scales are obtained in order to retain all the nonlinear

convective terms while satisfying the stream function equation:

u - G u0 + O(G
2)

v-v+ 0(G)
0 0

wo 0~ G-  w + 0()

f- G fo + 0(G2

T - T + 0(G2) (4.6)00

Neglecting terms of O(G 2 ) and higher, relative to terms of O(G),

Eqs. (4.3) through (4.5) become:

Energy:

;T 3T DT
- + v - 0 (4.7)

at

Vorticity:

0 0 ; w 0o (4.8)
Pr {-- + u 0  

+ vo a (4

at

Stream Function:

2-.

o = w (4.9)

.ro . 0
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In these equations, the G dependency, which was again important in the

2-D N-S equations, has also vanished. The stream function equation

appears to be in boundary-layer format, as should also be the case for

the energy and vorticity equations when the viscous terms are included.

The inviscid (ore equations can satisfy the flow tangency condition,

but cannot satisfy the physical no-slip condition that must be met

at the walls, where the viscous terms play their important role. At

this point, one gathers from Eq. (4.8) that the gravitational terms

have reduced to simply sin 3T 0 /9r, as G - 0. This first-order term

is essential in driving the buoyancy-induced flow field, and its effect

seems just as significant in the adjacent boundary-layers, as will be

shown in the next section. Note, however, that the gravitational

term proportional to cosW 1T /31P comes in as a second-order

effect within the small-gap inviscid core solution. But its effect

should prove negligible (or of much less importance) within the

boundary-layers since being consistent with boundary-layer theory,

3T/3<< aT/ar.

4.2. The Boundary-Layer Expansion

To incorporate the higher order viscous derivatives, the inner

radial coordinate is stretched as

r-a rGa

where 5 is the inner boundary-layer thickness. Then, in it', tran, .,r"en
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3f

state, the tangential velocity (v T- r) within the boundary-layer,

VBL' becomes (for a finite-gap size):

1 3f

VBL - 6 R (4.11)

and due to asymptotic matching principles, one must have

V Vc O(Ra 2) .(4.12)VBL vc

For this condition to hold, the stream function variable within the

boundary-layer must scale as

fBL 0(6 Ra /2 (4.13)

The raiial velocity (u - -+ ) then goes as f (for finite-gap),

or

uBL 0(6 RaI/2  (4.14)

From the definition of vorticity, one gets

VYBL )(Ra I  ' (4.15)

A e' ' L _ 'r , i n trie core, it must also match

. " - . .'."., . " " us the boundary-layer

7. . . . . . . . . .
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expansions are:

UBL = Ra1/2 U° +

VBL Ral/2 V0 +...

Ra/2
WBL W +....

fBL 6 Ra l / 2 Fo +

TBL T + (4.16)

Using the above boundary-layer expansions together with the fact that

6 - 0 in the limit as Ra - , one can reduce the 2-D N-S equations to

the following form.

Energy:

Ra1/2 1 ;T oo+ VTo a __T

R a 0 * R a 4 - 2 2 -

Vorticity:

;W oo + o W Pr • a o

a t 0  a W S 2 Ra 1/2 R
2

JT

+ sin R

Stream Function:

'2F a 2 W°  (4.17)

77 Wa

a"
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and again, t : Ra 1 2t.

These equations clearly bring forth the scaling required for the

boundary-layer thickness, that is

R- 1/4
- Ra-'1  (4.18)

where the 1/4 power is typical for natural convective laminar-type flows.

Using Eq. (4.18), the boundary-layer expansions become:

1/4 14UBL Ra U0 +

112
VBL Ra V0 + 0()

W6L Ra 3/4 

.+ 
(Ra1/ 4

f Ra /4F + 0(Ra 1 "4 )
BL o

T = T + O(Ra -1/2) (.19)TBL To

Physically these expansions make sense, since within the boundary-layer,

vorticity should be much larger than the stream function or velocity

components, and the tangential velocities should be greater than the

radial velocities for this particular flow geometry. Also, following

the same aforementioned steps, the outer boundary-layer thickness can

be shown to scale in the same manner as the inner one.

Now, as G 0 0, the boundary-layers must merge at some point

giving

" i m-- ' ""¢.. . "'" """" " "" """ ' " " " " . . . . . . . . . ....... . . . . I
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2 G a (4.20)

Knowing this relation, G must then scale as 6 or

G Ra - I 4  
(4.21)

Substituting Eq. (4.21) into Eq. (4.6) and placing the result into

Eq. (4.2), yields the inviscid core expansions as

u = Ra
4 uuC U0+

v = Ra 2 v +
c o

w Ra3  w +
c 0

f = Ra1/4 f +
C 0

T r T .. . (4.22)

Comparing Eq. (4.22) with (4.19), one can claim that at the point

where the boundary-layers merge, the 'outer' or core expansions do

indeed match the 'inner' or boundary-layer expansions.

4.3. The Analytical Cell-Development Regime

Since the radius ratio b/a is of 0(l) for narrow gaps and Eqs.

(4.17) are independent of 1j, the boundary-layer expansions do not have

to be rescaled to avoid losing any nonlinear physics as G 0.

%
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Therefore, it can now be inferred that the dependent variables in the

governing N-S equations will scale the same as in the boundary-layer

for the double limit of Ra - and G - 0. Thus, we take

G = Ra"1 /4 G (4.23)

and the expansions

u = Ra
I/4 u + O(Ra-1/4)

v = Ra1/2 v + 0(I)

3/4 1/4
w = Ra3 4 w + O(Ra / )

f = Ra
1/4 f + O(Ra

-1 /4)

T = T + O(Ra - 2) . (4.24)

With Eqs. (4.23) and (4.24) in-hand, the 2-D N-S equations collapse into

Cartesian-like, boundary-layer type equations. In final form, they

become:

Energy:

-2 3T f @T f aT 1 2  (4.25a)G _+ G i _ a-- r- ---a i Pr (4.25a

9t Dr

I
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Vorticity:

62 Pr-+G Pr{ fw + 2f aw

Pr a 2 + G sin * Dr (4.25b)

Stream Function:

2 G2 w (4.25c)

r2

with related boundary conditions of:

S(0,') : 1, T (1,') : 0 (4.25d)

(0,) : f (I,4) 0 (4.25e)

(0,4') GI r2  (4.25f)
Tr r=O,l

where again, G, the scaled gap, is defined as

= Ra1/4 G (4.26a)

and the time-term is also scaled the same as in the boundary-layer, or

t Ra112 t (4.26b)

I
~' V .V~~V .V ~V*..~ ~\f* J '~ I._

.1* ~ "
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Equations (4.25) represent the key governing equations for arbitrary

Prandtl number in the double limit of Ra - and G - 0. The numerical

method used to solve these equations will be described in Chapter 5.

These equations can be further simplified under certain limiting

conditions. Three limiting cases will be investigated; namely, the

G - 0 limit, plus the vanishingly small and infinite Prandtl number

limits.

To leading-order, in the limit as G 0 0, Eqs. (4.25) reduce to:

Energy:

2i

Vorticity:

2-
70

Stream Function:

S0 (4.27)

Thus, the energy equation simplifies to the steady-state 1-D

conduction equation, which integrates to

T 1 -r (4.28)

p, ,,., , -, ..- ,.,,, ,.,,-,, . , i ". ., ,- -,,,. .',,.. ', ", ,....,-.- .-. ,..,-. . ..... . ...-.. ..- -,,.,-.,
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for the isothermal boundary conditions of this problem. Also, from

the no-slip condition, the vorticity and velocity components become

identically zero. Hence, convective effects are discarded, and the

temperature field becomes completely determined by the linear

relationship of Eq. (4.28).

From the above analysis, one can conclude that a Stokes-layer or

a conductive/viscous dominated flow field prevails as 0 C. Therefore,

the multicellular regime that is associated with the narrow type gaps

(at high Rayleigh number) most likely reverts back to two cells and

then, finally to a pure conductive mode when the velocities tend to

zero as G - 0 (or G - 0 for a specified Rayleigh number). Contrary to

this result, many investigators (Walton, 1980; Powe et al., 1971; Liu

et al., 1962) believed that as the gap approached zero, a true B6nard

type instability would evolve, where the typical critical Rayleigh

number (Ra b a ) of about 1,700 is approached. Instead, it appears that

after a certain point, the transitional Rayleigh number increases with

decreasing gap size (to well above 1,700), until eventually, a conduction-

dominated flow results as the gap approaches zero (see Chapter 6).

4.4. The Perturbative Solution to the Steady-State

Finite-Prandtl Number Equations

From numerical results obtained in this study, and results

discussed in Powe et al. (1971) and Rao et al. (1985), it can be seen

that the narrow-gap solutions for flows prior to multicellular

transition (and even beyond to a certain extent) behave in a
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seemingly steady-state manner. Assuming the steady-state condition

and using the leading-order solution of Eq. (4.27), the convective terms

in the vorticity equation of (4.25) become zero. From this, w must

then scale as G in order to balance viscous and buoyancy effects, and

upon entering the stream function equation of (4.25), one sees that

f . This logic can be repeated in a successive manner (without

neglecting cross terms) until the following asymptotic expansions are

obtained for the steady-state case:

+ 14 16
T = (l-r) + GT + GT 2 + GIT 3 + O(G1 )

- +5 - 13w -1

w = G Gw +Gw + Gw 3 + + O(G )

- 3l 7f 11 lf + 15 + 9

=G3f+Gf2 +G f3  G 5f4 + O(G
1 ) (4.29a)

while the related boundary conditions are:

T(O,W) = 1, T(l,f) 0 o

f(O') = f(l,,) = 0

r (0,) =- I (IP) = 0 (4.29b)

All of the important physics are included in the first two terms of

the expansions in Eq. (4.29a); that is, the gravitational, viscous and

convective effects are accounted for.
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Substituting Eq. (4.29a) into Eq. (4.25) and matching terms of

like coefficients, yields an infinite set of steady uncoupled linear

partial differential equations. These equations take on tk- following

form:

Energy:

2

-4 1 - 1 - T1  (430 -

Prr3r (4.31)

22

+ ±: 2 + 1 1 2T (4.32)

T r iP 3r 21 r r 9

22

Prf, 2 (4.33)

2 
2

G: -r Pr (4.33)+

95 f w 4 f w

G -Pr + Pr-Pr-_ + s 1nPr . (4.34)

92

Pr - r *. (4325)7

: d jl r. . r\~ 4. r ,-,
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Stream Function:

a2 fl

1 l (4.36)

2 2 w (4.37)

r
2  2

3 3 w3 
(4.38)

Equations (4.30) - (4.38) were solved analytically with the following

result (note: vorticity, temperature and stream function were carried

out to the first three nonzero terms):

(Al) (4.39)
24 Pr

sin (Bl) (4.40)Wl T Pr

T cos (Cl) (4.41)1 44-0 (

96 Pr -P-(A2 + 9-) (4.42)

w sin 2* (C2+D) (4.43)
2 96 Pr P

T2 cos 2 (E2 +2) + cos2(
96 Pr Pr)  34560 (G2)

+ sin2L (H2) (4.44)

34560
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f sin 2* cos (A B3) + cos 2* sin D 3

Pr --- ~-(C3+-

2304 Pr 96 Pr P

96 Pr (3 Pr~ (G3) P

sin (H3)__ 
(4.45)

34560.P

sin 2*cos* B4 cos 2* sin'P0

w3 2304 Pr2  Pr6 Pr P

+ cos 2*P sin E4* F4- + cos * sin *P (G4

96 Pr (E Pr~- 34560 Pr

+ sMn (4.46)

34560 Pr 
(.6

where 
.

2 2
Al =r (r-1) (4.47)

Bl r(r-l) + (4.48)

5 A 3

Cl =r(2r 5 6r 4 + 5r 3 1) (4.49)

and A2 through H4, which are also functions of r only, are given in

Appendix A.

In Equations (4.39) - (4.46), the stream function and vorticity

expansions have the same angular dependence, and to leading-order,

are inversely proportional to Prandtl number. For temperature, however,
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the conductive term (1 - r) and Ti are completely independent of the

Prandtl number.

From Eq. (4.39), it can be seen that, to leading-order, the

stream function is positive for all i at a given value of r (for the half

annulus), and becomes zero at 0 = , T. Therefore, the primary basic

flow does indeed consist of two counter-rotating kidney-shaped cells

as discussed in the literature survey of Chapter 2. It is interesting

to note that the second and third terms of the stream function

expansion are proportional to sin 2*; thus, the basic flow has the

potential of obtaining more than two cells in the complete annulus -

especially when the Prandtl number is sufficiently small (Mack and

Bishop, 1968; Walton, 1980).

Before completing this section, the asymptotic expansions of

Eq. (4.29) will be placed in a compact recursive notation:

(1- r) + z G4n T

n=l n

I 4n-3

n=l 
n

f 4n- l f (4.50)
n=1 n

The angular dependent coefficients (to be denoted by F, W and T) in

Eqs. (4.39) (4.46) can also be written in the following revealing

notation:

I
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F1 1  = sin '

Fm  Wm  sin , m-2 to

3F
n .

Tn  n ; n=l to . (4.51

Since the Tn terms are always functions of cos or squared powers

of sin and cos W, the isotherms must remain symmetric on either nalf

of the annulus. Similarly, since F and W are functions of sinm m

sin 2y or a combination thereof, the angular dependent coefficients

will always be equal in magnitude, but opposite in sign for each half

annulus. Thus, due to the above trigonometric arguments (and since

symmetry is likely enforced by the concentric cylinder geometry),

symmetric (bi-cellular or multicellular) solutions are implied for

either temperature, vorticity or stream function. This observation is

further supported by the analytical and numerical steady-state

calculations obtained in this study (see Chapter 6), along with the

experimental results of Kuehn and Goldstein (1976a) and Powe et al.

(1969). Although this analysis supports the result of symmetric

solutions, especially at very small gaps, the introduction of f61

nonlinear effects (from either the thermal-energy or vorticity equation)

may allow asymmetric solutions to come into play. Therefore, even

though subsequent numerical solutions will concentrate on the symmetric

case, the asyrrnetric possibility should not be entirely rxfled out.

LZ.
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i - (4.53)

Then, using the asymototic expansion result for temperature (Eq. 4.29),

th~e Tollowinq equations for finite Prandtl number can be written:

Nu G

Ra /41440

+ 97 6 387701 +r 9 97934)]

2

G a7 ~-o' 7 -sin 0 1454
~34560 T277~ G 34560 171~- (G 1  (.4

Nu Nu 0  G-1 G ~3 (COS

+ a7  cos 214 [ 1 +

+ 3S6 G ~ 7) G I36 )) + 0( G ).(4.55)
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The first term in Eqs. (4.54) and (4.55), G-, represents the purely

conductive contribution to heat transfer. The convective influence

is provided by the remaining two terms of order 6' and 7.

In the limits as Pr - 0 and Pr - - (see Sections 4.5 and 4.7),

analytical expressions for the inner and outer Nusselt numbers can

also be obtained. Hence, from forthcoming equations (4.76) and

(4.106), one gets:

For Pr - 0:

* *

Nui  = Nuo  = G-I  (4.56)

where G is given by Eq. (4.67), or

G G Pr-I 4

For Pr

N* 6--1 + G3 (cosP + 7 cos 24 1
Nui  : G- + G31440- + 96 (387701}

+ 7COS2 ( _L)} + 67 sin' (1-)}
34560 277 34560 17

+ O(Gl l ) (4.57)

Nu* - 3 (cos' + G7 {cos 21 -1
0  1440 96 (3374633)}

+ 67 cos21 1 + 67 (sin __} + 0(11

+ 34560 + 34560 )

(4.58)
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Equation (4.56) signifies the pure conduction result for Pr 0 0, and

thus, does not retain any convective influence to heat transfer.

Equations (4.57) and (4.58) are similar to those for finite Prandtl

number, except terms proportional to Pr-l have vanished.

4.5. The Zero Prandtl Number Limit

In this section, the previously derived small-gap (finite-Prandtl

number) equations will be used to analyze the theoretical effects as

Pr - 0. From a practical standpoint, the behavior of liquid metals should

fall within this low-Prandtl number approximation, and this analysis has

application to the study of liquid metal-cooled nuclear reactors.

It appears from the literature that Pr - 0 limits have not been studied

either numerically, analytically or experimentally for the horizontal

narrow-gap concentric cylinder geometry. Lee and Korpela (1983) have

studied a similar type of natural convective flow between vertical

slots, where the left wall is heated. They demonstrated that in the

narrow (high aspect-ratio) slots, a stationary multicellular flow

resembling an hour-glass configuration is initiated near the center

of the slot, and appears strongest for the near-zero Prandtl number

cases. But the source of this unique instability is hydrodynamic

rather than thermal, because for Pr - 0, the large thermal diffusitives

that result most probably rule out any type of thermal perturbations.

Realizing this, one can speculate that in the vertical portions of a

narrow horizontal annulus, the same type of hour-glass shaped

hydrodynamic instability is possible. Furthermore, Korpela (1974) and



MMIN 171 Ti 17 IT -~ KV 7V-I- -Z -T

88

Walton (1980) discuss the fact (for flow due to natural convection in

an inclined channel, see Chapter 2) that for Pr > .24, a true Benard-

type thermal instability prevails, whereas for 0 < Pr < .24, a mixture of

thermal and hydrodynamic instabilities result, until finally at Pr = 0,

the instability is purely hydrodynamic. Thus, one might now look upon

the narrow horizontal annulus geometry as a combination of horizontal,

inclined and vertical channels. Both types of instability appear to

have a definite role in the cellular patterns that develop in this

geometry, as a function of Prandtl number. Therefore, the small-gap/

finite-Prandtl number equations derived in Eq. (4.25) may prove useful

in studying the cellular-structure variation with Prandtl number.

But, since the limiting equations for Pr - 0 have not yet been obtained,

the following analytical analysis was conducted.

To begin, let Pr 0 0, and assume again that temperature is of '.

0(l) from the boundary conditions. Then, assume that

w =X 1 W +.... (4.59)

f X2 F ... (4.60)

and consider the stream function equation in (4.25) to get

X 2 ~ 2 X 1 (4.61)

Using Eqs. (4.59) and (4.60), the vorticity equation in (4.25) becomes:

.5'

;.
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G2 PrX 2- + Pr G Xa F 3W 3F 9W
1 at 2 ~ 4 1 TT + Tr-3

=Pr X1 a W + si 'T (4.62)

or

Pr G X2x I - Pr X1 - G ,(4.63)

t

and in order to retain the viscous term,

xl - 6 (4.64)

then from Eq. (4.61),

X2Pr (4.65)

Equations (4.64) and (4.65) are then used in Eq. (4.63) to obtain

G-O(Pr 1 4) (4.66a)

and t- G , which yields from Eq. (4.66a)

t-O(Pr 1/2) (4.66b)
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Thus, let

G = G Pr11  (4.67a)

and

t= t Pr~' (4.67b)

Hence,

X -3/ (4.68)

and

X2 Pr11  (4.69)

With these results, the following expansions can be written:

- -3/4 1/4 (.0

w - Pr W + 0(Pr )(.0

f- Pr-1/4 F + 0(Pr3/) (4.71)

T -T +(Pr) .(4.72)

Also, Eqs. (4.67a) and (4.67b) can be expressed in terms of the key

dimensionless variables, namely:

G Pr-' P ra) 1/

1/2 (~1/2 t
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These new scales, when written in the above form, clearly display

their unique dependency on Ra, Pr, G and t. Upon substituting Eqs.

(4.70), (4.71) and (4.72), Eqs. (4.25) reduce to the following set

in the limit as Pr - 0:

Energy:
~2T

T= 0 (4.73)

'U' Vorticity:

'2 3W 3F 3W +F 3W a G n T
t _ + G { + G sin aT (4.74)at 3TT r2T r2  3r

Stream Function:

a 2F - a2 W (4.75)
3r 

2

The energy equation in this case also reduces to the steady-state

conduction equation. For the boundary conditions considered, the

linear temperature distribution across the gap takes on the following

simple solution:

T = l - r (4.76)

Thus, as Pr - 0, only concentric isotherms should result, regardless

of the flow field that develops. The energy equation has now

completely uncoupled itself from the vorticity equation, and since

..
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Eq. (4.76) gives aT/Dr = -1, the final two governing equations, which

are directly independent of Prandtl number, become:

Vorticity:

^2 3W 3F 3W + F 3W a 2 W
G2 _ + G {_ W T -- G sin (4.77)

at 3r

Stream Function:

"2F 62 W (4.78)

with boundary conditions

F(O,f) = F(l,l) = 0 (4.79)

F (OM = F (lW) =0 (4.80)

These equations will be solved numerically in order to determine if a

hydrodynamic-type instability (similar to that previously described) does

indeed exist for this flow geometry (see Chapter 6 for a discussion of

these results).

4.6. The Perturbation Solution to the Steady-State
Zero Prandtl Number Equations

Assuming steady-state and upon eliminating W, one gets

W G 2 F (4.81)
3r

and

:1
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3F a F _ 3_F_ 4 F 63

G 1- W T r 2 sin . (4.82)I ar ar
The logic used to derive the expansions in Eq. (4.29) when G - 0 can

again be used to derive the expansions for the G - 0 limit. Thus,

considering Eq. (4.82), the stream function expansion should behave as

31 + l 15
FOG(F GF 2 + F3 +( ) (4.83)

and from Eq. (4.78), the vorticity expansion becomes

W G W + GW2 + G W 3 + 0(G) (4.84)

Notice that the power of the coefficients in the above expansions is

identical with those in Eqs. (4.29), as should be the case. However,

in deriving the asymptotic expansions of Eqs. (4.29), the buoyancy

aT
term, G sin ' -T (in Eq. 4.25b), maintained the same order as the

IDr

viscous term for all orders of the vorticity expansion. But for the

Pr - 0 limit, the buoyancy term comes directly into play only in the

leading order W term, where the viscous term is balanced by the

buoyancy force; while in the other terms of the vorticity expansion,

the convective forces are equated with the viscous ones and the

buoyancy effects contribute only indirectly through F1 and WI.

Substituting expansion (4.83) into Eq. (4.82), and matching terms

of like coefficients, yields the following steady-state result:
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G r--4- sin 4 (4.85)

^ 7 a 4 F2_ 3F 13 FI + Fl a 3FI1

G 4 T F r3 3 r rTF (4.86)

Integrating Eq. (4.85), one gets

_ r4 r3 r2
F, sin + c L+ c2  + c r + c , (4.87)

14 3. 2 3 4

while the constants of integration are obtained from the boundary

conditions of Eqs. (4.79) and (4.80) to give:

F = r2 (r-1)2 sin (4
14 (4.88)

Differentiating Eq. (4.88) twice with respect to r gives

W = {r(r-l) + 1} 4 (4.89)
6 2

Using Eq. (4.88), Eq. (4.86) becomes

4F 2 = {6r 5 - 15 r4 + 14 r3 _ 6 r2 + r} 2 sin N (4.90)

ar4  
242

Integrating Eq. (4.90) and applying boundary conditions (Eq. 4.79) and

(Eq. 4.80) yields

..
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F = sin 24'2 96 (B2) (4.91)

and W2 follows as

sin 2(
2 96 (02) (4.92)

where B2 and D2 are the same as those in Eqs. (4.42) and (4.43), and

again, are given in Appendix A.

The equations for F1 , W1 and F2 , W2 take on forms similar to those

in Eqs. (4.39) through (4.43), except that in the former, the Prandtl

number dependency and the coefficients A2 and C2 completely vanish for

the limit of Pr - 0. Then, by neglecting terms A3, C3, E3 in Eq. (4.45)

and A4, C4, E4 in Eq. (4.46) for the limit as Pr 0 0, one easily

obtains solutions for F3 and W3, respectively.

Since F2, F3 and W2 , W3 involve terms proportional to sin 24, it

can be reasoned that these terms must contribute to the potential

multicellular transition of the flow field occurring at some critical

value of G. By performing a simple order-of-magnitude analysis, one

can estimate when these terms become of equal importance with the

leading order expansion terms. From this result, the onset of

multicellular flow can be approximately predicted. Carrying out this

analysis, one finds that the sum of G7 F2 and GI F3 achieves the same

order as G F1, when G = 7.2. Similarly, for vorticity, G 2 and OW3

achieve the same order as GWl at G = 7.5. Hence, the critical value

of G appears to be about 7.
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For the pretransitional cases, the first-order expansions of

Eqs. (4.83) and (4.84) provide good approximations in describing the

behavior of stream function and vorticity (respectively) for the limit

as Pr - 0. Since it is likely that terms beyond F3 and W3 play

dominating roles in triggering the instability, the critical value of

G might be lower than that predicted by the above order-of-magnitude

analysis. To properly estimate this value, the full effects of

nonlinearity must be taken into account. This will be done in Chapter 6

when the equations are solved numerically. Considering the above

discussion, one obtains the following relations:

F 2 2 sin 'PF G r (r-1) 24 (4. 3)

W 1 sin 'P
G {r (r-l) + } s2 (4.94)

Equations (4.93) and (4.94) represent analytical profiles for the

steady-state pretransitional stream function and vorticity, which

are valid throughout the annulus (0 - 2T). Comparisons to related

numerical results will be given in Chapter 6. From these relations,

it can be seen (for the half-annulus) that the vorticity given by

Eq. (4.94) takes on positive values within the boundary-layers (for

r near zero and one), and negative values within the inviscid core.

The stream function (from Eq. 4.93) always remains non-negative, since

the r terms are squared. This reasoning can be extended throughout the

entire flow field, at least for the bicellular case.
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Referring to Eqs. (4.93) and (4.94), it can be seen that any

resulting bicellular profiles must be symmetric with respect to both

the vertical and horizontal centerlines, or at O=, T, T and L2r2' 2 n .Ti

suggests that for the Pr - 0 limit, the pretransitional flow fields

are completely symmetric, although the possibility exists for the

occurrence of asymmetric solutions due to nonlinearity, especially

after the onset of instability. In addition, for the half-annulus

basic cell-structure, the stream function achieves its maximum, and

vorticity its maximum or minimum (depending on r), at P = j for any

particular r location.

Furthermore, because the extremum stream function location

occurs at (or very near) T2 2j r for Pr - 0, and since the buoyancy

term sin ip reduces to -sin i for this case, one can speculate that
@r

the upward or downward shift in the stream function's position (caused

by an increase in Rayleigh number) is probably dependent upon the

T
magnitude of L-and the type of fluid used - or the value of Prandtl

number.

4.7. The Infinite Prandtl Number Limit

To properly complete the analytical analysis of this particular

flow geometry, the other end of the Prandtl number spectrum will be

considered. Thus, simplified governing equations are sought for the

Pr - ' limit. Many important fluids (such as glycerin and most oils)

possess a large Prandtl number dnd should be fairly accurately described

by the infinite Prandtl number approximation.
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Let Pr o and assume again that temperature is of 0(1); then let

=n2 f+....

T + .... (4.95)

Substituting the above into the finite-Prandtl number equations of

(4.25) gives

Energy:

G 2 . Pr- afDT f D a T
r n2 r r -- 7 (4.96)

Vorticity:

'2  Pr TI T + n2nl Pr af aw + f aw

at

: -Pr a + G sin 9- (4.97)

3r a

Stream Function:

2-

rn2 a f TI w (4.98)

In the limit as Pr 0, for G and T of 0(1), n, in the viscous term

of the vorticity equation must go as 1- so as to maintain the same

order as the buoyancy term, which is also regarded as 0(I). Now the

;61
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stream function equation must be satisfied; thus from Eq. (4.98), one

obtains

1
n2 -~ l Pr ~p(4.99)

and this expression for n2 also satisfies the energy equation of (4.96)

at steady-state. However, the unsteady time term in the energy equation

can be retained by scaling t as

t = Pr t (4.100)

or from Eq. (4.26b) one gets

- .i
1a/ 2

Pr = ( pr )t (4.101)

Hence, for the Pr limit, the following expansions result:

w = Pr 1 w + O(Pr 2)

= Pr 1 f + O(Pr
-2)

T = T + O(Pr - ) (4.102)

With Eqs (4.100) and (4.102) in-hand, the governing equations become

(in the limit as Pr c):

I
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Energy:

- - - - - 2-
3T f T + f 3T D Tt + - --3T3 (4.103)

Vorticity:

a2w IT

+ G sin 3r-0 (4.104)

Stream Function:

a 2i _ 2 w (4.105a)

ar
2

with boundary conditions

T(O'P) = , T-(lP): 0

f(o,') = f(l, ) 0

and -- (0,) _ - (1,') = 0 (4.105b)

By letting Pr 0, the nonlinear convective terms in the vorticity

equation have completely dropped out. However, since the nonlinear

terms in the energy equation still remain, the decoupling effect

between the energy and vorticity equations is no longer possible, as

it was with the Pr - 0 limiting solution. Also in the above equations,

the Prandtl number dependency has again been eliminated.

A!

pN
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Similar to the finite-Prandtl number equations, the G - 0 limit

yields a purely conductive-dominated flow field, where again, the

temperature profile reduces to the 1-D steady-state conduction case.

Hence, steady-state expansions can once again be found by proceeding

with the G -~ 0 solution. As expected, the expansions that result take

on the same form as those in Eq. (4.29a):

T= (l-r) + 64 T + 68 T2 + 0(G12 )

w= Gw1+ 0w 2 + 0(69)

f =3 fI + 67 f2 + 0(G11) (4.106)

Perturbative solutions to the infinite Prandtl number equations are

readily found by neglecting the Prandtl number dependency and the

coefficients of o(L) relative to those of 0(l), in Eqs. (4.39) through
Pr

(4.46). This approach is similar to that used in the Pr - 0 limit,

but with opposite terms neglected.

Finally, then, in the limits of small and very large Prandtl

number, the governing equations for the narrow-gap limit have become

much simpler. In the former, the nonlinear terms in the vorticity

equation (which could give rise to hydrodynamic instabilities) dominate,

whereas in the latter case, the nonlinear terms in the energy equation

(which should give rise to thermal-type instabilities) dominate. Thus,

by examining these two limiting conditions, the crucial mechanism for

causing potential natural convective instabilities between narrow

N N N
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concentric horizontal isothermal cylinders is clearly set forth.

Simplified governing equations for Pr - 0 and Pr - - can also be

obtained from the 2-D N-S equations, which include both buoyancy

terms and are valid for arbitrary gap size and Rayleigh number. These

limiting conditions are explored and discussed in Appendix B.

Although the material in this chapter is very analytical in nature,

many of the equations derived (with the exception of those relating to

the infinite Prandtl number limit) will also be solved numerically in

Chapter 6. Hence, useful comparisons to the analytical results can

be made, and the critical effects of the nonlinear terms can be

interpreted.

4
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5. NUMERICAL ANALYSIS

This chapter is divided into two sections. The first describes

the finite-differencing method used in solving the coupled set of

governing partial differential equations. Two systems of equations

will be considered: the 2-D unsteady elliptic Navier-Stokes equations

derived in Chapter 3, and the 2-D unsteady boundary-layer equations

developed in Chapter 4. The second section deals mainly with

describing the numerical procedure employed in determining the onset

of an instability, either thermal or hydrodynamic, for both the 2-D

Navier-Stokes and boundary-layer equations. Procedures for capturing

related hysteresis behavior will also be discussed. In addition,

important computational details will be provided at the end of this

section.

The essential features of the numerical method were adopted from

Prusa (1983). However, several important modifications were

incorporated into his scheme in order to enhance numerical stability

and efficiency when solving the system of equations in the high Rayleigh

number/small-gap multicellular flow regime. Of particular importance

was the handling of the nonlinear convective terms, in which two types

of representations were employed: a corrected second-order central

difference scheme for the 2-D Navier-Stokes equations, and a

corrected second-order upwind scheme for the boundary-layer-like

equations. Also, the unsteady form of the equations was used to take

advantage of achieving steady-state in a more stable manner and
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allowing the opportunity to capture unsteady behavior when solved in

a time-accurate fashion.

5.1. The Numerical Method of Solution

The 2-D Navier-Stokes equations outlined in Eq. (3.1) are

discretized using finite-differencing techniques. This converts the

equations into an algebraic system that is well-suited for computation

on a high-speed computer. In the transformed plane, the computational

domain was divided into a number of cells. This cellular mesh was

formed by the intersection of a set of radial lines with a set of

circular arcs concentric with the boundary, r = 1. The grid nodes are

variably spaced and are defined by the intersection of these radial

lines and concentric arcs. The variable increment nodes are depicted

in Figure 5.1 by using an extended version of Southwell's (1946)

notation in the immediate neighborhood of a typical node. Initially,

the complete annular flow field (0 to 2f) was resolved numerically.

However, if symmetric cellular patterns resulted, vertical symmetry was

assumed and only the half-annulus (0 - Tr) was computed for

subsequent calculations.

The use of variable increments allowed for the concentration of

grid nodes in areas of large gradients within the computational

domain, such as the inner and outer boundary-laye-rs and the thermal

plume region near the top of the inner cylinder. iowever, it should

be noted that the use of variable increments may result in a loss of

formal truncation error (Roache, 1976), where the loss becomes less
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severe in the finer portions of the mesh and more severe in the coarser

areas (this result is discussed further in subsection 5.1.2). A

convenient 2-D coordinate variable mesh routine was developed in

Prusa (1983), in which the variable nodal positions were computed by

using a smooth fourth-order polynomial stretch that imposed a zero

gradient increment variation at the edges of the mesh. This routine,

with minor changes to accommodate the complete (0 - 2Tr) annulus, was

used in this study to generate the various computational meshes. The

program was relatively simple to use and proved quite valuable in

resolving the multicellular flow field.

5.1.1. Variable increment finite-difference formulas

The formal Taylor series approach will be used to develop variable

increment finite-difference approximations of the derivatives in the

governing equations. The dependent variables T, w and f will be

denoted by ¢; kf and kb denote the increments in the directions of

increasing and decreasing angular variation, from a given discrete

point (ri, 4'.) (see Figure 5.1). Using Southwell's notation, the

Taylor series expansions of 2 and 4 (ri,'.) are:

+ k + k 2+ 1 kf3  + (5.1a)
2 = 0 kf + 2 k...

2 0 0 2~'of 6 t~

'o b 2 1 3 kb3 + ... (5.1b)
4~ = 3z b 2 0 k b2  6 3 0 k b 3

L4 ¢

F: ' . " . . . . . . . . . . - . . . . . .
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Equation (5.1a) can now be solved explicitly to give a forward-

difference representation of / :

kf1 + 0(kf) ,(5.1c)

while Eq. (5.1b) yields the backward-difference form:

0 O + O(kb (5.1d)

Subtraction of Eq. (5.1b) from Eq. (5.1a) gives the (second-order-like)

centered-di fference result:

0 2 kf + +O(kf - kb + 0(kf2. kfkb kb 2 (5.1e)

A second linear combination of Eqs. (5.1a) and (5.1b) gives the

centered second derivative:

a2 k -0 k + k00+kf0

(kf 2b10 (kkf4k
~-(f + b)kfk b

+ O~k f - k b) + 2~ k f kb' k b) (5.1f)

The counterpart radial expressions for Eqs. (5.1c) through (5.1f)

are easily obtained by substituting r for iand cO1, 43 and hf, h b for
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¢2' c4 and kf, kb, respectively.

Finite-difference formulas for the unsteady terms are found by

using the standard, but generally stable, forward-difference molecule:

n+l n
_ 0 - 0 + O(At) (5.2)

at 0  At

where n designates the time level at which the dependent variable $ is

evaluated. When marching in time to steady-state, the first-order

truncation error should not influence the final result; hence, time

steps as large as possible should be considered. However, when

unsteady behavior had to be resolved (as with the Pr - 0 case in this

study), very small time steps should be used to avoid large truncation

error, thus obtaining a time-accurate solution.

5.1.2. Finite-difference equations for the dependent variables

All spatial derivatives in the governing equations are second-order

centrally (or upwind) differenced. This includes the convective terms

which are represented by a first-order upwind expression together with

a correction term for second-order-like accuracy. The convective terms

are split in order to maintain diagonal dominance of the coefficient

matrix at high Rayleigh numbers (as with pure upwind differencing),

thus providing stable convergence toward the desired centrally

differenced (or second-order upwind differenced) representation.

5.1.2.1. 2-D Navier-Stokes equations The nonlinear convective

terms in the 2-D Navier-Stokes equations can be expressed as:

II
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2 t- 3 +p 1 + H03 - (1 + H)O02 r = ( - IXI) { h + hb + hf

-l -(1 ++0 -+  3 (5.a

+ + jj) {l hf hb + hf (5.3a)

and

2p an -@ 4 +2 
+ k 4 - (I + k)o 0

U 0 k kff+ k b

+ N + 0- 0 02 + 04 "k(I+(5
kb k f +kb

+ H + I ) {____ 2f kf +k kb  } (5.3b)

where 0 represents the dependent variables T, w, or f, and

_ h k

The first terms within the brackets are the first-order upwind-

difference components and the second terms are the added corrections

which bring the differencing up to second-order accuracy. The terms

within the parentheses (outside of the brackets) ensure that stable

differencing 'into-the-wind' is enforced.

Using the above relations, Eqs. (3.1a, b, or c) can be manipulated

into the following general form:

2 -)2 2

A2 {- AG2  t + (r + a) + 2A Xr+ 2 - + S 0 (5.4)
3r G lp2

;

S
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where

2A (r + -) {A2 + Al 3f} (5.5a)

2p (5.5b)
r +

and

Pr, ¢ T 1, :T

Al : Pr, w A2= Pr, p=w

0, ¢=f 1, t=f

while

Pr, = T

A Il, w

0, ¢: f

The derivatives in Eqs. (5.5a) and (5.5b) are represented by standard

central-difference expressions, as in Eq. (5.1e).

Employing Eqs. (5.3a and 5.3b) and substituting the appropriate

differences of Eqs. (5.lc-f), results in a general finite-difference

equation for ¢ = T, w, or f:

= A n0 + CI Cn+l

+ C3 3n+l + C44n+l + En + Sn+l (5.6a)

+Cp Cr E +

A



where

C (A2) A G + 2[hA2 + A2

fb kf kb (r + 1

+ xL L + X ! +!w-) +F r (
hf hb hb hf kf kb

+ Fr11 (1 + 1L-.6b

= 2(A2) + (x + lXI) (.c
C1 hf hf + hb) h f (.

C22 (A2) + r' + PLi) (5.6d)

(r + I ) 2(kf + kb)kf kf

03 = 2(A2) ( x (b.6e)

C=2(A2) FW- 411)
4 (r + 2. (kf +k)kb k (5.6f)

* Note that a negative contribution to C~ is possible if hf/hb or kf/kb

departs too far from 1. Thus, unstable calculations may result if

diagonal dominance is lost as Co gets smaller in magnitude.
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En ___{___ ( I n3

h h ,n (1 + n (H - 1) - n (H -
hf + hb 1 H 30 H

I xJI) nf (l + .1) + n ( (2 + H +1
(hf + hb I3 (1 + H) - (0

(f+k n 1l- n n 1)

+ r bp_) {,n (1 4) + ,n (k - 1)- n0 (k - -1

kf +kb 2 K 40 k

r , n (I + _L + ,2 n n+1} (.g
"(kf + kb  2k 4 (l + k) - (2+k+(.g

0 T

F n+l
Sn+l G Ra (sin T + cos aT W

0 r + 10

-G 2 w 0n+ l  , = f (5.6h)

and I, = T

1, =w

0, p : f (5.6i)

The derivatives - and - in Eq. (5.6h) are evaluated by using

ar e0  f u dt

standard central-difference formulas. T denotes the time increment,
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while the superscripts, n, n+l, are as discussed in Eq. (5.2).

For a fully-implicit method, the correction term E, should be

evaluated at the new-time level, E .+l However, as seen in Eq. (5.6g),

the correction term for the 2-D Navier-Stokes equations was evaluated

at the old-time level, En. Although the En method introduced a time

truncation error of O(At), it still remained consistent with the rest

of the formulation. Also, since En uses known information from the

previous time level, its contribution to the off-diagonal terms (,

n2' 3 nand 04) was kept constant when evaluating flow properties at

the new-time level. This factor apparently helped to enhance

numerical stability, which in turn, improved the convergence rate and

accuracy of the numerical method when compared to the 
En+l

formulation. This was especially true for the highly convective flows

associated with multicellular development (see Appendix C). In comparing

n+l n
to En , a truncation error analysis demonstrated that the E method

preserved the formal accuracy of the system of equations. A

description of this analysis and a tabular comparison of the two

approaches is given in Appendix C.

5.1.2.2. Finite-Prandtl number boundary-layer equations The

boundary-layer equations of (4.25) are numerically treated in a manner

similar to that used on the 2-D Navier-Stokes equations. But since

Eqs. (4.25a-c) are only first-order in >,', a slightly modified version of

Eq. (5.4) results:

A2 {-A G2 2w4 1 + 2X + 2u =(5.7)

Dt 3r Or
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where

2X = Al a (5.8a)

2 p = A - 3 (5 .8 b )
Dr

The first-order derivatives in the 2pj and 2X coefficients are

approximated by central-differences. Also,

Pr G, do T 1, =-

Al = Pr A2 Pr, w_

0, 1O = , = "

while

( Pr, = T
-I-

Aj 1, d=w
o,

Except for the definition of X, the convective term 2A - is

represented as in Eq. (5.3a). However, because of the parabolic nature

of these boundary-layer equations, which are first-order in lP, a central-

difference representation of the streamwise convective terms is no

longer valid. Instead, a stable corrected second-order upwind-

differenced scheme is employed. Namely,
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kb
c* 0 " ¢4 + k- l ) 1 0 - 4

2ii = (i- I I) { 0kb4 +kb b
a0 k kb + kb1

kf.

2 - ¢ +  ( -kfi)( 2 - 12 )

+ N + IIl{2k0+ kf + (5.9)

kf 
kf +k f 1

(see Figure 5.1 for related nodal positions). The second term within

the brackets represents the added correction to the first-order

differenced component needed to achieve a second-order upwind-

differenced expression.

Using the above results, the boundary-layer equations of (4.25)

can be cast into a finite-difference form similar to that of Eq. (5.6a):

C0n+1 (A2) 2 n + n+l++ l

C o ¢o + Cl l + C2 2 n+l + C3
n + l

+ C404n+l + En+l + Sn+l (5.10a)

where

C (A2)A 2 + 2 (A2) + rA( 1 + + 1: h hf hb  h f h hb) +  h b +  ff

Lr() + (I- + 1-) (5.10b)
kf kb kb kf
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C 2 (A2) + r(x + XIl (5.IOc)
I h f(hf + hfb hf

C2 = r(u + Jl) (5.1Od)
kf

C3 2(A2) r(X- (5.1Oe)
3 (hf + hb)hb hb

-r= - I ) (5.1Of)C4  k kb

and r is defined as in Eq. (5.6i), with 4 now denoting the boundary-

layer dependent variables. Before defining the correction term En+l

let

kl I k2 = c
b' d

where a = kf, b = kfl, c = kb, d = kbl. Then:

E n+l 1,n+l l n+l (H - 1) _ 0n+l (HE n l  (h f + h b) {I l l -HL) + 3n l

- , n+l + 1 n+l,, + H) _ n+l( 2 + H +1

-rhf + hb  H) + 3 H

+ F{@2n+l[(I + kl)/(a + b)] - 4n+l [( + k2)/(c + d)]

[a b

p
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+ 4 n1l [1/(c + d) -1/(a + b)]

+ cp10 n~ [k2/(c + d)] - 412fl [kl/(a + b)]}

+ l1iIF{4,2 n+1 [(1 + kl)/(a + b)] + 4n~ [(1 + k2)/(c + d)]

- n1[1/(c + d) + 1/(a + b)] - 4 10n+ Lk2/(c + d)]

-p ~l[kl/(a + b)]} (5.10g)

and lastly,

0T

S sno F0r (5.1h)

where 0 is central ly-di fferenced.

The first two terms of Eq. (5.10g) represent the second-order

corrections corresponding to central-differencing in the transverse or

radial direction, whereas the last two terms signify the corrections
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necessary to obtain second-order upwind differencing in the streamwise

or angular direction. In contrast to the 2-D Navier-Stokes equations,

the correction terms for the boundary-layer equations were evaluated at

the new-time level, En+l. Since it is usually the central-differenced

streamwise convective terms that cause stability probIL7s at high

Rayleigh numbers, the En approach was adopted to alleviate this

predicament for the Navier-Stokes equations. However, since second-order

upwind differencing is generally more stable than central-differencing,

the En+l method worked fine and remained stable for the boundary-layer

calculations. Note that the En+l method also converged for the Navier-

Stokes calculations, but the En formulation proved to be more efficient

(see Appendix C). Based on the literature review and work in this study,

it was found that although first-order upwind differencing is extremely

stable at high Rayleigh numbers, at least second-order accuracy is

needed to resolve the multicells.

5.1.2.3. Zero-Prandtl number boundary-layer equations In the

Pr - 0 limit, the energy equation reduced to simply T = 1 - r, therefore

decoupling itself from the vorticity equation. Hence, only the vorticity

and stream function equations had to be solved numerically in a coupled

manner. The following one-equation format, similar to Eq. (5.7), can

again be used to represent these two coupled equations as derived in

Chapter 4 (Eqs. 4.77 and 4.78):

2 
62 + 1

A2 {- G + + 2, + 2 + S = 0 (5.11)

wrt e

"' where
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2X = Al .F (5.12a)

S-A (5.12b)

and

G, ¢:W 1, ¢:W
AI A2=

0, =F 1, '=F

while

A= I W
0, :F

The finite-difference form of Eq. (5.11) is identical to Eq.

(5.10a) for the finite-Prandtl number boundary-layer equations, except

that G is now replaced by G. The same applies to the coefficient

equations for Co, C1, C2, C3 and C4 in Eqs. (5.10b) - (5.10f), but

with X and p being defined by Eqs. (5.12a) and (5.12b), respectively.

The En+l correction term is similarly represented by Eq. (5.10g),

while again making the appropriate substitutions for X and i. Also,

Sn+l G (5.13)
2 0 n+lT

0 p=F
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5.1.3. Boundary conditions

5.1.3.1. 2-D Navier-Stokes equations Considering the complete

annulus, the finite-difference form of the boundary conditions for the

2-D Navier-Stokes equations is:

Energy:

T n+l 1 (5.14a)

Tn+l = 0 (5.14b)

NR J

Vorticity:
2f n+ l

n+l 2 ,1 (5.14c)

Wl ,j (Gh )2

2f n+l 
:

n = "f-NR-l,j1  (5.14d)
NR,j (GhNRI)

Stream Function:

fn+l 0.0 (5.14e)

1 ,j

fn+l = 0.0 (5.14f)

Because of continuity at zero and 27 radians, a computational

continuous condition must be defined such that:
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0 n+l =n+l (5.14g)
il i,NSl

where takes on values of either temperature, vorticity, or stream

function.

When symmetry about the vertical center-line is considered, the

conditions imposed by Eq. (5.14g) are replaced by:

' = 0:

Tn +l = Tn+l -A k (5.15a)
i'l i,2 i,l 1

n+l = 0.0 (5.15b)

In'l

fil+l = 0.0 (5.15c)

'P = rr:"

Tn+l =Tn+l A k
i,NS i,NS-l i,NSkNs-I (515d)

W -,N = 0.0 (5.15e)
1,NS

f n+l = 0.0 (5.15f)

where

k Tn+l (Tn+l Tn+l

A 21i1 - (k + k21 i 2 +k 1 i,3
i,1 k2 (k, + k2 )

• o q • w w - - • . .. .. . , . . .. . . . ...- "* ]
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%" n+l kvr

k kNS-2 T -+ S ( NS-l + kNS- 2' 'Sl + kN ln+1
A i,NSNS-I n+I NS-ITi,Ns-2

SkNS- 2(kNs-I + kNS2)

and for Eqs. (5.14) and (5.15), hi = ri+ l - ri, k =P - Pj" Also,

the i index refers to the radial position with i = 1 corresponding to

the inner cylinder, r = 0; and i = NR corresponding to the outer

cylinder, r = 1. The j index signifies the angular position with

j = 1 referring to'P= 0', j = NS referring to'P= 180', andj = NSI

referring to P 3600.

The symmetry conditions for temperature were obtained from Taylor-

series expansions about j = l and NS, namely (for ' = 0):

= 3T k + k 321 + . .
T. T + kk,
Ti,2 Til i,l 1

and upon assuming symmetry, one gets:

aT -0

Then, solving for Ti,1 and substituting the second-order difference

expression for 2 (evaluated at j = 1), the final form of

Eq. (5.15a) is obtained. Equation (5.15d) can also be approximated in

a similar manner.

The formal Taylor-series approach is also used to derive the

vorticity-wall boundary conditions. At the inner wall, r 0, let:

a' °. . . .
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f + f hl+ 2 f h 12 + 0(hl) 3
f 2,j 3r fl1 2 Dr 1~ l j 1

0, at wall 0, no-slip

Then,

2 2f 2 ,

ar l,j h 2 + 1

and from the definition of vorticity, one obtains:

Wj 2f 2 L

(Gh1 )2

Likewise, the condition for the outer wall can be derived. According

to Roache (1976), this first-order difference form of the vorticity

boundary condition is the safest and most stable, and in fact, is

sometimes more accurate than other second-order approximations.

5.1.3.2. Finite-Prandtl and zero-Prandtl number equations The

finite-difference expressions for the boundary conditions of the

finite-Prandtl and zero-Prandtl number equations are similar to those

of the 2-D Navier-Stokes equations. These expressions can be found

by simply replacing G with G, G, and f, w, T, t with f, w, T, t and

F, W, T, t, in Eqs. (5.14) and (5.15), respectively. Note again that

for the Pr - 0 case, the energy equation reduced to T = 1 - r, thus

decoupling itself from the vorticity equation. Therefore, if vertical
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symmetry is assumed, the 3 = 0 constraint drops out of the boundary

conditions at ' : 0 and P = 7T.

Finite-difference expressions for Nusselt number and shear stress

are derived and explained in Appendix D.

5.2. The Computational Procedure

The systems of coupled finite-difference equations (as described

in the preceding section) were solved implicitly in time using a

point iterative Gauss-Seidel method with underrelaxation. The

dependent variables at a given time level were found by repeated

iterations of the governing equations.

Except for the preset isothermal boundary conditions, the

dependent variables were first initialized by setting them all to zero.

(However, as will be explained later, initial conditions other than

zero were used when searching for hysteresis loops.)

For the first several time steps, the iterative solution process

-was initiated as follows. First, the E correction terms were set to

zero and a converged first-order upwind differenced solution was

obtained. This converged result was then used as an initial condition

for obtaining a solution to the corrected central differenced scheme.

This two-step method allowed for an enhanced convergence rate when the

flow field was diffusion-dominated--usually associated with the first

few time steps of a developing flow. However, for subsequent time

steps, when convective effects became more significant, the correction

terms were always retained and previously converged old-time second-

.' . . - '- ....... -.. ,,- -- ,.. .-.- , . ..-. .,. . . ., -,, .-.. ,
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order accurate results were used as an initial start-up for the next

time level. The advantages of this procedure are more fully explained

and discussed in Kassinos (1986). Using this approach allowed for

numerical solutions to be efficiently computed to any arbitrary time.

5.2.1. Iteration sequence and convergence criterion

The governing finite-difference equations (both the 2-D Navier-

Stokes and the boundary-layer equations) were numerically iterated in

the following sequence:

i. energy equation

ii. vorticity equation

iii. stream function equation.

This sequence was repeated until the iterations converged to within

a prescribed tolerance. The maximum modulus of the difference between

temperature, vorticity and stream function for two successive iteration

values was used as the relative convergence constraint, namely,

m+l, n+l m, n+l

max < 1 x 10-6 (5.16)

(m+l, n+l

)max

where P represents temperature, vorticity or stream function. The

iterative process was terminated and the numerical solution was

considered converged when the above criterion was satisfied. In

Eq. (5.16), the m referred to the iteration number, while the time

level index was denoted by n. The vorticity iterations usually

. .
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converged the slowest (about lO3 times slower when compared to

temperature), especially for highly convective or multicellular-type

flows.

5.2.2. Relaxation parameters

Two independent relaxation parameters, 0l and Q2' were

incorporated into the equations in order to gain some control on the

rate of convergence of the iterations. The first relaxation parameter,

01, was used only with the vorticity boundary conditions for both the

2-D Navier-Stokes and the boundary-layer equations. Its use on the

inner cylinder boundary can be illustrated as follows (for the

Navier-Stokes equations): 2IwM+1l, n+l Q 2fm' :n+l/ Gl
n~l = I {2fj ~/(Ghl) 2}

+ (1 - l)wl,j along r = 0 (5.17)

If Q < 1, then the m + 1 iterated value of w becomes a weighted

average of the newly computed value and the old m iterated value of w.

Generally, .1 < 1 < .5 was used to help stabilize the numerical

computations. When multicellular flow was encountered, the relaxation

parameter was usually reduced to the smaller values. The above

procedure was also used for the boundary-layer equations.

Since the central differenced correction terms of the 2-D

Navier-Stokes equations were based on the old-time level (E n), an
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underrelaxation procedure was not needed to aid in computational

stability. However, for the finite-Prandtl and the zero-Prandtl

number boundary-layer equations, a second relaxation parameter, £2'

was used with the second-order upwind (or central) differenced

correction terms which were based on the new-time level (En+l). The

interior point equations for the dependent variables ' = T and w for the

finite-Prandtl number equations, and ' = W for the zero-Prandtl number

equations, were computed according to:

m+I, n+l A2)A 2 (or 2) n m, n+l m, n+l(A2 o r j 0 +  {CI I + C2 2

+ m+l, n+l m+l, n+l sm+l, n+l+3 3 + C4 + , }/CO

+ {Q2 Em+l, n+l + (1 - £2) Em, n+lI/C0  (5.18)

In Eq. (5.18), the Em term uses 40' 019 and 2 evaluated at the m - I

iteration and n + 1 time level, together with 'p3 and '4 evaluated at

the m iteration and n + 1 time level. Also, @n does not require an
0

iteration index since it represents the previously converged value

at the old-time level. For Q2 < 1, the differencing of the correction

term becomes a weighted average of Gauss-Seidel (current level) and

Jacobi (previous level) iterations. Generally, .1 < £2 Q .5 was used

in the numerical computations. For the highly convective flows, the

relaxation parameter was decreased to .2 or .1.
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5.2.3. Multicellular flow determination

In the 2-D Navier-Stokes equations, multicellular flow near the

top of the annulus was investigated for Pr = .706. When searching

for the transitional Rayleigh numbers associated with particular narrow

gap widths (numbers which characterize the transition from bicellular

to multicellular flow), "zero" initial conditions were used for only

the first pretransitional Rayleigh number case. Then, for each

successive slightly higher Rayleigh number (Ra) run, the previous

converged Ra solution was used to start the new solution. This

procedure was repeated until at some Ra a transition to multicells

occurred. In order to find hysteresis loops, prescribed multicellular

initial conditions (usually associated with the multicellular flow

field characterized by the transitional Rayleigh number) were used for

gradually backtracking the Ra (also in a successive manner) until the

bicellular solution again became apparent. Different solutions,

dependent upon the initial conditions, are possible as a result of

nonuniqueness inherent in nonlinear-type problems.

For the boundary-layer equations, a multicellular flow occurring

near the vertical portions of a narrow annulus was investigated for

the small-Prandtl number cases. The values of G or G (which are

proportional to Rayleigh number) corresponding to multicellular

transition were determined in a manner similar to that just described,

but with G or G replacing Ra in the above procedure.

% %
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5.2.4. Computational details and discussion

The majority of the calculations were carried out with 31 radial

nodes and 102 angular nodes for either the 0 - 7r or the 0 - 27r test

cases. Using the variable-mesh algorithm, the mesh spacing was

slightly reduced (generally by a factor of 1.5 for the largest to

smallest increment size) near the inner and outer boundary-layers and

also in the thermal plume region (for air) near the top of the inner

cylinder.

For the 2-D Navier-Stokes equations, steady-state pretransitional

solutions were obtained by using a time step of 5 x 10 - . Typically,

300 time steps (t = .15) were required to reach a convincing steady-

state result. The program was generally more stable with smaller time

steps. This was probably due to increased diagonal dominance, since

the C0 coefficient gets larger in magnitude as T decreases (see

Eq. 5.6b). For larger time steps (between .001 and .01), the

solution would often diverge as the Rayleigh number increased; this was

especially true for the multicellular flow calculations. Thus, a

small constant time step was used for most of the computations.

A typical pretransitional steady-state result took approximately

5-10 CPU hours on the Perkin-Elmer 3242 computer system (where 1 unit

of CRAYI time corresponds to approximately 50-60 units of Perkin-Elmer

time), or an average of 1-2 minutes per time step. The average number

of iterations per time step was approximately 20-30. However, when

the transition to multicells occurred (two-to-four or two-to-six

cells), the time step was maintained at 5 x 10 - , but the amount of

*~~ - -I, - -~\ -d -

"o~
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CPU time needed to achieve steady-state (t = .15) increased to

approximately 30 hours or an average of six minutes (for approximately

100 iterations) per time step.

For two of the narrow gaps (G = .100 and G = .200) associated with

hysteresis behavior (Pr = .706), the complete annular gap was

determined numerically. This was done in order to ascertain if

symmetric cell development ensued near the top of the annulus, as

initially expected. In both of these cases, symmetric cellular

patterns resulted. Based on this information, all other narrow gaps
,.

for air were numerically studied by considering only the half-annulus

with symmetry boundary conditions imposed at ) = 0 and 1800. A

31 x 102 mesh was again used for these symmetric cases, thus creating

an extremely fine grid for the half-plane geometry. Aside from G = .100

and .200, the transitional Rayleigh numbers predicted for the narrow

gap widths were calculated by assuming symmetry about the vertical

center-line. Note that for G = .100 and .200 (where the complete

annulus was used), a 31 x 102 mesh was still employed, but the grid

points were significantly concentrated near the top portion of the

annular gap (by factors of 2.1 and 1.7, respectively) in order to achieve

the necessary accuracy to resolve the symmetric multicellular flow

field. For the G = .100 case, an erroneous asymmetric cellular pattern

actually resulted when using a mesh with nodes concentrated near the top

by a factor of 1.7. However, a six-cellular symmetric pattern became

evident when the nodes were further concentrated to a factor of 2.1.



131

For the Pr - 0 boundary-layer equations, symmetry about the

vertical center-line was assumed for a 31 x 102 size mesh (this

assumption is discussed in detail in the latter part of this subsection).

Prior to the point of multicellular instability in the vertical portion

of the annulus (G < 5.1), steady-state solutions were easily achieved

within 50 time steps for a At of 1.0. This size time step was also

relatively small since t = (Ra/Pr) t. Hence, as the Rayleigh

number increased, t, in turn, decreased in proportion to Ra-I 2  The

amount of CPU-time required to reach the steady-state condition was

approximately three hours or an average of 3.6 minutes (for

approximately 80 iterations) per time step. However, when the

multicellular flow instability set in at G = 5.2, the steady-state

condition could no longer be achieved. In order to obtain an efficient

and time-accurate response of the unsteady flow field, five different time

steps were considered: At = .1, .25, .5, 1.0 and 2.0. The first four

time steps provided time-responses of the stream function at r = .5/&

: 900 to within 1 percent error of each other. Also, all four of these

time steps were able to resolve the small but sudden variations of

the stream function with time. For At = 2.0, a notable difference in

the time-response was observed. That is, the small sudden variations

of the stream function with time could no longer be resolved. Values

of the stream function were in error by approximately 4-5 percent when

compared to those corresponding to At = .10. These differences are

most likely due to increased time truncation error when using At 2.0.

In addition, for At = 2.0, the number of iterations required for

-h:N VN



132

convergence at a particular time level was disproportionately larger

when compared to that for At = 1.0. For example, an increase in t

from 35.0 to 36.0 (At = 1.0) took approximately 550 iterations,

whereas an increase in t from 35.0 to 37.0 (At = 2.0) required about

1375 iterations for convergence. This was probably due to a slight

loss in numerical stability as a result of a decrease in the C0

coefficient (see Eq. 5.10b) when At increases from 1.0 to 2.0.

Thus, due to computational time and accuracy considerations, the

time step of 1.0 was chosen to numerically predict the time-response

of the multicellular flow at G = 5.2. Therefore, for values of G %

slightly greater than 5.2, a time step of 1.0 or less should be employed.

For At = 1.0, the average CPU-time per time step amounted to 12-14 %

minutes (for approximately 300 iterations) with G = 5.2 and a half-

annular mesh of 31 x 102 nodes. The number of nodes in the angular

direction was based on the maximum possible to properly capture cellular

development while considering computer power and time limitations. In

Section 6.2, a grid study for four different size meshes showed that

the 31 x 102 node mesh was fine enough to resolve the same number of

initial cells (seven) as the finer mesh of 41 x 132. In further

support of using the 31 x 102 mesh, Lee and Korpela (1983) indicated

that 10 grid points per cell were adequate for properly resolving

cellular development in multicellular natural convective flow between

long and narrow vertical slots. Therefore, since the instability at

G = 5.2 resulted in 7-8 cells per half-annulus, 102 nodes in the

angular direction satisfied their particular recommendation for

# A. .. .. tt A,"." .. A . . . . " . '- . . - .- , . - . , ' • - 5 - . " - ".- .' " . - s -
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avoiding significant resolution problems.

The use of symmetry boundary conditions with regard to unsteady

cellular behavior in the half-annulus can be supported by the nature

of the cellular activity that occurred. The strongest cellular

behavior took place near the 90°-point vertical section of the annulus,

whereas near P = 0° and P = 1800, the flow field remained quiet and

undisturbed, preserving the end portions of the familiar steady-state

kidney-shaped flow pattern. In support of this claim, the analytical

steady-state result derived in Chapter 4 (for the Pr - 0 limit)

demonstrated that the steady-state solutions were completely symmetric

about ' = 0 and 1800. Moreover, the cellular development in the

vertical section of the half-annulus was not counter-rotating, hence

the fluid was retained within the outer kidney-shaped streamline. This

tends to indicate that the cellular flow in each half-annulus develops

simultaneously and independently of each other. Also, when negative

is substituted into the Pr - 0 governing equations, the original

form of the equations is maintained--again implying symmetry about

= 0 and 1800.

However, in order to properly verify this salient symmetry

assumption, the symmetry conditions were relaxed and the flow in the

complete annular gap was determined. For the complete annulus (0 - 27),

a 31 x 202 mesh was used and the initial time-response behavior of

the unsteady cellular motion was obtained with At = 1.0. The initial

conditions used to start the run were provided by the half-annular

7-cell solution at t = 35.0 (a mirror-image of this solution was used

... a.
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to incorporate the whole annulus). The initial time-response behavior

(the first 832 time steps corresponding to one cycle) of the 0 - 27

run reproduced that of the 0 - Tr run within one percent error (see

Figure 6.14). The important changes of the cellular pattern with

time were also duplicated. For the complete annulus, the average

CPU-time per time step was about 26 minutes (for approximately 400

iterations).

Based on this single test case and preceding relevant supportive

discussion, the half-annular symmetry assumption was used throughout

this research to predict the unsteady cellular behavior associated with

the vertical portions of a narrow annulus (for Pr - 0). Proceeding

with this symmetry assumption substantially reduced the CPU-time

necessary for a converged solution, thus rendering the problem at

hand feasible to study on the Perkin-Elmer 3242 computer system.

The numerical handling of the finite-Prandtl number boundary-layer

equations was very similar to that previously described for the Pr - 0

equations. These equations were also solved assuming symmetry using

a half-arnular mesh of 31 x 102 nodes with At = 1.0. The finite-

Prandtl number equations were usually solved numerically to determine

the transitional values of G, for various low-Prandtl number fluids,

corresponding to the onset of multicellular instability. These

equations were not used to study any type of unsteady behavior relating

to a finite-Prandtl number hydrodynamic instability.

Upon solving the equations, it was noticed that as Prandtl number

increased, so did the computation time necessary to reach convergence

z

I
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at a particular time level. This was because the governing equations

were nondimensionalized with respect to momentum diffusivity as opposed

to thermal diffusivity, thus allowing the energy equation to become

diffusion dominated for small Prandtl numbers. To reverse this

situation, the governing equations must be recast to allow the vorticity

equation to become diffusion dominated as Prandtl number increases.

Lastly, it should be noted that for both the 2-D Navier-Stokes

and finite-Prandtl number boundary-layer equations, another important

measure of numerical accuracy can be determined for the steady-state

cases. That is, the average inner Nusselt number (-Ui) should equal

the average outer Nusselt number (N0) at steady-state. For all of the

steady-state test results, the equality was in error by less than

.1 percent. For the pretransitional results of the 2-D Navier-Stokes

equations, Nu-0 was slightly less than Nui. However, for the

multicellular flows, Nu0 was slightly greater than Nui.

.
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6. RESULTS AND DISCUSSION

This chapter consists of two sections. The first essentially

describes the hysteresis behavior associated with steady multicellular

flow occurring in narrow gaps for air. This type of multicellular flow

apparently originates because of thermal instability, and develops near

the top portion of a narrow horizontal annulus.

The second section mainly describes an unsteady multiceilular flow

that develops near the vertical portions of a narrow horizontal annulus

for small-Prandtl number fluids. This particular type of instability

appears to be hydrodynamic in origin.

Wherever possible, results pertinent to this study will be compared

to related analytical, numerical and/or experimental work.

6.1. Thermal Instability

6.1.1. Hysteresis behavior

As described in Chapter 5, the complete annular flow field (0-2T)

was determined numerically when searching for hysteresis behavior. A

31 x 102 mesh was employed with the grid points concentrated near the

top horizontal portion of the annulus - where the multicellular flow

field tended to develop for air.

The average Nusselt number and shear-stress results are presented

in Figures 6.1a, 6.1b and 6.2, respectively, for a gap number G = .200

and Pr .706 (note that these average dimensionless parameters are

defined in Appendix D). The transition of the flow field from two

..
-.
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to four cells occurred abruptly at a Rayleigh number of approximately

351,000 (or Rab-a = 2808). Associated with this transition was a

sudden rise ir. the average Nusselt number (see Figure 6.1a) due mainly

to Pic- efficient fluid mixing created by the counter-rotating

sc.zoadary cellular motion. This is analogous to the increase in heat

transfer experienced when a flow makes the transition from laminar to

turbulent fluid motion. Note that the above four-cell transition does

not indicate the onset of turbulence, but rather signifies a more complex

laminar multicellular flow condition. Also, because of the two smaller

counter-rotating cells initiated near the top of the annulus, the local

shear-stress in this region reversed its sign. Hence, a sudden

decrease in the average inner shear-stress (for the half-annulus)

occurred at the transition from two to four cells (see Figure 6.2).

This particular phenomena bears resemblance to a similar occurrence

in the Taylor-Instability problem of Coles (1965), for fluid flow between

vertical concentric narrow rotating cylinders. In this problem, a

hysteresis effect of the torque on the inner cylinder (which is

directly proportional to shear-stress) was observed by Eagles (1974).

He showed that at a certain Taylor number, the Taylor-vortex flow

would change to a wavy-vortex flow; and associated with this change

was a sudden lowering of the inner cylinder torque (as also discussed

in Stuart, 1960), although the Taylor number had actually increased

in magnitude.

Both the Nusselt number and the shear-stress data exhibited a

hysteresis behavior as the Rayleigh number was gradually increased

p

I1
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and then decreased past the transition point. For Ra > 350,000, only

a four-cell solution prevailed, while for Ra < 285,000, only a two-cell

solution prevailed. However, between these two limits, both types of

solutions were possible, thus forming a hysteresis loop. The numerical

approach used to determine the transitional Rayleigh numbers and related

hysteresis behavior was described in detail in Chapter 5.

Powe et al. (1971) numerically estimated a transitional Rayleigh

number of 452,000 for G = .200 based upon the point at which the stream

function changed its sign. However, they could not fully resolve the

smaller counter-rotating cell with their particular method (see

Chapter 2). They used a uniform increment mesh with 35 angular and

15 radial nodes for the half-annulus. The fact that they used a

relatively coarse mesh in the angular direction may have caused

resolution problems which delayed their transitional Rayleigh number

to a value approximately 30 percent higher than the 351,000 value

predicted in this study. A similar four-cellular flow pattern was

experimentally observed by Bishop et al. (1964) in a concentric spherical

geometry. For G = .19, they obtained a transitional Rayleigh number

(based on gap width) of about 3600, which corresponds to approximately

Ra = 525,000.

These earlier results agree with the present work in that a

four-cell pattern predominates immediately after the thermal instability

sets in for G = .200.

To improve the numerical prediction of the corresponding

transitional Rayleigh number, grid nodes should be concentrated in the
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thermal plume region where the smaller counter-rotating cells develop,

as was properly done in this study (see Section 5.2.4 and Appendix E

for further discussion).

Streamline plots of the cellular flow field development for

G = .200 are depicted in Figures 6.3a-6.3c. Figure 6.3a corresponds

to a pretransitional result, Ra = 350,000, and demonstrates the usual

kidney-shaped flow pattern. Figure 6.3b shows the initial development

of the two smaller counter-rotating cells for Ra = 351,000. Figure 6.3c

depicts the secondary flow in a much stronger state beyond transition,

at Ra = 900,000. A typical multicellular temperature profile is also

given in Figure 6.3d for Ra = 900,000. The shape of the isotherms was

responsive to the fluid motion for Pr = .706, resulting in an inverted

thermal plume near the top portion of the annulus. In Figures 6.3a-d,

the diameter ratio is shown as 1.5 times its actual size for ease of

viewing.

Similarly, for G = .100, an abrupt rise in heat transfer occurred

as the flow field made the transition from two to six cells at

RaTR = 2,841,000 (or Rab- a = 2841), as shown in Figure 6.4. The

hysteresis loop for this case expanded from Ra = 2,570,000 to

Ra = 2,840,000, a change of approximately 270,000. Below this range,

only the two-cell solution prevailed, while above this range, only the

six-cell solution prevailed. For G = .200, the Rayleigh number change

in the hysteresis loop amounted to approximately 65,000, considerably

smaller than for G = .100. Furthermore, the rise in the average Nusselt

number associated with the G .200 multicellular transition was greater

- ~' ': . ------. . . .- ... . .... •. -, .- -,.-.-. , .. -,-
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Figure 6.3a. Streamlines of a two-cellular flow field at
Ra = 350,000 for G = .200 and Pr =.706
(diameter ratio shown as 1.5 times actual size)
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Figure 6.3b. Streamlines of an initial four-cellular flow field

at Ra = 351,000 for G = .200 and Pr = .706
(diameter ratio shown as 1.5 times actual size)

* ' -
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Figure 6.3c. Streamlines of a more developed four-cellular flow
field at Ra = 900,000 for G .200 and Pr = .706
(diameter ratio shown as 1.5 times actual size)...
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Figure 6.3d. Isotherms of a more developed four-cellular flow
field at Ra =900,000 for G =.200 and Pr = .706
(diameter ratio shown as 1.5 times actual size)
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than for G : .100 by an amount of approximately .052, or about a 50

percent increase.

The above occurrences may be explained as follows. As the gap

decreases in size, both the viscous effects and the restraining

influence of the geometry become more significant for a given value of

Rayleigh number, thus suppressing natural convective fluid motion within

the annulus. This has several ramifications. First, because of the

fluid motion hindrance, a higher transitional Rayleigh number is needed

to trigger the instability for G = .100, compared to that for G = .200.

Secondly, once the multicellular instability results, related hysteresis

effects persist longer for G = .100 due to suppressed fluid motion

changes. Hence, a greater Rayleigh number range for the hysteresis

loop of this gap occurs. Thirdly, suppressed convective effects for

G = .100 may also cause a less pronounced rise in the average Nusselt

number associated with multicellular transition, compared to that for

G = .200. Lastly, as the gap decreases, curvature effects diminish,

resulting in a better comparison to the B6nard type of instability

between horizontal parallel flat plates. This, coupled with increased

viscous effects, may cause the number of cells occurring at transition

to increase, i.e., a two to six cell transition for G = .100 as opposed

to the two to four cell transition with G = .200.

The results of this study seem to indicate that for G < .175 + .015

an initial transition from two to six cells occurs, rather than the

two to four cell transition for G = .200. This statement is supported

by the numerical results of Rao et al. (1985), where they graphically

.U K.
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depicted a six-cell flow pattern at a Rayleigh number of approximately

750,000 for G = .175. However, they did not give the Rayleigh number

corresponding to the point of transition for this particular gap size.

In this study, for G = .175, a transition to six-cells took place at

Ra = 450,000. A typical six-cell flow pattern with related isotherms,

for G = .100 and Ra = 3,600,000, is depicted in Figures 6.5 and 6.6,

respectively. Notice the upright thermal plume (Figure 6.6) associated

with the six-cell flow field.

For G .100, a hysteresis behavior was also present for the

average inner shear-stress versus Rayleigh number. However, these

results were not plotted since the related hysteresis loop was very

slight and almost indistinguishable in a graphical sense--where only

a .2 percent increase in the average inner shear-stress occurred at the

point of multicellular transition for G = .100.

Figures 6.7 and 6.8 indicate the effect of multicellular flow on

the angular variation of the inner Nusselt number and centerline stream

function, respectively, with regard to G = .100 and G = .200. To

understand these effects, cell rotation must be taken into consideration.

For the half-annulus cellular pattern of G = .200, the smaller secondary

cell rotates counter-clockwise and extends between 1650 and 1800 for

Ra = 900,000 (see Figure 6.3c). This rotation is responsible for the

development of an inverted thermal plume near the top portion of the

annulus. For the cellular pattern of G = .100 at Ra = 3,600,000, two

secondary cells are present in the half-annulus. One occurs between

170' and 1800 and rotates clockwise, while the other occurs between
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Figure 6.5. Streamlines 
of a six-cellular 

flow field at

Ra = 
3,600,000 

for 
G 

.100 
and 

Pr = 
.706

(diameter 
ratio shown as 1.5 times actual 

size)
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Figure 6.6. Isotherms of a six-cellular flow field at Ra

=3,600,000 for G = .100 and Pr .706

(diameter ratio shown as 1.5 times actual size)
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1650 and 170' and rotates counter-clockwise (see Figure 6.5).

Due to the inverted thermal plume for G = .200, Figure 6.7 shows

a local maximum in heat transfer on the inner wall at ' = 180' and a

local minimum near ' = 1650. In contrast, the six-cell flow pattern

of G = .100 shows a local maximum in heat transfer near = 1700 due

to the counter-clockwise rotating secondary cell, while a local minimum

results at ' : 1800. This minimum occurs because the clockwise

rotating secondary cell causes an upright thermal plume near the top

of the inner cylinder. Also, smaller local maximum and minimum in heat

transfer result near ' = 1550 and 1650, respectively, due to the thermal

response of the clockwise rotating primary cell (which bottle-necks)

near ' 155' coupled with the counter-clockwise rotating secondary cell.

In a similar manner, the two types of multicellular flow also cause

a departure of the unicellular sinusoidal-like stream function

distribution between ' = 1500 and 1800. This departure is illustrated

in Figure 6.8 for the four and six-cell flow patterns.

6.1.2. Analytical comparison

The analytical perturbation expressions derived in Chapter 4,

from the finite-Prandtl number boundary-layer equations, were employed

as convenient checks to the pretransitional results generated in the

preceding numerical analysis.

The forthcoming comparison has a dual purpose: first, it is

valuable in the sense that the amount of available data pertaining to

local flow changes in the narrow-type gaps is extremely scarce for the

~.1
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high Rayleigh number range; and second, a valid comparison will serve

to support the numerical method used in this study, which in turn,

supports the asymptotic analysis described in Chapter 4.

The three-term inner Nusselt number perturbation expression given

in Eq. (4.54), together with the three-term expressions for vorticity

and stream function given in Eq. (4.29), will be used to generate

comparative data for the pretransitional 2-D Navier-Stokes numerical

results. Comparisons for the inner (r = 0) Nusselt number, the inner-

wall (r = 0) vorticity and the center-line (r = .5) stream function are

provided in Figures 6.9-6.11, respectively.

Figure 6.9 depicts the angular variation of the inner Nusselt

number using the analytical expression (4.54) with G = 4.0 and Pr = .706.

It is worth noting that G 4.0 does not correspond to a conduction-

dominated flow (as with G = 1.0 or 2.0), but rather a flow subject to

significant convective effects. Recalling that G = Ra /4G, four

different combinations of G and Ra corresponding to G = 4.0 will be

used as numerical comparisons to the analytical result. These

combinations are G = .200 (Ra = 160,000), G = .150 (Ra = 505,680),

G = .100 (Ra = 2,560,000) and G = .025 (Ra = 6.554 x 108). Related

results are also displayed in Figure 6.9.

The best comparison to the analytical result corresponded to

G = .025. This was expected since the asymptotic analysis was tailored

for the small-gap/high Rayleigh number flow regime. Therefore, the 2-D

Navier-Stokes solutions do indeed converge toward the perturbation

solutions as G - 0. In the comparisons that follow, relative errors
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of the 2-D Navier-Stokes results with respect to the analytical results

are calculated. For G = .025, a maximum error of 1.5 percent resulted

near the top of the inner cylinder, ' = 1800. The three larger size

gaps also compared favorably. For G : .200, .150 and .100, maximum

respective errors of 11.5, 8.5 and 6.0 percent occurred, also at ' = 1800.

In Figure 6.10, a comparison similar to Figure 6.9 is presented.

This new comparison regards the angular variation of the inner-wall

vorticity for G = 4.0 and Pr = .706. For G = .200, .100 and .025,

maximum respective errors of 7.1, 3.5 and 1.0 percent resulted near

'= 900, or approximately the point of maximum fluid velocity.

Lastly, Figure 6.11 depicts the angular variation of the center-line

stream function for G = 4.0 and Pr = .706. This particular comparison

was in very close agreement to the 2-D Navier-Stokes results, with

maximum respective errors of 2.0, 1.5 and 1.0 percent for G = .200,

.100 and .025.

Although the inner Nusselt number (which is proportional to the

radial temperature gradient) is generally considered the least sensitive

parameter of the three, it did not agree as closely as did the

inner-wall vorticity and the center-line stream function comparisons.

Most probably, this agreement would improve if more expansion terms

are incorporated into the analytical expression for the inner Nusselt

number. But overall, all three analytical comparisons agreed rather

well with the 2-D Navier-Stokes results, hence supporting both the

numerical and analytical work set forth in this thesis.

It
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*, In summary, the first three terms of the perturbation solution

appear to be valid to within approximately 10 percent for the

pretransitional cases of G < .200. Thus, quick and fairly accurate

approximate solutions to the 2-D Navier-Stokes equations, in this

particular range of narrow-gap widths, can be obtained from the

analytical expressions derived in this study.

6.1.3. Small-gap number stability curves

As discussed in Chapter 4, previous investigators (Walton, 1980;

Powe et al., 1971; Liu et al., 1962) speculated that as the narrow

annular gap spacing approaches zero, a true B6nard-type instability

would erupt, corresponding to a critical Rayleigh number (Rab-a) of

approximately 1700. Instead, it appears from Figure 6.12 that the

minimum transitional Rayleigh number approaches 2400 for G = .175.

Beyond this point, the transitional Rayleigh number begins to increase

substantially with decreasing gap number; where at G = .050, the

thermal instability sets in at approximately Raba = 4560.

Directly related to the stability curve of Figure 6.12 is

Figure 6.13, which was obtained from the relation G Ra1/4G. This

new curve appears monotonic and seems to indicate that for very small

gaps, the instability sets in at a near-constant value of G equal to

approximately 3.90.

All data points on the stability curve of Figure 6.12 were

calculated assuming vertical symmetry for a half-annular mesh of

31 x 102 nodes, except for G .100 and .200 where the complete annulus
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(0 - 27T) was considered when investigating possible hysteresis behavior.

The vertical symmetry assumption proved to be valid, as was discussed

in Section 5.2.4. In order to obtain some type of tolerance criteria

for the numerically predicted transitional Rayleigh numbers, a mesh

resolution study was performed (see Appendix E) for three different

size gap widths. Based on these results, it appears that the predicted

transitional Rayleigh numbers are within 5 to 15 percent uncertainty.

This error range seems to indicate fairly reasonable accuracy when

compared to some of the larger discrepancies reported in the literature

for predicting the onset of secondary motion (Elder, 1965; Powe et al.,

1971; Rao et al., 1985).

Also in Appendix E is a comparison of the cellular development

for G = .200 when using either a first-order upwind or a second-order

central-differencing method. This comparison demonstrated that even

at very high Rayleigh numbers, the first-order upwind differencing

scheme could not capture multicellular flow transition. In addition,

this appendix compares mean Nusselt numbers predicted numerically for

G = .200 to that estimated by the correlation of Raithby and

Hollands (1975), which was valid for narrow gaps in the pretransitional

convective-dominated flow regimes, and also to the correlation of

Kuehn and Goldstein (1980b).

6.2. Hydrodynamic Instability

Under certain conditions, an unsteady multicellular flow

instability originates in the vertical sections of two-dimensional

-I- - S.,
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narrow horizontal cylindrical annuli. This particular type of

multicellular flow was captured numerically from the simplified

governing equations derived in Section 4.5, corresponding to the high

Rayleigh number/narrow-gap/small-Prandtl number limiting conditions.

The multicells apparently result because of hydrodynamic

instability, and are analogous to those investigated by other researchers

with regard to the vertical slot geometry, as discussed in detail in

Section 2.6.

In contrast to the vertical slot studies, the multicellular flow

initiated in the vertical portions of a horizontal annulus is unsteady.

Results from this study seem to indicate that the initial instability

behaves in a rather periodic manner. That is, the strength of the

cells appears to increase and decrease with time in a cyclic fashion.

Closely related to this observation is the phenomena of strange-

attractors. In some systems that experience a multicellular-like flow

instability, an ordered route to chaos has been reported (see Section

2.5 for specific references and related discussion). Briefly though,

a typical sequence of events consists of the system first behaving in

a time-periodic manner, followed by a cycle of periodic-doubling until

finally, the system is stressed into chaotic-like nonperiodic motion.

This present flow under study seems to have the potential to

follow a similar ordered path to chaos.

The following subsections deal with a thorough discussion of both

the numerical and analytical results relating to this unique type of

secondary-flow instability.
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6.2.1. Pr - 0 numerical solution

Assuming synnetry about the vertical center-line greatly reduced

the amount of CPU-time associated with the numerical computations.

This assumption was based on the detailed discussion given in Section

5.2. The above symmetry condition was proven valid in Figure 6.14a.

Here, the first 832 time steps (for At = 1.0) of the numerical solution

to the complete annulus (31 x 202 nodes) produced the cellular cycle of

the half-annulus (31 x 102 nodes) almost identically, and graphically,

no notable differences could be discerned. Also, for both the full and

half-annulus, the inner-wall vorticity at t = 832 were compared in

Figure 6.14b. The two cases were again in close agreement, to within

approximately one percent error. Note that these curves are presented

at this time to support the assumption of vertical symmetry. The exact

nature and meaning of the cellular behavior described by these curves

will be explained later in this section. Therefore, for the results

that follow, a half-annulus mesh of 31 radial nodes and 102 angular

nodes was employed. In general, the justification for this size mesh

was due to proper resolution of the cellular structure and also to

computer power and time limitations. These considerations are again

discussed in more detail in Section 5.2.

Steady-state results were obtained up to a G value of 5.1. Then,

at G = 5.2, a seven-cell unsteady instability set in at a t value of

approximately 30.0. Note that the converged steady-state results for

G = 5.1 were used as initial conditions to start the G = 5.2 case.

Prior to the seven-cell development, the instability first occurs near
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Figure 6.14a. Time-dependence of the stream function at r .5/

S=90' for =5.2. Full versus half-annulus

comparison. A full-annulus, =half-annulus
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= 90, where the maximum buoyancy force causes the most rapid rising

and falling of the fluid, as illustrated in Figure 6.15a. Also in

Figure 6.15b, the cellular pattern is displayed at a time slightly

beyond the initial development stage. The cellular instability then

grew until the relatively stable seven-cell pattern resulted at

t = 30.0. The initial seven-cell solution encompassed an arc of about

80 degrees near the vertical portion of the annulus (see Figure 6.16).

It is important to note that this multicellular flow instability

was preserved with both finer and coarser mesh sizes, as evidenced by

the data in Table 6.1. The coarser mesh, 31 x 72, could not resolve the

smaller cells near the top and bottom portion of the vertical section,

thus resulting in only five cells for the initial instability. The

other three mesh sizes indicate that the instability sets in as a six

or seven-cellular flow pattern. This result was in close agreement with

that reported by Lee and Korpela (1983) for their vertical slot geometry.

Table 6.1. Mesh resolution comparison

Mesh G Geometry Cells Convergence Precision

size transitional constraint

31 x 72 5.7 half-annulus 5 1 x 10-6 single

31 x 102 5.2 half-annulus 7 1 x 10-6 single

41 132 4.9 half-annulus 7 1 x 10-8 double

31 162 5.2 full-annulus 6 1 x 10-6 single

~.t
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Figure 6.16. Streamlines of the initial seven-cellular flow
field for G=5.2 and £=35.0 (diameter ratio
=1.5)
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They claimed that a six-cellular flow pattern initially appeared at

Grb-a = 8000 for a Prandtl number very near zero (see Section 2.6).

This Grashof number of 8000 compared favorably with the transitional

value of this study, where G = 5.2 translated to a Grashof number (based

on gap width) of 7855. Furthermore, transitional values of 7880 and

7932 were predicted analytically by Vest and Arpaci (1969) and Korpela

et al. (1973), respectively, for a similar vertical slot geometry.

Lee and Korpela (1983) also reported a wavenumber of 2.80

associated with the six-cellular flow pattern in their narrow vertical

slot. They defined the wavenumber as 2n/Z, where Z represented the

center-point distance between two adjacent cells. When this study's

initial seven-cellular state at t = 35.0 was compared to their narrow

vertical slot geometry (aspect ratio = 15), the wavenumber was

determined to be approximately 2.60--a good correlation.

However, as previously mentioned, the cellular flow within the

vertical slot geometry was steady, whereas in this study, the

multicellular flow at G 5.2 seemed to vacillate periodically about

the seven-cell state. That is, upon increasing t, a cyclic pattern

resulted: an additional eighth cell formed on top of the 800 arc,

reverted back to seven cells, then an additional eighth cell formed

on the bottom of the 800 arc, and again, reverted back to seven cells,

forming an 8-7-8-7 cellular pattern (see Figure 6.17). In the

seven-cell formation, the stronger cells appeared near i= 900 (see

Figures 6.16 and 6.18). The remaining cells successively decreased in

strength (in approximate proportion to sin ) as they proceeded away

S -- - i.
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from the 90° point.

At the start of the cellular cycle, the seven cells weakened (the

maximum stream function decreased) as the eighth cell formed on top

(see Figure 6.19). Then, the eight-cell pattern grew in strength until

the two larger cells near 90' merged into one with the maximum stream

function shifting upward to 92', thus forming an upward-shifted seven

cellular flow pattern. Similarly, these seven cells then weakened as

the eighth cell formed on the bottom portion of the chain of cells

(see Figure 6.20). Again, the eight-cell pattern grew in strength until

the two larger cplus merged into one with the maximum stream function

shiftinq downwards now to 87', thus forming a downward-shifted

seven-el luldr flow pattern completing the 8,-7-8-7 cycle. A cycl1(

behavl()r ,)f th,, avera(je inner shiear-stress also accompanied this

hanq]jnq el lular pdttern. Table b.c' outlines a typical cycle.
P

ot9 thdt tnese relations hi;s would rePeat for subsequent cycles.;"
J.

Table b.2. 1horacteristlcs of the 8-7-8-7- cellular cycle

(,el 1 t Average Maximum Maximum

structure inner stream function stream
shear-stress location function value

8-top 85.0 .23722 870 .4506

7-top 280.0 .23644 92"'  .4815

8-bottom 350.0 .237247 82' .4501

7-bottom 680.0 .23627 870 .4824

°,
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Figure 6.19. Streamlines of an upward-shifted eight cellular
flow field (eight-cells-top) for G 5.2 and

t 1782.0 (diameter ratio 1.5)

U ,,,.,.1~ -U' ,b.
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J

Figure 6.20. Streamlines of a downward-shifted eight cellular
* flow field (eight-cells-bottom) for G =5.2 and

t 1182.0 (diameter ratio 1.5)
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This table, along with the particular nature of the cellular activity,

seems to imply a potential energy exchange in the 8-7-8-7 cellular cycle.

That is, the most potential energy seems to be stored within the seven-

cell formation, corresponding to a minimum average shear-stress and a

larger maximum stream function. It then appears that some of the

potential energy is released and is converted to shear energy which aids

in the creation of an eighth-cell. This then causes a rise in the

average inner shear-stress and a corresponding decrease in the maximum

stream function.

The strength of the stream function at ' : 90'/r = .5 behaved in

a square-wave-like time-periodic fashion, as clearly illustrated in

Figure 6.17. The period of this cyclic pattern was approximately 800

time (t) units.

The fact that the cellular behavior at G = 5.2 is unsteady can be

supported by the work of Thomas and Vahl Davis (1970). They observed

a multicellular flow, similar to that reported by Elder (1965) and

Lee and Korpela (1983), in narrow vertical cylindrical annuli (see

Section 2.6). Even though they were only interested in predicting

the onset of this multicellular flow, they did report that the flow

was unsteady and attributed this unsteadiness to curvature effects.

Figure 6.21 displays the vorticity distribution at the inner

cylinder wall for both unicellular and multicellular flows. The

unicellular steady-state result, for G = 5.1, behaved in a sinusoidal

manner with the maximum vorticity occurring near 4 = 900. Then, due to

the multicellular instability at G = 5.2, the vorticity distribution

... '. , . -. . Z.'.,
,

.. j.' '-. - - - - ... - . - - - . -.- -.- , - .'.°....-.- - .' .#.''-s
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was clearly disturbed and behaved in an intense oscillatory manner near

the vertical portion of the half-annulus. This extremely wavy

vorticity pattern shifted only slightly as the number of _e',..>-

transition from eight-cells-top, to seven-cells, t., e -

The seven-cell solution experienced the strongest variatl:n wa'

vorticity. For individual comparison, the four curves < .

Figure 6.21 are depicted separately in Fiq, ures 6. :" -, .

To examine the change in cellular enar - .

5.5 was calculated using the G = 5.2 seven-_el>Id',a .

at t = 35.0. Figure 6.26a displays t.ne :wle .ar- .

function at 90'/r = .5, using a ,constir*t  1-it,

to t = 400, a hint of double-periodl(-lt, seer - :, ..

afterwards, the flow seems to become ader -)jl .,-,,,- .

of chaotic motion. The multicellular atterr wa'

G = 5.2, except in this case, the cei ,lar :,, .-it

between nine, ten and eleven cells. The -da !- "-.ur

occurring near 'Y = 90', was greatest for the n , it- .

least for the eleven-cell structure A t: V i LI '-,

is shown in Figure 6.26b. Also, in general, t, ,,

G= 5.5 was similar to that experienced witn -

The preceding results show that a multicellIfl,, :,

instability is indeed probable in the vertical se,-tns ,,

horizontal annuli. It appears that this instabilit, drs, e , ,

of the coupling of the nonlinear terms with the buoyancy ter•

"71
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-G sin P, in the vorticity equation. Considering this statement

together with the fact that periodicity is iJst for G = 5.5, one might

infer that the effects of the nonlinear terms become more and more

pronounced as G increases.

Based on this reasoning, it is anticipated that for some

intermediate value of G between 5.2 and 5.5, the possibility of an

emerging doubly-periodic solution is likely, thus causing the system

to make a further transition on its ordered path to chaos.

6.2.2. Pr - 0 perturbative solution

To verify the Pr - 0 perturbative expansion solution, the

analytical results will be compared to related numerical results for

the pretransitional case G = 5.1. As discussed in Section 4.6, only

F1 and W, (as given in Eqs. (4.93) and (4.94), respectively) appear to

be significant prior to the onset of multicellular flow. This claim

will now be tested in the following comparisons.

An analytical expression for the inner wall vorticity was found

by evaluating Wl at r = 0 for G = 5.1:

Winner .425 sin

A comparison to the numerical result at G 5.1 is given in Figure

6.27. The largest deviations occurred near = 45 and 1350,

corresponding to relative errors of nearly five percent. At the point

of maximum vorticity, P 900, the error was only about .1 percent.

-,U " '' " 3 . " "
" ° - . ' "

.
°
. - - . " -' . " - - " . ' - . " - . - . .



188

S-

o

-JO

-

u CC

-~ -4
xa

CC

LU,

CU

CYa)

4--

0:<.
C3C

(-1-13M-H N I



189

Similarly, an analytical expression for the vorticity at the

horizontal center-line was obtained by evaluating Wl at ' 900 and

G= 5.1:

W = 2.55 (r2 _ r +

This result was compared to the numerical result in Figure 6.28. The

vorticity was positive near the walls of the annulus, .81 < r < .19,

signifying the boundary-layer region. It became negative within the

center portion of the annulus, representing the inviscid-core region.

A maximum error of approximately 3.5 percent occurred near the

switching point, where the vorticity changed from positive to negative.

The maximum vorticity occurred at the walls, r = 0 and 1, and took on

a value of approximately .425. For r = .5, the vorticity reached a

minimum at -.2125.

The analytical expression for stream function at ' 900 and

G = 5.1 is given by:

F90o- 5.527125 r2 (r - 1)2

Figure 6.29 displays its comparison to the numerical result. A

maximum error of about one percent occurred at r = .5, where the

stream function reached its maximum value of approximately .346.

The above results indicate that the pretransitional flow field

(G < 5.1) can be adequately represented by the first-term expansions

% N
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(W1 and Fl) of the perturbation solution, which do not account for

nonlinear effects. That is, the problem appears to be linear and steady

up to G = 5.1. This suggests that the full nonlinear influence only

becomes evident just prior to and beyond the point of instability. For

this case, the nonlinear effects appear to come into play for G > 5.2.

Figure 6.30 was generated in order to show how the Pr - 0

perturbative solution breaks down as the Prandtl number increases.
- pr1/4,

Using the relationship G = G Pr , two numerical results corresponding

to Pr = .7 and 2.0 were compared to the analytical solution for G = 4.0.

Surprisingly, for Prandtl numbers as large as 2.0, the comparison

between the analytical and numerical results was fairly close. For

Pr = .7 and 2.0, respective maximum errors of 3.5 and 10.5 percent

occurred near = 1400. Thus, for air, the use of Pr - 0 expansions

should provide for relatively good estimates of the local flow

variables, at least for the pretransitional cases.

The finite-Prandtl number perturbative solution of Eq. (4.29) can

also be used to obtain analytical results for small Prandtl number cases.

Using the three-term perturbative solution (F1 , F2 and F3 ), all of the

important physics can be taken into account, including the first effects

of nonlinearity through F2 and F3. For liquid mercury, Pr = .02, a

six-cellular counter-rotating flow was encountered at G = 3.5. In the

complete annulus, the large kidney-shaped cells maintained themselves

near = 90 and 2700, while two smaller counter-rotating cells formed

first at the bottom, then at the top portions of the annulus - Y' = 0 and

1800. This multicellular flow pattern was more fully developed for
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G= 4.0, and is depicted in Figure 6.31. This particular flow pattern

was very similar to that observed by Mack and Bishop (1968) and Huetz

and Petit (1974) for a larger gap width, G = 1, and Pr = .02. They

graphically depicted the multicellular behavior at Ra = 300, but

mentioned that it initially occurred (analytically) at a lower value of

Rayleigh number. In addition, the presence and shape of the secondary

cells for G = 1 and Pr = .02 were confirmed by the numerical experiments

of Charrier-Mojtabi et al. (1979), where they reported a similar type of

multicellular flow that began to develop near Ra = 300.

Using the relation G = Ra1/4G, G = 4.0 translates into a Rayleigh

number of 256 for G = 1.0, thus reaffirming the results described above.

Note also that Huetz and Petit (1974) claimed that the bottom cell

developed first. However, when the finite-Prandtl number boundary-layer

equations were solved numerically for Pr = .02 (thus incorporating the

full effects of nonlinearity), a multicellular flow field resembling

that described with the Pr - 0 numerical solution resulted in the

vertical section of the half-annulus at G = 1.92 (G = 5.106).

From these results, one might conclude that the effects of the

boundary-layer are less significant in the larger size gaps, thus

creating a weakly nonlinear instability as originally reported by

Mack and Bishop (1968). But for the narrow-gap widths, the boundary-

layer effects are much more dominant, thus creating stronger nonlinear

interactions which trigger the hydrodynamic type of instability as

described in this study for the small-gap/small-Prandtl number limiting

conditions. These results are discussed further in Appendix B.
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Figure 6.31. Streamlines of the steady six-cellular perturbation

solution corresponding to Pr = .02 and

= 4.0 (diameter ratio = 2.0)
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6.2.3. Small-Prandtl number stability curves

In order to obtain a more universal relationship for predicting

multicellular flow instability with regard to small-Prandtl number

fluids in the narrow horizontal annuli, the following derivation was

considered.

It was shown in Chapter 4 that

SRa 1/ 4 G = Pr I / 4 G (6.1)

but since Ra = Gra  Pr, Eq. (6.1) becomes (after some manipulation):

4.4

Gra = G (6.2)

where Gra is the Grashof number based on the inner cylinder radius.
U.

Then, using the relation

Grb-a =Gra

one obtains:

Grb-a G (6.3)

where Gr b-a now represents the Grashof number based on the gap width.

For Pr = 0, the transition to multicellular flow occurred at G = 5.2.

Using this result transforms Eq. (6.3) into a universal relation which
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is inversely proportional to the gap number, G:

Grba 731 (6.4a)
ba G

This relationship is plotted for various values of G in Figure 6.32.

Note that the transitional value of Grba 8000, as predicted in this

study and by Lee and Korpela (1983), corresponds to a gap number of

approximately G = .10. Also, the shape of the stability curve seems to

make sense, since for the vertical slot studies it was reported by Lee

and Korpela (1983) and Elder (1965) that as the gap width increased, the

transition to turbulence occurred sooner. Similarly, in this study, it

was shown for very small-gap widths (for air) that as the gap number 5

decreased, the transitional Rayleigh number for multicellular flow

increased. The above statements indicate that as gap width decreases,

the onset of instability is suppressed. Thus, the stress parameter G

or Rayleigh number, must increase accordingly in order to trigger the

respective hydrodynamic or thermal instability. Qualitatively, the shape

of the stability curve in Figure 6.12 for Pr = .706 (in the small-gap

limit) is similar to that in Figure 6.32 for Pr 0 0. Also, for thermal

instability, the following relation holds:

'4

Grb-a G • Pr

where for air in the small-gap limit, Pr .706 and GTR 4.0, hence:

Grba air _)363air - (6.4b)

lair
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This relationship is very similar to that for hydrodynamic instability

(Pr = 0), except the proportionality constant differs by a factor of

two.

Taking the above approach a step further, one can also determine a

stability curve based on finite-Prandtl number by using the relation

G= 5.2 PrI/4, where G = 5.2 again represents the transitional value for

Pr = 0. The new stability curve is shown in Figure 6.33. These

analytical predictions were compared against numerically predicted

transitional values of G (obtained from the finite-Prandtl number

boundary-layer equations) for four different small-Prandtl number fluids

(see Table 6.3).

Table 6.3 indicates that for small-Prandtl numbers, the

relationship G = 5.2 Pr1/4 appears to be valid for predicting the

transitional G associated with hydrodynamic instability in the vertical

sections of narrow annuli. For Pr .02, an initial seven-cell unsteady

flow field, resembling that of Pr 0, was obtained at G = 1.92.

Table 6.3. Numerical predictions of G transitional as a function of

Prandtl number

Prandtl number G (transitional) G(= GPr-I/4

.02 1.92 5.106

.2 3.42 5.114

.3 3.80 5.135

.35 3.99 5.187
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However, for Pr = .35 (at G = 3.99), an interesting change occurred--

only a six-cell pattern resulted (see Figure 6.34) and the solution

achieved a steady-state condition similar to that reported for the

cellular instability between narrow vertical slots. Also, at Pr = .35,

the isotherms were no longer perfectly concentric as with the Pr = 0

solution. Instead, they responded quite closely with the fluid motion

(see Figure 6.35).

From these results, it appears that the same type of hydrodynamic

instability as for Pr = 0 extends to at least Pr = .35. But, the nature

of the multicellular flow has changed from seven-cells unsteady for

Pr = .02 to six-cells steady with Pr = .35. Perhaps, though, if one

stresses the Pr = .35 case past G = 3.99, an unsteady cellular motion

may ensue. Note that for Pr = .2 and .3, the cellular flow field was

not resolved; only the point of instability was determined.

The two stability curves described above should provide for simple

and convenient comparisons to future related studies of narrow

horizontal annuli (especially experimental ones). Note that the curve

in Figure 6.33 could easily be extended for comparison to data in the

larger Prandtl number range, thus, eventually establishing an

acceptance band on this asymptotically generated stability curve.
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Figure 6.34. Streamlines of the steady six-cellular flow field
for Pr .35 at G=3.99 (diameter ratio 1.5)

'I
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7. CONCLUSIONS

Numerical solutions of the 2-D Navier-Stokes equations yielded

steady laminar multicellular flow for air near the top portions of

narrow horizontal isothermal concentric cylinders. It was shown that

hysteresis behavior exists for G = .100 and .200, with regard to sudden

changes in the mean Nusselt number and average shear-stress as the

Rayleigh number was slowly increased and then decreased past the

multicellular transition point. Also, for G less than approximately

.175, the results for air indicate that the transitional Rayleigh number

increases as the gap number decreases. The minimum transitional Rayleigh

number occurred at Rab-a = 2400 for G = .175.

In performing this multicellular flow study, first-order upwind

differencing of the nonlinear convective terms proved inadequate. In

relation to the pretransitional flow field cases, the first-order

method was in good agreement with the results obtained from the

second-order central-differenced numerical scheme. However, for the

higher Rayleigh number flow regimes, the artificial viscosity

associated with the first-order differencing of the nonlinear convective

terms suppressed the development of secondary counter-rotating cells.

Thus, it appears that at least second-order accuracy is needed to

properly capture multicellular flow behavior. Moreover, multicellular

flow resolution is also strongly dependent upon mesh size. That is,

coarse meshes frequently failed to resolve the multicells, while

finer meshes would sometimes result in asymmetric cellular patterns
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when not enough nodes were concentrated in the thermal plume region

for air.

A high Rayleigh number/small-gap asymptotic expansion theory was

constructed which simplified the 2-D Navier-Stokes equations into

Cartesian-like boundary-layer equations. Analytical perturbative

solutions to these equations were obtained and the results compared

favorably with the pretransitional numerical data generated in the 2-D

Navier-Stokes hysteresis study of this thesis. For the limit as

G - 0, the boundary-layer equations reduced to viscous-dominated

Stokes-flow equations, as shown in Chapter 4. This implies that for

either Ra - 0 or G - 0, a conductive-dominated flow results.

In addition, simplified limiting equations for Pr - 0 and Pr -

were obtained from the finite-Prandtl number boundary-layer equations.

In the Pr limit, only the nonlinear terms in the energy equation

remained and the vorticity equation reduced to a Stokes-flow equation,

suggesting the possibility of a Benard-type thermal instability, as

seen with air near the top portion of narrow annuli. In direct

contrast, the energy equation decoupled from the vorticity equation

and reduced to simply T = l-r for the limit as Pr - 0. Thus, only the

nonlinear terms in the vorticity equation came into play, suggesting

a source of hydrodynamic instability.

When the Pr - 0 equations were solved numerically, an unsteady

time-periodic multicellular instability developed (at G = 5.2) in the

vertical portions of a narrow horizontal annulus. Both the wavenumber

and the transitional Grashof number (based on gap width) of the
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initial seven-cellular instability compared favorably with the steady

six-cellular instability experienced in a narrow vertical slot of

aspect ratio equal to 15, as studied by Vest and Arpaci (1969) and

Lee and Korpela (1983).

Upon increasing time, cyclic changes in the multicellular flow

pattern resulted for G = 5.2, forming an 8-7-8-7 repetitive cellular

behavior. However, this periodic flow pattern was lost when G was

increased from 5.2 to 5.5, resulting in a seemingly chaotic cellular

behavior between nine, ten and eleven cells.

Also, the Pr - 0 analytical pretransitional solutions were in

good agreement with the numerical results up to G = 5.1. Based on this

comparison, the Pr - 0 problem appeared linear and steady prior to the

point of instability.

Moreover, a universal relationship for small-Prandtl number

fluids,

Grb-a _731
b-a G

was suggested as a simple guide for predicting the onset of

hydrodynamic instability between narrow vertical slot-like geometries.

Figure 6.13 shows that for air (Pr = .706) in very narrow-gap

widths (G < .075), thermal instability sets in near G = 3.90. But for

Pr = 0, hydrodynamic instability sets in at G = 5.2, which corresponds

to a G of approximately 4.8 for air when using the analytical relation

G 5.2 Pr1 /4. This difference in G indicates that the mechanism which

-4
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triggers the instability for air is different than that for Pr : 0 (as

previously discussed), and is probably largely due to the nonlinear

terms in the energy equation being coupled with the buoyancy term
T

cos in the 2-D Navier-Stokes equations (see Appendix B).

Considering the above, competing effects of both thermal and

hydrodynamic instability may result for Prandtl numbers between zero

and .706.

In order to more fully support and study the nature of the

unsteady multicellular instability described in this research effort,

an experimental analysis of a narrow horizontal annulus filled with

liquid mercury (Pr = .02) is recommended as a possible follow-up

project. Also, numerical solutions relating to G = 5.3 or 5.4 should

be carried out to determine if a doubly-periodic cellular behavior does

indeed precede the chaotic state noted at G = 5.5, as suggested in

the 'ordered path to chaos' scenario described by Ruelle and Takens

(1971).

In addition, the energy spectrum of the fluid motion at G= 5.2

and 5.5 could be calculated in order to reveal any type of spectral

broadening (or fundamental frequencies) associated with flow changes

from time-periodic to chaotic-like behavior.

Lastly, the Pr boundary-layer equations should be solved

numerically to determine the nature of any cellular instability that

might develop. In the same spirit, the limiting 2-D Navier-Stokes

equations derived in Appendix B should also be further investigated

numerically for different size gap widths.

.J.
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In closing, since natural convective flow instabilities generally

develop slowly, especially in narrow horizontal annuli where the

geometry itself limits the number of degrees of freedom, a more

thorough investigation of laminar flow transition can be undertaken.

Also, it has been conjectured that the transition to chaos in a system

with many degrees of freedom (such as a fluid flow at large Reynolds

numbers) is not qualitatively different from the transition to chaos

in a system with a few degrees of freedom (Jensen, 1987). Thus, it is

hoped that further study of simple geometries, such as described in

this thesis, will lead to a deeper understanding of the nonlinear

processes involved in the mysterious, yet ever-present dynamics of

fluid flow instability phenomena.
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10. APPENDIX A: ANALYTICAL COEFFICIENTS

The perturbative coefficients corresponding to the analytical

solution of the finite-Prandtl number boundary-layer equations,

(4.39) - (4.46), are listed below. Note again that all of the

coefficients (A2 through H4) are functions of r only.

A2 _ r9  + 
8  

+-
7  r4  - 3  2_

7560 1680 1260 720 690~ 2520

B2 r9  +-r8 +r 7  +-r 6 + - 2
1512 33 18 18 r60 112 54

C2 +r r6 + r+ f_ + +1
10 30 60 115 1260

D2 rE7 +-r' 7r' -r'4  r 3 +-r + 1

21~ 6 30 6 18 25-2 2520

E2 = __L_ 1 r9  +r 6  -r + r 4  + -r
415800 +75600 +45360 +10800 +6900 +15120 +387701

F2 = r1  + _r10  r + + + -r9  r8  7_ - 5  r4  + -r
83160 +15120 +6480 5040~ 7560 +15120 +30240 +997934

q6r n 3 10 +- 23 r9 5 8 -10 7
55 5 18 4 21 30 10 12 277

+4 2 10 -5 + 3 8 -57 2 6 +-3 5H2 +-ll r +-r9 -r + -r +-Lr 1 +--r55 56 4 21 150

4
+r + -r

6 171
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14 r13 71r 12  Ir 11 rI 0 r9  -r 8
r3 - 7 -r+++++

A3 -458640 ++655 1163200 +  7325 32-4- 90720--- + 38640

4r 7  _r6  r5  -r3  _r
2

++ + ++

152145 37950 75600 4695894 1178430

912 131 +383r
2 + 3r -rlO +23r

9  + -r 8

91728 13104 1663200 7700 2493 90720 10584

7 6 5 - 3  r2

+ + -r r + + r
40740 75600 151200 1257992 5034689

14 13 12 11 10 9

C3 -r + r + r + r + -r + r
8255520 1179360 439560 369600 907200 1088640

.

+ r8  
+ r7  + + r5  

+
241920 162960 248400 907200 5865883

2

+
8519738

r14  -r 13  r1 2_ _rl l  83r l 0O  -19r 9

D3 -+ - + 12+ _rl+ +
1651104 235872 76680 43200 3230640 1088640

r8 r7 _ 6  r5  r3

+ r8  
+ + r6

+ + r
181440 795480 544320 1814400 3724001

+ -r 2

4020927

E3 r14  -r13  + r12  + r 9  r 8

9.0811 x 108 +1.2973 x 18 59875200 5443200 2318400

-r 7  r 4  -r 3  -r 2

++ +T8 +

3175200 9304824 26554595 79473251

,I
.7A

FjnL I]I* O. . -,
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-r 14 r 1 3  22 -r 12  r 11  10
F38 25945920 8 553600 4 989600 +5443200

1.8162 x 10

+ r 8  + -r 7  + r 4  + r3

5080320 6350400 23950428 7.353 x 10 1

+ 
-

71688776

G3 = l r -r9 + 2r2+ -r+ r+ -r9 + r8+ -r720020 +2860 23760 792 1512 15120 3360 2520

+ r4+ -r 3  + -

6648 -4-179 4 19259

H3= ____+ -r1 3 
+r

12  
+ rl+r1 r 9  

+ __ -L8- __-r30030 +4290 1584 1320 3024~ 3780 +1120 +1260

+ r4  + r3  + -r 2

4104 3172589 12102

A4 _ I + 71r 10 + _2r 9 +r 8 +r 7  +-r 6 +8r 5  +-r4
2520 420 12600 315 360~ 1260 690~ 7245 +1265

+ r3 + -r + -1
3780 782649 589215

B4= r12 r11  383 10  2r9 + _r8  2r 7 + r6 +r 5  -r

504 ~84~ 12600 ~70 277 16 8 7 2520

+ r 3  + -r + 1
TS-6- 20-9-665 S' -1 4-1



223

C4 -r 12 r l rl 0 +r 8  r 7  _r 6  5
45360 + 7560 + 3330 3360 10080 + 15120 r4320 3880

+ -r4  + r3  + -r + 1
+ F +45360 97-7 + 4259869

D4 r12  rll llr1 0 + -llr 9 +83r 8  -19r 7 +r 6

9072 1512 6390 4320 35896 15120 3240 18940

4  r3 r-

+ -4 + r + r + -1
98T-4 0720 -62785 201-0- -

E 4 r 2 r 1  r 1 0  _ r 7  r 6  _ r 5  r 2

4989600 + 831600 + 453600 + 75600 + 41400 + 75600 + 775402

+ -r + -1
4425766 39736626

F4 r 12  + _ r 0 + +r8  r6  +
997920 166320 64800 45360 60480 90720 151200

2

+ + + -1
1995869 2255 35844388

G4 r12  -3r11  1 23ri0  -r9  Sr8  r7  r6 -r 5 + 2G4 11l0 +  55 +  180-+36-+8+ 2TO+60 60 + -5 54

+ -r -
+763+ 9629

H4 1r -2r I  1  0 +-r 9  5r8  _ -2r7  r6  r5  r2
165 55 12 12 168 105 20 30 342

+ -r -
57 6051

.,

#',

., , .. -,.,"-. , • . , - . . .,..... :, --, .. .,.- ... • . , ...,. ..,... ...... .. ... ... .-.
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11. APPENDIX B: LIMITING CONDITIONS OF THE 2-D

NAVIER-STOKES EQUATIONS

Since the simplified boundary-layer equations of Chapter 4 (in

the limits of Pr - 0 and Pr - -) applied only to the narrow-gap/high

Rayleigh number regime, the effects of small and large Prandtl number

on arbitrary gap size and Rayleigh number could not be explored. To

consider these effects, the 2-D Navier-Stokes equations of Chapter 3

must be employed. This appendage will derive these limiting equations,

and will explain the important features and differences of both

approaches.

11.1. The Pr - 0 Equations

In the limit as Pr - 0, the thermal-energy equation of (3.la)

becomes:

a -2
T + (r + 31 3T + + 1- 2T 0 (11.1)

subject to the following boundary conditions (assuming symmetry):

T(O, 4) 1 (11.2a)

T(l, 4) : 0 (11.2b)

aT (r, 4 0, 7) 0 (ll.2c)
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Given Eqs. (ll.2a-c), the solution to Eq. (11.1) is

T = 1 - Zn(l + Gr) (11.3)
Zn (I + G)

which is simply the steady-state conduction solution for the concentric

cylindrical annulus. Because Eq. (11.3) is independent of P, one gets:

T 0 (11.4)

and

3T _ -G (
r (1 +Gr)in(l + G) (11.5)

DT

Hence, for the limit as Pr 0 0, the buoyancy term, -cos T in

Eq. (3.1b), reduces to zero, whereas sin T becomes:
arr

sin aT _ -G sin (ar (1 + G.r)Zn(l + G) (11.6)

Thus, the energy equation has again decoupled itself from the vorticity

equation.

Now, in the limit as G , Eq. (11.6) vanishes (or approaches

zero from the negative side). But as G - 0, Eq. (11.6) simplifies to:

sin 1 2TG -sin P (11.7)

ar IG-0
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Therefore, sin 1- achieves its maximum absolute value at 1 90 and
ar

2700 for G - 0, thus duplicating the Pr - 0 condition described in

Chapter 4 in which a hydrodynamic (or shear-flow) instability is

probable for the narrow-size gap widths.

From the above results, one may deduce that as G - 0, the shearing

influence of the inner and outer boundary-layers is strong enough to

cause hydrodynamic instability to originate near the points of maximum

velocity, or at 4 = 90 and 2700. In contrast, as gap size increases,

the shearing influence of the boundary-layers is less destabilizing

since the buoyancy-induced velocities are reduced. However, at high

enough Grashof numbers within the inviscid core, a thermal-like

multicellular instability develops near the upper and lower portions of

the annulus (' = 0 and 1800), where smaller counter-rotating cells have

been reported (Mack and Bishop, 1968; Huetz and Petit, 1974; Charrier-

Mojtabi et al., 1979) (also see Subsection 6.2.2 and Figure 6.31).

After factoring out the Prandtl number dependency in the vorticity

equation of (3.1b) and using the results of Eqs. (11.4) and (11.5),

the governing equations for the Pr - 0 limit become:

Vorticity:

2 3w 1 3f 3w 3f w
G -t + (r + ) ( - 37 T r) '

2- 1 -2 2.
a w + (r + ) w + (r + 2w.
- r r 32 G 3

+ G(Gr) -G +g.rn(l + G)}  (11.8a)I + Gr)9.nI + G

dip°
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Stream Function:

af+(r +) f +(r +) 2f C 2.

with boundary conditions:

f(O, ') = f(l, 'P) = 0 (11.8c)

and

w(r 0, 1; a- (11.8d)

G (r.r=0,l

Consistent with the Pr - 0 result discussed in Chapter 4, the nonlinear

terms in the vorticity (momentum) equation remain and the energy

equation decouples and reduces to the simple conduction solution.

Importantly, though, the equations given in (11.8) are valid for

arbitrary gap and Grashof number, thus enabling one to further

investigate the various effects of each parameter.

11.2. The Pr Equations

For the boundary-layer equations of Chapter 4, in the limit as

Pr -, specific expansions were derived in order to retain all of

the important physics. Using the same rationale (see Eq. (4.102)),

the following expansions will be adopted for this more general approach:

,

p' ; ' , , ' , , ' W 'w , " W "- " .e " , " r , " - . " . " . "# ", ", " . " . ", " .
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w = Pr1 W + O(Pr -2)

f = Pr l F + O(Pr -2) (11.9)

TT+ O(Pr
I )

Then, in the Pr - limit, Eqs. (3.la-e) simplify to:

Thermal Energy:

-12" -1
l l a BF T 2T 1 -

G2 3T + (r +) (- 1) : + (r+) -T
(i r W r -TG ar

+ (r + ) 2 (11.lOa)

(where t Pr- t)

Vorticity:

1 -1 122+ (r + T + (r + -If) 2W

G r 2

+ G(Ra) (sin 2T + cos1P3T = (11.10b)
Sr+

Stream Function:

1 - 22 2"
+ (r + ) F + (r + ) 2F - G2W (11.lOc)

r2  G 3r 302

,: % ; > ; ; ii ?; :; -,:,.;'. ... ,i,> ",i.---.:-? ,.-.>.' - -P- -,'P-
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with boundary conditions:

T(O, f) = 1; T(l ) 0 (llld) '

F(O, 4) = F(l, 4) = 0 (ll.lOe)

A 2"

W(r = 0, 1; 2) 2 r(l . f)

r0,l l1lf

In the above equations, only the nonlinear terms in the thermal-energy

equation remain and the Prandtl number dependency has again vanished.

However, both buoyancy terms are retained in the Stokes-like vorticity

equation, and Eqs. (ll.lOa-f) are also valid for arbitrary gap and

Rayleigh number.

As Pr , the thermal-energy diffuses much more slowly than for

Pr - 0; hence, the radial temperature gradient, -T, tends toward itsar

minimum in the former case and approaches its maximum in the latter.

This implies that as Pr , the tendency of a hydrodynamic instability

to originate near the vertical portion of the annulus is reduced,
aTsince the term sin 4 - is rot as strong as in the Pr - 0 case. This

statement is further supported by the results of Lee and Korpela (1983).

They found that as Prandtl number increased, the width of the

vertical slot had to be decreased (or aspect ratio increased) in order

to trigger the multicellular instability more readily seen in the

smaller Prandtl number fluids.

Vp

I

'S.

,d"
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Furthermore, regardless of the flow, only concentric isotherms

result for Pr - 0. However, the isotherms are significantly

influenced by the flow field for Pr - , thus causing the angular

3T
temperature gradient iF-to be of much more importance. This behavior

is especially true for the thermal plume region near the top of the

inner cylinder (4 = 1800), whereas near the bottom of the annulus

(' = 0°), T is minimal for flow fields in this larger Prandtl number

range. Then, since cos is -1 at 4 = 1800 and zero at 4 90',
aT

and because 5 is most significant in the vicinity of ' = 1800, the
3T

buoyancy term cos P reaches its absolute maximum near 4 = 1800,
T

where sin 4 tends to zero.

From the above discussion, the following conclusions can be

drawn. Due to the nonlinear terms in the energy equation being coupled

with the buoyancy term cos a thermal-type multicellular flow

instability near the top of narrow annuli may occur for large Prandtl

number fluids. Whereas, for Pr - 0, a hydrodynamic instability is

probable near the vertical portions of narrow annuli, due to the

nonlinear terms in the vorticity equation being coupled with the

buoyancy term sin as previously shown in Chapter 4.

ar'

%

,p
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12. APPENDIX C: En VERSUS En+l FORMULATION

As discussed in Chapter 5, a correction term was added to the

first-order upwind-differenced representations of both the streamwise

(angular) and transverse (radial) convective terms. This was done in

order to gain second-order central-differencing accuracy while avoiding

the stability problems of spurious wiggles at high Rayleigh numbers,

associated with ordinary central-differencing of the nonlinear terms.

For the 2-D Navier-Stokes equations, the correction term (E) in

Eqs. (5.6a-f) was evaluated at the old-time level E n , as opposed to the

new-time level En+l, for a truly implicit method. This particular

change seemed to further aid in stabilizing the numerical method for

highly convective flows, and also significantly reduced the total

number of iterations required for convergence to a steady-state

solution, as will be shown in Section 12.2.

To show that this substitution (En for En+ l ) does not affect the

formal accuracy of the numerical method, a formal truncation-error

analysis was performed on the governing set of equations as written

in (5.4) and (5.6). The basic procedure and final results are given

in the following section.

12.1. En Truncation - Error Analysis

Using the En formulation, the general finite-difference equation

for p = T, w or f can be written as:

I
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C00n+ (A2)AG n +C + C0n+l + C n+l0 0 T 0 1 Cl1 2 2 2n 3 C3

+ C4o4 n+l + En + Sn + 1 (12.1)

where the nodal point locations are depicted in Figure 5.1 and the

symbols and coefficients are as described in Eqs. (5.5) and (5.6). In

general, En is a function of n' on, n' n and n , as shown in
0 1' 2' 3 4'

Eq. (5.6g). To properly show the truncation-error of this scheme,

the coefficients in Eq. (12.1) are first written in terms of Taylor-

series expansions about node zero (at the new-time level):

n+l n+l n+l
n n+l - 1 +2 _ 1 ttt 3

O 0 A~pt + Att A0

+ O(At) 4  (12.2a)

n+l n+l n+l
n+l n+l + 1 h + 2 2 + h3

0 0

+ 0(hf)4  (12.2b)

n+l n+l n+l
n+2 n+l + k + 1 2 1 k 3

0 0 0

+ 0(kf) 4 (12.2c)
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n+l n+l n+l w

1n+l h + h 2 1lh 3

3 0 r b 2rr b 6rrr b
0 0 0

+ 0(hb) 4  (12.2d)

n+l n+l n+l
04n+l jn+1 _ k + 10 kb 1 k 3

40b 2 4P1P b 6I$flP b
0 0 0 p

+ 0(kb)4  (12.2e)

Th rmanig ers n n  n n n n w

The remaining terms in En, 2 2 q3 and 49 are represented by double

Taylor-series expansions; for example:

n+l n+l n+l
n n+l 1 2

01 - 0t At + ttt + dr h

0 0 0
"p

n+l nl n+l

2 r0 h f6 t A rrr h f
0 0

n+l n+l n+l

2 'rrt f tr f ttt

0 0 0

4 4
+ O(At) + 0(hf) 4  (12.2f)

"m 
I ' ] m "

W '. "I . , -. -. . " . .-. -. . . . . . . . . -. . . . . . . . . . .. . .. . . . . . . . .
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and similarly for 42' 3 and 4

2' 3 4

Considering the stream function equation, the appropriate

expansions of Eq. (12.2) are substituted into Eq. (12.1), resulting

in the following simplified expression:

nrr + (r + 1) - n + 2X r  - G2 w0 n+l

rr r 0
0 0 0

A

+ (TE)f : 0 (12.3)

where (TE)f signifies the stream function truncation-error and is

given by:

2 2
(TE)f =O[At(hf - hb), hfhb,kf-kb,hf, hb

3 3 3
Lt3 , kf3 , kb3

Note that for the stream function equation, both the unsteady and

streamwise convective terms are absent, as shown in Eqs. (5.4) and (5.5).

Thus, Eq. (12.3) recovers the proper differential equation, and (TE)f

identifies that the formal accuracy of the differencing method is not

altered when replacing En+l with En in the stream function equation.

In a similar manner, the energy equation simplifies to:

4

,' rT h~.*4,.g- ' . 4.m ., 4 -' , . .. -, -• . _ z , . m y m r t t ; ,: : r._-- '
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n+l n+1 n+l

-A2 G2 t + A2 rr + 2

0 0 (r+ 0

n+-I n+l

+ 2X r  + 211 + (TE) T = 0 (12.4)

0 0

where the thermal-energy equation truncation-error is given by:

(TE)T = O[At(hf - hb), At(kf - kb), At, hf - hb, kf - kb9

hf 2 , hb
2, kf

2 , kb 2

Hence, the original energy equation is recovered and the formal

accuracy of the method is not sacrified. Likewise, the vorticity

truncation-error is of the same order as the energy equation.

To compare the differences of the two formulations, several test

cases were performed and are discussed in the next section.

n n+l
12.2. Numerical Comparison of En Versus E

For the test cases that follow, steady-state results were obtained

by using a time-step of 5 x 10-4 carried out to t = .150. Also, the

0 - 27 program was used with a mesh size of 31 x 102 nodes. For the

pretransitional cases compared below, the gap size was G = .200 and
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Table 12.1. Pretransition comparison of En versus E
n+1

Rayleigh En En+ 1  Convergence

number iterations iterations criteria

100,000 4585 4585 1 x 1O6

250,000 6126 6550 1 x 1O6

350,000 9520 10590 1 x 10-6

the initial conditions were zero (see Table 12.1). At Ra = 100,000,

the flow field was conduction-dominated and the number of iterations

for convergence was the same for both formulations. But when the

flow became convective-dominated at Ra = 350,000, the En formulation

improved the convergence rate by approximately 10 percent. For these

three pretransitional comparisons, both methods produced exactly the

same average Nusselt numbers and shear-stresses.

However, checking one of the hysteresis loop calculations for

G = .200, a marked improvement could be seen in the number of

iterations saved for the four-cellular initial condition (Ra = 900,000),

used to start the Ra = 350,000 test case. The results are summarized

n
in Table 12.2. In this case, the convergence rate of the E method was

approximately 25 percent faster than the E
n l approach. For the En+l

method, the two cells began to bottle-neck (local minimum stream

functions resulted) near J 170 and 1900, but never split apart to

form the four-cellular counter-rotating pattern. But, when the En+l

F;:.(~-
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Table 12.2. Multicellular flow comparison of En versus E
n+ l

Rayleigh Iteration Convergence Cellular

number number criteria structure

E 350,000 5850 1 x I06 4-cells

En+l 350,000 7790 1 x 1O-6  2-cells

method was repeated with a convergence constraint of 7.5 x 10 -7 , the

4-cell pattern was achieved. Therefore, it appears that as the En+l

convergence constraint is reduced, its calculations compare more

favorably to those of En for multicellular flows.

Thus, the En method has both speed and accuracy advantages when

multicellular flow is experienced. This is most probably due to

added stability, since En is always constant when iterating on flow

variable calculations for a new time-step. Also, a relaxation strategy

is not necessary when using the En formulation. For these reasons, the

En approach was used in the 2-D Navier-Stokes numerical scheme.
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13. APPENDIX D: HEA TRANSFER AND SHEAR

STRESS RELATIONS

13.1. Dimensionless Nusselt Numbers

The local heat transfer rates along the heated inner cylinder wall

and the cooled outer cylinder wall are calculated from first principles.

For the inner and outer cylinders, these local rates are given by: p.

3TS

qi -k - (13.1)

r=a

qo -k . .r (13.2)

r= b

where a, b are the radii of the inner and outer cylinders,

respectively. Using the definition of Nusselt number based on the•K

inner cylinder radius, Eqs. (13.1) and (13.2) can be nondimensionalized

to yield the following expressions:

aqi 1 3TNu = '~ (13.3) "
Nui : k(Ti - To) -G r:rO (3)"

*l 0 r=.

a qo - 1 3T (13.4)

Nu0 = k(T - T0) - G Tr r=l

The average heat transfer rates can be found by simply integrating

the local radial temperature gradients along the inner and outer

cylinder walls:

'p%

.5'S.q

• .. ..-.,-.....-,.- . .-, .- .- , - . .. , . .. . . . % -. . - . - - , -. - -. . -. . • . . . . . . . .5;
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2Nu '= T dlP (13.5)
Ni : 2T-G 0 a- r:0=

= -T d P . (13.6)

U 2-rG 0 rrl

Note that when symmetry is assumed, the integrations are carried out

for only the half-annulus, or from 0 to Tr. Numerically, the integrations

of (13.5) and (13.6) are approximated by using a second-order trapezoidal

rule with variable increments, thus preserving the formal second-order

accuracy of the numerical method. Also note that since there are no

internal heat-generating sources (or sinks), the inner and outer

average Nusselt numbers should equal each other upon reaching steady

state, i.e., Nui = N-0

13.2. Dimensionless Shear Stresses

Also from first principles, the local shear stresses at the inner

and outer cylinder walls are defined as:

i : - -r(13.7)
r =a

= - P(13.8)

r=b

where u is the dynamic viscosity coefficient and - is the radial

gradient of the tangential velocity component. Expressing in terms
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of the stream function and then, nondimensionalizing yields the

following relations for the local shear stresses:

_ 1 a 2f (13.9)Yi ' G- ar- lr=O

2

Y 0 a 1 2 (13.10)

YO -I G'- 3r- -lr=l

The average shear stresses can also be obtained by integrating the

local values along the inner and outer cylinders:

_ -I. - d4' (13.11)
i 27rG 0 ar r=O

-1 2i2
O- 1- f a f d . (13.12)

2 TG 0 ar r=l

Again, the integrations were carried out numerically by using a

second-order trapezoidal rule with variable increments.

13.3. Heat Transfer and Shear Stress Finite-Difference

Expressions

In order to numerically approximate the local and average Nusselt

numbers as given in Eqs. (13.3) - (13.6), finite-difference expressions

for the radial temperature gradient on the inner and outer cylinder

walls must first be obtained. To do this, a second-order polynomial

curve fit was employed:

i%
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Tn+l= an + l + bn+l Ari + c n+l Ar 2 (13.13)
i~j 3 .) 1

n+l
Using the inner cylinder boundary condition, ,j = 1, the following

equations can be written:

T = an~l  1 for all j (13.14a)1,j j

Tn+l bn+l n+l Ar2
2,j l+ Ar2 + j 2 (13.14b)

Tn+3j I + b n+ (Ar2  Ar 3 ) + Cn+l (Ar2 + Ar3)2

(13.14c)

where Ar1 =0 and Ar. = r. - r. for i = 2, 3. Note that i 1
1 i-l

corresponds to the inner cylinder wall at r = 0 and i = 2, 3 represent

consecutive nodal points in the positive radial direction. Then, since
p

n+l
aT bn+l

ar bi~

one obtains, after some algebra, the following expression for the

inner local Nusselt number:

• n+l , _Tn+l

Nu. - 2 (13.15)
G Ar2

where

7, '# € , , , ," " .. '" . .'. 5 *' ". .'_: ",' .'_' ";" . :w " ."* . ... - "r , " . .. ,,-, S." .r, r ',o .. q.. e _, ._ . ' .- , . *.. .... . .
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Tn+l Ar 2 + Ar3) Tn+l

n+l 1 + Ar 2 2,j
ci

~r2

(Ar +-Ar 2 2
2 3) ( 1 Ar2 + Ar 3

, Tn+ 1

Similarly, using the outer wall boundary condition, T 
= 0, the

NRJ =0 h

expression for the outer local Nusselt number becomes:

T n+l ANAr + ArNR1 _ Tn+l

NRI,j (Ar NR NR TNR2,j
Nu0 = N N N2 (13.16)

G(Ar + A rNR + ArNR1
NR ArNRl

)(  ArNR

where

ArNR = rNR -r NRl

Ar r - r
NR1 NRl NR2

and i = NR corresponds to the outer cylinder wall at r 1, while

i = NRl, NR2 represent consecutive nodal points in the negative radial

direction.

In the same fashion, a similar polynomial fit as in Eq. (13.13)
,

can also be used for the stream function in order to obtain

expressions for the inner and outer local shear stresses. Employing

-1
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the boundary conditions

ffn+l = fn+l
l,j -NR,j

Eqs. (13.9) and (13.10) can be cast into the following algebraic

representations:

-2 (fn+l Ar2 + Ar3 fn+l
3,j Ar2  2,j

Ari 2( =  r2 (13.17)
G2 (Ar + Ar2 + Ar3 )

and

-fn+l ArNR + ArNRl fn+l
-2 NR2,j - NR NRl ,j

N= . (13.18)

G G2 (ArN + )2 ArNR
N ArNRl ( ArNR + ArNR1

The above relations are valid for the 2-D Navier-Stokes equations

as used in this study. However, these relations can also be used with

the finite and zero-Prandtl number boundary-layer equations by simply

substituting the appropriate related variables for temperature, stream

function and gap number. Also, since a second-degree polynomial curve

fit was used, the Nusselt number expressions are typically of second-

order accuracy for uniform increments, while the shear stress

expressions are of first-order accuracy.
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14. APPENDIX E: TRUNCATION-ERROR STUDY

This appendix investigates the effect of truncation error on the

numerical solution to the 2-D Navier-Stokes equations. Work begins

with the comparison of first-order upwind differencing versus second-

order central differencing of the nonlinear convective terms in the

2-D Navier-Stokes equations. Then, a mesh resolution study for three

different size gap widths is conducted to gain an idea of the uncertainty

involved in the numerically predicted transitional Rayleigh numbers of

Section 6.1. Lastly, two correlations for the mean Nusselt number are

compared to related numerical results with respect to an annulus of

diameter ratio 1.200.

14.1. Upwind Versus Central - Differencing

In Figure 14.1, the two different schemes are compared for a

pretransitional Rayleigh number of 300,000. The complete annulus was

considered with G = .200 and a mesh size of 31 x 102 nodes. The

upwind scheme was employed by setting the correction term (En) to zero

in Eq. (5.6g). The first-order upwind method compared rather well to

the central-differencing scheme in this case, with maximum relative

errors of 2-3 percent occurring near = 1800 and $ = 00, respectively.

Hence, for the pretransitional cases, the first-order upwind-

differencing method should yield fairly accurate numerical results.

However, for Ra = 1,000,000 (well beyond the point of multicellular

transition as predicted with the central-differencing scheme), the
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first-order upwind method was not able to resolve the multicellular

flow field, as indicated in Figure 14.2. This was most likely due to

artificial viscosity effects associated with first-order upwind-

differencing schemes. Thus, it appears that at least second-order

accuracy is needed to capture multicellular flow transition.

14.2. Mesh Resolution Study

This study examines three different gap widths with a mesh of

31 x 102 nodes for both the complete and half-annulus. Thus, the

number of angular nodes in the half-annulus is approximately doubled

compared to that in the full-annulus.

For the half-annulus, vertical center-line symmetry was assumed.

This assumption was proven valid by the symmetric multicellular flow

patterns shown in Figures 6.3c and 6.5 for G = .200 and .100,

respectively. In Figure 14.3, the angular variation of the inner-wall

vorticity is plotted for the full and half-annulus at Ra = 2,500,000

and G = .100. The results of the half-annulus mesh are nearly

identical to those of the full-annulus, within one percent relative

error for this pretransitional case. These results provide confidence

that the half-annular calculations are indeed valid.

Considering the above symmetry discussion, the following study

was performed (note: the convergence constraint was 1 x 10-6 for all

test cases shown below in Table 14.1).

Based on the results of this table, it appears that the numerically

predicted transitional Rayleigh numbers (associated with the full-annulus

N !
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Table 14.1. Mesh resolution comparison

G Mesh Geometry RaTR Rab-a Percent
size relative

error

.100 31 x 102 full-annulus 2,840,000 2840

}4.4
.100 31 x 102 half-annulus 2,720,000 2720

.150 31 x 102 full-annulus 810,000 2730

}7.7
.150 31 x 102 half-annulus 751,000 2535

.200 31 x 102 full-annulus 350,000 2800

}14.75
.200 31 x 102 half-annulus 305,000 2440

mesh) are within 5-15 percent uncertainty. This uncertainty tends to

decrease with decreasing gap size. In addition, the transitional

Rayleigh numbers predicted with the half-annulus mesh (used mostly

in generating the small-gap stability curve of Figure 6.12) are

probably within five percent uncertainty.

It should also be noted that when a 21 x 48 full-annulus mesh

was used for G = .100 and .200, the transition to multicells did not

occur. Therefore, the ability to capture multicellular flow transition

appears to be very sensitive to first-order upwind-differencing and

mesh coarseness.

fk - -.- e_ -. . . -
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14.3. Mean Nusselt Number Correlations

In this section, two correlations for the mean Nusselt number are

compared to this study's pretransitional numerical results for G = .200

and Pr = .706, with a full-annulus mesh of 31 x 102 node. The

empirical correlations used are those of Raithby and Hollands (1975)

and Kuehn and Goldstein (1980b), outlined in Eqs. (2.14) and (2.19),

respectively.

In Figure 14.4, the above two correlations were used to obtain mean

Nusselt numbers within 2.5 percent relative error of those obtained

numerically - for a range of Rayleigh numbers between 275,000 and

350,000. This comparison is fairly good, considering these

correlations are fitted to within 10-15 percent uncertainty of the

experimental data.

A much more convincing measure of the accuracy of the numerical

method was given in Section 6.1. There, it was shown that 2-D Navier-

Stokes pretransitional numerical results (of local flow variables)

converged to related analytical perturbation results in the limit as

G - 0 and Ra . Note that local flow variable data for narrow gap

widths could not be found in the literature, hence reinforcing the

importance of a valid analytical solution comparison.

• ° .. . . • .
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