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The Numerical Solution of Equality-Constrained

Quadratic Programming Problems*

By Nira Dyn and Warren E. Ferguson, Jr.

Abstract. This paper proves that a large class of iterative schemes can be used to solve a

certain constrained minimization problem. The constrained minimization problem considered

involves the minimization of a quadratic functional subject to linear equality constraints.

Among this class of convergent iterative schemes are generalizations of the relaxed Jacobi,

Gauss-Seidel, and symmetric Gauss-Seidel schemes.

1. Introduction. In this paper we will present several iterative schemes which solve

the following constrained minimization problem.

Problem 1. Find the real «-vector x^ which minimizes/(x) = \xTAx — xTr subject

to the constraints g(x) s ETx — s = 0.

Here A is a real symmetric nonnegative definite n X n matrix, £ is a real n X m

matrix with full column rank, r is a real «-vector, and s is a real w-vector.

As discussed in Section 2, the theory of quadratic programming [7] states that

under reasonable conditions on A and E the solution of Problem 1 exists and is

unique. Furthermore, under these conditions on A and E the solution x# of Problem

1 forms part of the solution (x^, X¿) of the following problem.

Problem 2: Find the real «-vector x^ and the real w-vector A* which solves the

linear system

\ET       0)(a)     =Cs)-

In Section 3 we describe the convergence of a large class of iterative schemes used

to solve Problem 2, and hence Problem 1. Although our iterative schemes are

generally applicable to these problems, they are typically efficient only when A is a

large sparse matrix and there are only a moderate number of constraints. In this

situation the usual methods used to solve these problems become inefficient.

Our work was motivated by the work of [12], in which a variant of one of the

iterative schemes described in this paper was used to numerically construct a smooth

surface from aggregated data. This application is also analyzed in [4], [5]. The

numerical solution of Problems 1 and 2 has also been considered by other authors;

in particular we mention the work presented in [6], [8], [10]. The numerical solution
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of quadratic programs subject to inequality constraints by iterative methods has also

been considered in [1], [2], [3], [9].

The authors would like to thank the Mathematics Research Center at the

University of Wisconsin-Madison for providing a stimulating intellectual atmo-

sphere during our stay in 1978 and 1979.

2. Preliminaries. In the previous section we stated that under reasonable condi-

tions on A and E the solution x^. of Problem 1 is part of the solution (x#, Xt) of

Problem 2. This statement is contained in the following theorem.

Theorem 2.1. Assume that

(a) A is a real symmetric nonnegative definite matrix,

(b) E is a real matrix with full column rank, and

(c) A and ET have no nontrivial null vectors in common.

Then the solutions of Problems 1 and 2 exist and are unique. Furthermore ifx^ is the

solution of Problem 1, then (xt,(ETE)~xET(r — Ax^)) is the solution of Problem 2; //

(x,, A,) is the solution of Problem 2, then x^ is the solution of Problem 1.

Proof. See the treatment of quadratic programming given in [7].    D

Corollary 2.2. Under the assumptions of Theorem 2.1 the matrix

A     E

ET    0

is nonsingular.

Proof. Observe that this matrix is the coefficient matrix of the linear system in

Problem 2. Under the assumptions of Theorem 2.1 this linear system has only

unique solutions. Therefore, as shown in [11], the coefficient matrix is nonsingular.

D

The iterative schemes we use to solve Problem 2 are all based upon a splitting

A = B-C

of the matrix A, and they have the following form. Given an initial iterate (x0, A0),

define ( xk., X k ) for k = 1,2,3,... to be the solution of the linear system

Of course, for this linear stationary iterative method to be well defined it is necessary

and sufficient that the matrix

B      E

ET    0

be nonsingular. This problem is addressed by the following theorem.

Theorem 2.3. In addition to the assumptions of Theorem 2.1 let

(d) A = B - C,

(e) B be a real nonsingular matrix, and

(f)2A + C + CT be a positive definite matrix.

Then the iterative scheme (I) is well defined.
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Proof. Since B is nonsingular, then

B     E\lB 0       W/    B-i£\
ET    0/      \£r    -TJ^-'Ti/lo        7    /'

Therefore it follows that the matrix on the left-hand side of the equality is

nonsingular if and only if ETB~XE is nonsingular. To prove that ETB'XE is

nonsingular, let us prove that ETB'XE has no nontrivial null vector. If ETB'XEX = 0,

then

0 = XTETB-XEX = (B-]EX)TBT(B-XEX)

= {-(B-XEX)T(B + BT)(B-XEX) = {(B~XEX)T(2A + C+ CT)(ß-xEX).

This implies B~XEX = 0, since 2A + C + CT is a positive definite matrix, and so

X = 0, because E is a matrix with full column rank.    D

Let us now describe one procedure for solving the linear system (1) for (xk, Xk).

Step 1. Solve

Bxk = Cxk_x + r

forxk.

Step 2. Solve

(ETB~xE)Xk = ETxk - s

forA^.

Step 3. Solve

B(xk - xk) = -EXk

ÎOTXk-Xk.

In the next section we will see that if assumption (f) of Theorem 2.3 is slightly

strengthened, then the iterative scheme (1) is not only well defined but also

convergent.

3. Convergence of the Iterative Schemes. One set of conditions which guarantees

the convergence of the iterative scheme (1) is described in the following theorem.

Theorem 3.1. Assume that

(a) A is a real symmetric nonnegative definite matrix,

(b) E is a real matrix with full column rank,

(c) A and ET have no nontrivial null vectors in common,

(d)A = B-C,

(e) B is a real nonsingular matrix, and

(f) A + C + CT is a positive definite matrix.

Then the iterative scheme (1) is well defined and convergent.

Proof. From Theorem 2.1 we deduce that a solution of Problem 2 exists and is

unique. Since A is a nonnegative definite matrix and A + C + CT is a positive

definite matrix, then 2A + C + CT is & positive definite matrix. From Theorem 2.3

we therefore deduce that the iterative scheme (1) is well defined.

As shown in [13], the iterative scheme (1) is convergent if and only if each

eigenvalue of the matrix

«> ti ;ns I)
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has magnitude less than one. Let us therefore show that if ju is a nonzero eigenvalue

of the matrix (2), then the magnitude of p is less than one.

Since p is an eigenvalue of the matrix (2), then there are complex vectors u, v not

both zero for which

« '(£ o)("HS ?)(:)•
Let us now argue that u ¥= 0 and uHAu > 0. Since /( is a real symmetric

nonnegative definite matrix, then clearly uHAu s* 0, and u"Au = 0 only if /lw = 0.

However, ;4« = 0 only if u — 0, for (3) states that ETu = 0, and by hypothesis ^ and

7?r have no nontrivial null vectors in common. But u — 0 only if v = 0, for by

hypothesis 7f has full column rank, and (3) implies that Ev = 0 when u = 0. Since

w, u are not both zero, then we conclude u ¥= 0 and uHAu> 0.

Let us now establish the fact that

(4) {l -\p\2}u"Au =|1 - /i|V'(i4 + C + C7")«.

We begin with the identity

(5) uHAu — (pu)  A(pu) = (u — pu)  A(u — pu) + 2Re((w — pu)  A(pu)}.

Using (3), and the fact that A — B - C, we find that

(u — pu)  A(pu) = (u — jtiw)   (B — C)(pu) = (u — pu)   (pBu — pCu)

= (u — pu)   (Cu — pEv — pCu) = (u — pu)  C(u — pu),

which reduces (5) to the result stated in (4).

By hypothesis, A + C + CT is a positive definite matrix. Since u ¥= 0, we know

that uH(A + C + CT)u>0, and so (4) implies that either \p\< 1 or p= 1.

However, it is impossible that p = 1, for if p — 1, then (3) would imply that u, v are

both zero, because by Corollary 2.2 the matrix

A      E

ET    0

is nonsingular.    D

Let us now describe several iterative schemes whose convergence is assured by

Theorem 3.1.

Corollary 3.2. Assume that

(a) A is a real symmetric nonnegative definite matrix,

(b) E is a real matrix with full column rank,

(c) A and ET have no nontrivial null vectors in common,

(g) A = D — L — LT, where D is a nonsingular diagonal matrix and L is a strictly

lower triangular matrix.

Then the iterative scheme (I) is convergent for the following choices of B and C.

(1) B=-D,       C=1—^D + L + LT
03 CO

with w > 0 chosen so small that 27)/« — A is a positive definite matrix.

(2) B=-D-L,       C=^±D + LT

with 0 < w < 2.
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H-/?« 0 < co < 2.

TVoo/. It is clear that assumptions (a)—(e) of Theorem 3.1 are valid for each of the

above choices for B and C. Therefore the iterative scheme (1) will be convergent if

assumption (f) of Theorem 3.1 is valid for each of the above choices of B and C. For

the first choice of B and C we find that

A + C + CT= 2D/u-A,

and so assumption (P) of Theorem 3.1 is valid if « > 0 is chosen so small that

2 D/u — A is positive definite. For the second choice of B and C we find that

A + C + CT = (2-o)D/a,

and so assumption (P) of Theorem 3.1 is valid if 0 < a < 2. For the third choice of

B and C we find that

A + C+CT=B+C,

where, for 0 < w < 2, B is a symmetric positive definite matrix and C is a symmetric

nonnegative definite matrix, and so assumption (f) of Theorem 3.1 is valid.    D

We note that the first, second, and third choices of B and C described in Corollary

3.2 correspond, respectively, to the usual JOR, SOR, and SSOR splittings of A

described in [14]. Under further assumptions Corollary 3.2 can be extended to the

line and block versions of JOR, SOR, and SSOR. Furthermore, there is an obvious

generalization of Theorem 3.1 to complex matrices.
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