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THE NUMERICAL SOLUTION
OF FIRST-KIND LOGARITHMIC-KERNEL

INTEGRAL EQUATIONS ON SMOOTH OPEN ARCS

KENDALL E. ATKINSON AND IAN H. SLOAN

Abstract. Consider solving the Dirichlet problem

Au(P) = o,      Pem2\s,
u(P) = h(P),      Pes,
sup \u(P)\ < CO,

Pes2
with S a smooth open curve in the plane.  We use single-layer potentials to
construct a solution u(P). This leads to the solution of equations of the form

j g(Q)\og\P-Q\dS(Q) = h(P),        PeS.

This equation is reformulated using a special change of variable, leading to a new
first-kind equation with a smooth solution function. This new equation is split
into a principal part, which is explicitly invertible, and a compact perturbation.
Then a discrete Galerkin method that takes special advantage of the splitting
of the integral equation is used to solve the equation numerically. A complete
convergence analysis is given; numerical examples conclude the paper.

1. Introduction

We consider the numerical solution of

(1.1) /g(Q)Xog\P-Q\dS(Q) = h(P),       PGS,

with S a smooth open contour in the plane. This equation arises in a variety
of contexts, one being the study of elasticity crack problems in the plane. We
propose a new numerical method for solving (1.1), and then use it to solve
some potential theory problems in the plane. The method takes account of the
expected singularities in g at the ends of the contour in an entirely natural way,
and the method is shown to converge rapidly when the curve 5" and the data
are sufficiently smooth. We limit the functions g and h to be real, although
the following development extends easily to the complex case.

Let S have a parametrization

(1-2) r(x) = (c;(x),rl(x)),        -X < x < X,
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120 K. E. ATKINSON AND I. H. SLOAN

with |r'(jc)| t¿ 0, -1 < x < X . To simplify the analysis, assume r(x) is Cc
Following Yan and Sloan [12], we make the additional change of variable

(1.3) ? = cos"'(x),        -1<x<1.

The equation (1.1) can now be written as

(1.4) -- C p(x)Xo%\a(t) - a(x)\dx = f(t),        0<t<n,
x Jo

with

(1.5)

a(t) = r(cost),
p(t) = g(a(t))\r'(cos t)\ sin t,

f(t)= -U(a(t)).
Note that üeC°°(R).

An advantage of the formulation (1.4), (1.5) is that the singularities in g
in the original problem now become explicit: for if the solution p of (1.4) is
smooth, then g automatically has the expected x~ ' type singularities at the
two ends of the contour, because of the factor sinz in (1.5). A smooth solution
p of (1.4) arises naturally if h in (1.1) is smooth. This follows from the
observation that the functions a and / above are even, 27t-periodic functions;
and if h G C°°(S), then / G C°°(K). If we define p to be an even function,
then the integral in ( 1.4) can be replaced by one half of the integral over a full
period. Since the resulting equation can now be viewed as a problem involving
smooth functions on the circle, we must expect that p can be considered a
27t-periodic C°° function on the whole line, and we shall see below that this is
indeed the case.

The equation (1.4) is split as

(1.6)

(1.7)

(Ae + B\p = f,

ApP(t)
_ i r*

n Jo p(x)Xog[2e    \cost - cosr\]dr,

(1.8)

(1.9)     b(t,x) =

Bep(t)= Í  p(x)be(t,x)dx,
Jo

1        e a(t) - a(x)
n       2 cos t - cos t
1 .        ?   ',
-log rZ (cosí)

t-x, t + x t¿ 2nm,

t-xort + x = 2nm,

with m an arbitrary integer. With the assumptions on r(x), it can be shown
that be(t, x) is a C°° function of t and x. It is also 2zr-periodic and even,
with respect to each variable.

The equation. Aep = f is invertible explicitly if the Fourier cosine series
of f on [0, 7t] is known. This will be used in §3 to define a Galerkin method
with trigonometric trial functions for solving ( 1.6), and a corresponding discrete
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SOLUTION OF INTEGRAL EQUATIONS ON SMOOTH OPEN ARCS 121

Galerkin method is defined and analyzed in §§4 and 5. In §§6 and 7 we discuss
the application of these results to the solution of Laplace's equation, and we
give some numerical examples. Section 2 contains preliminaries for putting
(1.6) into an appropriate function space setting. The methods and results of
this paper follow closely those of Atkinson [3], which defined and analyzed a
discrete Galerkin method for solving (1.1) when S is a simple closed curve.

A solvability analysis is given in Yan and Sloan [12], which we summarize
here. Assume the transfinite diameter Cs ^ X for the curve S, and assume S
is C°° . Further, assume the function / is differentiable, with f G L (0, ri).
Then the equation (1.6) has a unique solution p G L (0, n). This result gen-
eralizes to Sobolev spaces of even periodic functions, which are defined in the
following section. The concept of transfinite diameter is described in Yan and
Sloan [12]. For potential theory problems with Cs = X, the problem can be
rescaled to give a new integral equation with Cs ^ 1. A further discussion of
solving potential theory problems using (1.1) is given in §6.

For other results on the numerical solution of ( 1.1 ) with S an open curve,
see Gladwell and Coen [7], Costabel, Ervin, and Stephan [6], and Sloan and
Spence [11]. The paper of Gladwell and Coen contains a method related to
one developed here, although no analysis is given. For the integral equation
(1.1) with S a closed curve, a numerical method similar to that of Atkinson [3]
is presented and analyzed in McLean [10, Chapter 5]. The results of McLean
can be generalized to (1.1) with S an open curve, including an analysis of the
effect of numerical integration in the implementation of the Galerkin method
presented below in §3. Related boundary integral equations for the planar linear
elasticity equations in a region exterior to an arc are given in Hsiao, Stephan,
and Wendland [8], although their numerical methods are very different than
those presented here.

2. Preliminaries

For our discussion of the operator Ae, we quote freely from Yan and Sloan
[12]. For t > 0, let Hl denote the Sobolev space of functions

. oo

(2.1) P{s) = ~k=   £   P(m)e'ms,
V2* m=-oo

1     f2n
(2.2) p(m) = -=j    p(s)e ims ds

V2n Jo
whose Fourier coefficients p(m) satisfy

(2.3)

It is well known that if t > \, then H1 c C (2n), the space of 2^-periodic

\p(0)f+ £ \m\2'\p(m)
M>o

1/2

< OO.
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122 K. E. ATKINSON AND I. H. SLOAN

continuous functions. More precisely, for t > A ,

\p\\    <I " lino   —

l+2Ç(2z)
2

1/2

with \p\oa denoting the uniform norm of p .
We will be especially interested in the subspace Hle of even periodic func-

tions,
H'e = {fGH'\f(-s) = f(s)}.

More precisely, He is the closure of the space of even periodic C°° functions
under the norm || • ||(. Then (2.1)—(2.3) become, respectively, for p G H' :

(2.4)

(2.5)

(2.6)

P(s)=\l-
1 .
jPiß) + £ p(m) cos(ms)

m=l

Pim) = Jl[
oo

\pm2 + 2Y,m2t\p(m

p(s)cos(ms)ds,       m>0,

1/2

m=l

These are based on specializing (2.1)—(2.3), using the assumption that p is
even. Although (2.2) and (2.5) are different formulas, they give the same result
when p gH[.

We will regard the operator Ae of (1.7) as an operator on H'e.  For any
p G H', it can be shown that

Aep(s)
m=l

-tns        V-*  P(m)P(0) + ¿^ i2—L cos(ms)(2.7)

Then

(2.8)

with

(2-9) \\AeP\\M = \\p\\r

The operator A   is invertible on H , t > 1, with

Ae: Hi -±U H'e+l,        />0,
e        "    onto        e

(2.10) ¿;W) = y§ i.^/)(0) + ]P mp(m)cos(ms)
m=l

It will be useful to introduce a related operator A which maps from Hl to
,t+iH'

(2.11) Ap(s) = f^k
|m|>0

p(m) j
m
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SOLUTION OF INTEGRAL EQUATIONS ON SMOOTH OPEN ARCS 123

where p G H1 is given in (2.1). This is a representation of the integral operator

Ap(s) = — /    p(cr)Xog 2e l/2sin Í —^— ) da

which is closely related to ( 1.1 ) for the case in which S is the unit circle. From
(2.11), it easily follows that

(2.12) A:H'-^h'+\
onto

and
M/'lUiHI/'ll,-

A Fourier series representation of A"   follows easily from (2.11).
The main use of A in this paper lies in the fact that

(2.13) Aep = Ap,        PGH'e.
Thus, results on A can be used in investigating Ae. The integral equation (1.1)
with S a smooth simple closed curve was investigated in Atkinson [3]. Some
of those results will be used here by means of (2.13).

3.  GaLERKIN'S METHOD

Let 3?n denote the even trigonometric polynomials of degree < zz.   The
standard basis for Sfn is

(3.1) {<P!(s) = cos()s)\§<}<n\.

Restricting attention to the interval [0, n\, let Pn denote the orthogonal pro-
jection of H° = L2(0, n) onto JT :

(3.2) Pnp(s) ñ
1 "

p(0) + £ p(m) cos(ms)2
m=l

with p given in (2.4). Note that Pnp is simply the partial sum of the Fourier
cosine series for p.

The Galerkin method for solving (1.6) consists of solving

(3-3) Pn(Ae + Be)pn = PJ,       pnGSfn.
It is easily shown that

(3-4) PnAe = AePn .
Thus, (3.3) can be rewritten as

(3.5) (Ae + PnBe)pH = Pnf,        pnG^ = L2(0,n),
with the solution pn automatically belonging to 3?n.

To analyze the convergence of (3.5) in L (0, n), consider instead the equiv-
alent equation

(3-6) (I + P„A;lBe)pn = PnA;lf,
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124 K. E. ATKINSON AND I. H. SLOAN

using A~ Pn = PnA~ . From the smoothness of be(s, a) in (1.9), the operator
Be is compact from H® into H'e, for all / > 0. Thus A~lBe is a compact
operator from L2(0, n) into L2(0, n). Since Png -* g for all g G L2(0, n),
it is straightforward that on L (0, n),

\\(I - Pn)A;1 Be\\ ^ 0   aszz-co,

using the operator norm for bounded operators from L2(0, n) to L2(0, n).
Combined with the unique solvability of (1.6) (or (1.1)), we can obtain a con-
vergence theory for (3.6).

It follows by standard arguments (e.g., see Atkinson [2, p. 51]) that
(/ + PnA~ Be)~ exists and is uniformly bounded for all sufficiently large zz,
say n > N :

\\(I + PnA;lBe)'[\\<M<oo,        n>N.
For convergence, use the identity

(3.7) p-pn = (I + PnA-XBe)-\l-Pn)p.
Thus, if p G L (0, n), we have convergence of pn to p. If p is a smooth
function, then (/ - Pn)p converges rapidly to zero, and the same is true of the
convergence of pn to p .

We could continue this analysis to obtain results on uniform convergence and
on convergence in Hle for t > 0. (For example, the analysis given in McLean
[10, Chapter 5] can be generalized to the present situation.) Instead, we will
look more carefully at a discrete Galerkin variant of (3.5). To motivate it, we
look at the linear system arising in the solution of (3.3).

Using the basis {©.} of (3.1), write p„(s) = Yl"j=oajVj(s> • Then from (3.3),
{a } is determined by requiring

((Ae + Be)pn, <Pi) = (f,<Pi),        i = 0,...,n,
with the inner product (f, g) = Jq f(s)g(s) ds . Noting that

<3-8» ^«-sspDT^«-    J>-°-
we obtain the linear system

na0 + J2aÁBeVj> Po) = (■/"' Po)'

-jf- + Y,aj(Be<Pj ' Vi) = (/. <P¡)>       i=l,...,n.
7=0

The matrix elements are double integrals, and the right sides are single integrals.
These integrals will be approximated to obtain a discrete Galerkin method.

4. The discrete Galerkin method

To define the needed numerical integration in the approximation of (3.9),
introduce the nodes
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SOLUTION OF INTEGRAL EQUATIONS ON SMOOTH OPEN ARCS 125

(4.1 ) t¡ = jh   for all integers j, h = 2n/(2n+X).

Let C e(2n) denote the continuous functions that are even and periodic with
period 2n . For f G Cp e(2n), approximate

/(/)= r mat
Jo

by

(4.2) /„(/) = h ¿' f(tj) = \f(0) + h ¿ f(tj).
j=0 j=l

This somewhat unusual rule is derived from the (2zz + l)-point trapezoidal rule
on [0, 2n], taking into account that / is even and periodic:

r-K i      rU 1      r2n

J   f(t)dt = ±J   f(t)dt=2j    f^)dt
h 2n+l 1

(4-3) =?E"/(M = lr2„+i(/).
j=0

where T2 { is the (2zz + l)-point trapezoidal rule (the notation " means to
halve the first and last terms before summing); and from the evenness and
periodicity of /, the right side of (4.3) is simply the definition /„(/) of (4.2).

The choice in (4.1 ) of an odd number of points í. within each period 2zr
results in the quadrature rule (4.2) having different behavior at the two ends of
the integration interval [0, n] : the left-hand end point is a quadrature point,
the right-hand end point is not. This unsymmetrical choice, while perhaps not
the preferred option from a practical point of view, is dictated by our desire
to use certain theoretical results on interpolation with respect to trigonometric
polynomials, which seem to be available only for the case of an odd number
of interpolation points within each period. Applying the trapezoidal rule on
[-n, n] in the above derivation, we obtain a similar unsymmetric formula,
with n now a node point, but zero not one. Empirical results with the standard
midpoint and trapezoidal rules replacing (4.2) give virtually the same numerical
results, which would be expected from results on numerical integration and the
essential equivalence of the midpoint and trapezoidal rules.

The following result is straightforward to prove. It shows that I„(f) pre-
serves the orthogonality and normalization of the basis {q>0, ... , <pn} .

Lemma 1. We have

( 0,       j¿k, 0<j,k<n,
KÍVjVk) = n,       j = k = 0,

ti/2,    X<j = k<n.
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126 K. E. ATKINSON AND I. H. SLOAN

To approximate the integral operator Be, use
n

(4.4) Benp(t) = In(be(t, ■) ,(■)) = h^be(t, tj)p(tj).
7=0

To approximate the inner products in (3.9), introduce the discrete (semidefinite)
inner product

n

(4.5) (f,g)h = I„(fg) = h£ñtj)g(tj).
i=o

We could now approximate all integrals in the system (3.9), replacing Be with
Be n , and replacing (•, •) with (•, -)h. Instead, we use a different but equivalent
approach, better suited to showing convergence of the resulting method.

Introduce the seminorm

(4-6) l/l, = yj(f,f)h.
Then Lemma 1 yields

(4-7) \f\h = \\f\\o>        f*K-
As in Atkinson and Bogomolny [4], introduce a discrete orthogonal projection
operator Qn: Cp e(2n) -+ JT„ by

(4.8) (QJ,<P)h = (f,<P)h    forallpe^.
This definition can be extended to integration schemes with more than zz + 1
nodes, but the present definition is sufficient for our purposes. See Atkinson
and Bogomolny [4] for a more general framework. (For an analysis of the
discrete Galerkin method when more than n + X integration nodes are being
used, the results in McLean [10, Chapter 5, §4] can be generalized to the present
situation.)

Lemma 2. The operator Q   satisfies the following properties as an operator on
CpJ2n):

(i) ßi = ö„;
(2) (QJ, g)„ = (/, Q„g)h, f, g G Cp e(2n) ;
(3) Qnf(tj) = f(tj), j = 0,...,n, fGCpe(2n).

The proofs of these results are straightforward and we omit them; see Atkin-
son and Bogomolny [4]. The last property says that Qnf is the trigonometric
polynomial in 3?n that interpolates / at tQ, ... , tn. Thus, Qn is both an ap-
proximation to the orthogonal projection Pn and is the interpolating projection
operator. Explicitly,

2w(4.9) Q„/W = -£(/\^V/s),
7=0

with <p As) = cos(js).
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SOLUTION OF INTEGRAL EQUATIONS ON SMOOTH OPEN ARCS 127

In Atkinson [3], a discrete orthogonal projection operator Qn, projecting
onto the set of all trigonometric polynomials of degree < zz on 2n , was defined
similarly. Let Cp(2n) denote the continuous periodic functions of period 2n ,
and let Sfn denote the trigonometric polynomials of degree < zz. With the
inner product based on the trapezoidal rule on [0, 2n], as indicated in (4.3),
Qn was defined by the analogue of (4.8). Thus, the present operator is given by
the restriction of Qn to the subspace C  e(2n):

(4-10) Qn = Qn\CpJ27[y

This means the results about Qn in the earlier paper can be used in this paper
in discussing Qn. For an explicit formula for Qn ,

X     "
Qnf(s)=2rx-E «/"'•        f£Cp(2n),

j=-n

«, = *£/('*)'""''*>       tk = kh.
k=0

For a more extensive discussion of Qn, see Atkinson [3]. The result (4.10) can
be obtained from this formula for Qn by assuming f G C e(2n) and then
simplifying and rearranging the formula.

The approximate scheme. We approximate the Galerkin method (3.5) by

(4.11) (Ae + QnBen)¥n = QJ,        WnGCpe(2n),
thus replacing Pn and Be by Qn and Be n, respectively. Note that if the
equation (4.11) is solvable, then

A Hi =Q(f -B    tu )Gäf .eYn       ^-n\J e,nTn' n

The definition of Ae then implies y/n G ä?n. Thus, (4.11) can be written in the
equivalent form

(4.12) Qn(Ae + BeJy,n = Qnf,       ¥nern.
To obtain a linear system for finding y/„, let

n

(4.13) Vn(s) = Y,ßJ<PJ(s)-
7=0

Calculate the coefficients {/?.} by substituting (4.13) into (4.12) and then using
(4.8) and (3.8):

Ußo + E ßj(Be,n9j ' Po)/, = (/. Po)/, .
(4.14) 7;°

^f + i,ßj(*e,n<Pj><Pi)H = (f><Pi)h> í=l, ...,».
7=0
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128 K. E. ATKINSON AND I. H. SLOAN

This is the discretization of the Galerkin system (3.9) that was suggested follow-
ing (4.5). However, we now have the tools needed to analyze its convergence.

An alternative to (4.14) is obtained by using in (4.12) the interpolation prop-
erty of Qn , given in Lemma 2 (property (3)):

«•">    ÉtjXí^H"*'   *-o....,«.
This system is faster to set up than (4.14), and it is essentially equivalent in
conditioning to the system (4.14).

To be more precise about the conditioning of systems (4.14) and (4.15), we
introduce some needed auxiliary matrices. Define

•-[•«/í.,-0.    •y = fA).        ^ = D\'%D-1'2,
D{ =Diag[h/2,h,h,... ,h],       D2 = Diag[7r, a/2,... , a/2].

These are all square matrices of order n + X. It can be shown that

(4.16) 4)TD1<D = Z)2,

and, from this, that *F is orthogonal, *F *F = / .
Denote the systems (4.14) and (4.15) by

MGß = iG, Mcß = ic,
respectively. Then

(4.17) MG = <S>1D{MC,        fG = <DTD1fc.
Manipulating this, we obtain

(4.18) MG = XVTMC
with

(4.19) MG = Dl2/2MG,        Mc = d\I2Mc .

The relation (4.18) says MG and Mc have equal condition numbers, when
using the operator norm based on the Euclidean vector norm. The matrices MG
and Mc are obtained from MG and Mc, respectively, by a simple (almost
constant) rescaling in the rows, with the first row having a different weight than
the remaining rows. This justifies our original statement that (4.14) and (4.15)
are essentially equal in their conditioning.

5. Convergence analysis

Rewrite the integral equation (1.6) as

(5.1) (I + A-XBe)p = A-Xf,
and rewrite the discrete Galerkin equation (4.11) as

(5-2) (I + A-lQnBeJy,n = A-{QJ.
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The convergence analysis is carried out in the Banach space C  e(2n) equipped
with the uniform norm || • lit» • Note that A~{Be is a compact operator on
Cp e(2n). The analysis of the solvability and convergence of (5.2) is carried
out by using the framework of collectively compact operator approximations
(see Anselone [1]). As notation, the letter c is used as a generic constant in the
following proofs.

Theorem 3. (1) Assume the curve S has a C°° parametrization, as in (1.2).
Then the family {A~ Q„Be n\n > 1} is collectively compact and converges point-
wise to A~xBe on Cpe(2n).

(2) Assume the integral equation (1.6) is uniquely solvable for all f G H{e (or,
equivalently, assume Cs =¿ 1 ). Then for all sufficiently large n, say n> N, the
operators I + A~xQnBe n are invertible on Cp e(2n) and satisfy

(5.3) ||(/ + A:lQnBetnyl\\ <M<œ,        n>N.

(3) For the error in the discrete Galerkin solution y/n of (5.2),

(5.4) Wp-yJ^KMiWAj^f-QJ^ + WA^BeP-A^Q^^WJ.
Proof. A proof of part ( 1 ) can be given in two different ways. One way is to
make use of (2.13) and (4.10), so as to regard A~lQnB n as the restriction
to Cp e(2n) of a corresponding operator for the equation (A + B)p = / on
C (2n). Then (1) can be shown by invoking results from Atkinson [3] for the
equation (A + B)p = f.

As an alternative, we can just imitate the proof of Atkinson [3]. We choose
this approach so as to also introduce some notation needed later. We only
indicate briefly the form of the proof, referring the reader to the earlier paper.
Using the formula (4.4) for Be n , we write

n

QnBe,nm = hTÍKJt><j)Atj)
7=0

with be „(t, s) the cosine polynomial that interpolates be(t,s) with respect to
t at t0, ... , tn , for all s:

bei„(ti,s) = be(ti,s),       z = 0,...,zz, ben(-,s)GSfn.
Define

n

(5.5) (A;lQnBen)f(t) = Cenf(t) = hJ2'ceJt, tj)f(tj).
7=0

The function ce n(t, s) = ce n s(t) is defined by

Ce,n,s = A7lbe,n,s> K,n ß) = be,n({' S) ■
Similarly, define

(5.6) (A~'Be)f(t) = CJ(t) = f ce(t,s)f(s)ds,
Jo
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130 K. E. ATKINSON AND I. H. SLOAN

with ce(t,s) = ces(t), ces = Ae [be s, bes(t) = be(t, s).  It can be shown
that

[5.1) sup
t.s

dlc(t,s)     d'ce<n(t,s)

dt' dt1
0   as zz —> oo

for all / > 0. Using this and (5.6), part ( 1) of the theorem will follow easily.
By the assumption of unique solvability for (1.6), (I + Ce)~ exists. Then

by part (1) and Theorem 1.10 of Anselone [1], (I + Ce n)~ exists and these
inverses are uniformly bounded. For the convergence of y/n to p, use the
identity

(5.8) {I + CeJ(P-wn) = A-\f-Qnf)-(Ce-Cen)p.   D
The convergence rates given in Atkinson [3] were based on error results for

the derivatives of trigonometric interpolation polynomials. We give improved
results here, using the following error results for trigonometric polynomial in-
terpolation and for the trapezoidal numerical integration rule.

Lemma 4. Assume f G H1, t > \ . Then for the trigonometric interpolation
polynomial Q„f,

(5.9) II/-Ö/H  <_£^||/|| z>5>0.
zz

(For the definition of Qnf, see the paragraph preceding (4.10). It is the
trigonometric polynomial of degree < zz that interpolates / at the nodes t. =
2nj/(2n + X), j = 0,..., 2n.)
Proof. This result is taken from Chandler [5]. Its proof is based on using the
Fourier series representation of /, given in (2.1), to obtain a Fourier series
representation for Q„f. This is then subtracted from that for /, and the
remaining terms are then bounded to give the result (5.9).   D

Lemma 5. Assume f G Hl, with t > A_. Let 1(f) denote the integral of f over
[0, 2n], and let Tm(f) denote the trapezoidal rule for approximating 1(f) :

m .

r„C0 = *£ ñtj).     tj = Jh, A = f •
7=0

Then the error in J'(f) satisfies

(5.10) |/(/)_r(/)|<V^il),M
m

Proof. It is straightforward to prove that

, 2k,    k = 0 (modm),
[5.11) TAe    ) = {

k ^ 0 (modm).m ' '   Ho,
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Using this, apply Tm(f) to the Fourier series representation of / given in (2.1).
Then

oo oo

I(f)-TJf) = -V2H   £   f(km) = -V2¿   ¿2   f(km)(km)'(k
k=—oo

kjiO

Using the Cauchy-Schwarz inequality,

m)
k——oo

MO

\I(f) - T(f)\ < V2n £  |/(/cm)|2|zczzz|2'
k=—oo

kjtO

1/2

E i*m\
-2,

k¿0

1/2

<Ä||/||t/w"'>/2T(27j.   ü
Theorem 6. Assume the hypotheses of Theorem 3. Also assume f G Hre  with
r > 1.5. Then for all sufficiently large n,

(5.12) Iz5-^IL<^T3^>

vvz'z/z e > 0 an arbitrary number sufficiently small that r-X.5-e>0.
r-\Proof. It follows from Yan and Sloan [12] that p G H~ . Since r - 1 > \,

the function p is continuous, and thus p G C e(2n). To derive (5.12), we use
Theorem 3(3).

To analyze (Cg- Ce n)p, decompose it as

(Ce-Ce)p(t) =

(5.13)

/   ce(t,s)p(s)ds-hJ2 ce(t,tj)p(t]
J° 7=0

+ h^[ce(t,tj)-ce>n(t,tj)]p(tj).
7=0

For the final sum on the right side of (5.13), we need bounds on the speed of
convergence of ce n to ce. Applying Lemma 4 to the convergence of b   n and
using the embedding of C  e(2n) in He  (or using results from Atkinson [3]),
we have

maxl^f.j)-^ n(t,s)\ = 0(n~k)
t ,s •

for all k > 0. Then from the definition of ce and ce n , the same is true of the
convergence of {ce n} to ce :

(5.14) -k,
max\c (t, s) - ce n(t, s)\ = 0(n    )

t,s

and this implies that the final sum on the right side of (5.13) is 0(zz~ ), uni-
formly in t, for all k > 0.

Recall that the integration rule /„(/) of (4.2) is simply the trapezoidal rule
T2n+l(f) applied to even periodic functions (see the derivation in (4.3)). Also
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recall from (5.6) that c (t,s)  is  C°°  and periodic in both variables.   Use
Lemma 5 to show that the first term in brackets on the right side of (5.13),

(5.15) /   ce(t,s)p(s)ds-hYdce(t,tJ)p(t]),
JO ;_A7=0

is 0(zz       ), uniformly in t. Combining these results for (5.13), we have

(5.16) ll(Ce-Ce„)/z||oo = 0(zz-r+1).

To analyze A~l(f-Qnf), use (2.9) to show that for any t such that r- X >
t>-\,

\\A;](f-QJ)\\00<c\\A;l(f-Qnf)\\i
(5.17) c

= c\\f-Qnf\\l+l<-^\\f\\r,

using Lemma 4 in the last step. To complete the proof, choose t = \ + e, with
e sufficiently small. The constant c depends on e .   D

6. Application to potential theory

Consider solving the Dirichlet problem

A«(P) = 0,        PgR2\S,
(6.1) u(P) = h(P),        PgS,

sup \u(P)\ < oo.
P€R2

This problem has a unique solution.
We intend to use a single-layer potential to solve this problem; but by itself, a

single-layer potential is not sufficient, because such a potential will generally be
unbounded as l^l —► oo. For this reason, we introduce the auxiliary equation

(6.2) /"A(ß)log|/>-ß|dS(ß) = l,        PGS.
Js

If the transfinite diameter Cs of S is not equal to 1, then this equation has
a unique solution X(P), differing only by a constant factor from the so-called
equilibrium distribution. (See, for example, Sloan and Spence [11].) The trans-
finite diameter of 5 is given by

(6.3) Co = exp (JsX(Q)dS(Q)
-i

Using X(Q), define the potential corresponding to X by

(6.4) v(P) = j X(Q)log\P-Q\dS(Q),        P GR2

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



SOLUTION OF INTEGRAL EQUATIONS ON SMOOTH OPEN ARCS 133

To solve (6.1), first consider the single-layer potential

(6.5) w(P)= f g(Q)Xog\P - Q\dS(Q),
Js

where the distribution g is obtained by solving

(6.6) j g(Q) Xog\P -Q\dS(Q) = h(P),       PgS.

As stated earlier in §1, this equation is uniquely solvable if Cs ^ 1. The
potential w(P) satisfies the boundary condition on S given in (6.1), but in
general is unbounded as |.P| —> oo :

,(P) = (Xog\P\)j g(Q)dS(Q)) / g(
To obtain the desired solution of (6.1), introduce

u(P) = w(P) - av(P) + a
(6.7) = J[g(Q)-aX(Q)]Xog\P-Q\dS(Q) + a.
This satisfies Laplace's equation and the Dirichlet condition of (6.1) for any a.
We choose a so that the density function

(6.8) k = g-aX
satisfies

(6.9) jk(Q)dS(Q) = 0.

This requires

(6.10) a = jsg(Q)dS(Q)/ JsX(Q)dS(Q).
The condition (6.9) implies that the integral term in (6.7) will be bounded as
|P| —► oo. Thus, the resulting potential in (6.7) is a solution to the original
problem (6.1).

In those cases where Cs = X or is close to 1, the problem (6.1) can easily
be rescaled to another Dirichlet problem for Laplace's equation, with a smaller
or larger curve 5" whose transfinite diameter is not near 1. For additional
discussion on this means of solving (6.1), see Jaswon and Symm [9, pp. 54-56].

To construct the solution u of (6.1 ), we can use the discrete Galerkin method
of this paper to solve both (6.2) and (6.6). Denote the approximate solutions by
Xn and gn , respectively. Substitute these into (6.10), numerically evaluating the
integrals by the integration rule of (4.2). Denote the resulting approximation
to a by an. Using the convergence results of Theorem 6, the same order of
convergence can be shown for an —» a .

Using this an, define

(6-11) kn = gn-anXn,

(6.12) un(P) = j kn(Q)Xog\P-Q\dS(Q) + an.
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One easily shows

u(P) - un(P) = j [k(Q) - kn(Q)] Xog\P - Q\ dS(Q) + a-an

Mt) - on(x)] Xog\P - a(x)\ dx + a-an,-L
where

a(t) = k(a(t))\r (cos t)\ sin t,
a n(t) = kn(a(t))\r'(cos t)\ sin t.

Thus,

(6.13) \u(P)-un(P)\<\\a-aJoo C \Xog\P - a(x)\\dx+ \a-an\.
Jo

Again using Theorem 6, we now see that for fixed P, the rate of convergence
of un(P) to u(P) is at least that in (5.12). From (6.13), the convergence rate
is uniform on bounded regions of K .

We further approximate (6.12) by evaluating the integral numerically, using
the integration rule of (4.2) with q + X nodes. Denote the resulting approxi-
mation by un (P). It can be shown that for each P, and for all sufficiently
large n ,

da{P)
\u(P)-unJP)\<-^¿,        q>n.

The constant d (P) approaches oo as P approaches 5, because the integrand
in (6.12) becomes singular in this case. For P near S, it is better to use un (P)
with q much larger than zz. This is illustrated in the following section.

7. Numerical examples

We give three examples, to illustrate and further investigate the numerical
methods studied in §§4 through 6. These examples can also be considered as
illustrations of the solution of crack problems in the plane; for example, see
Costabel et al. [6, §3]. All of the following calculations were performed in
double-precision arithmetic on a microcomputer with an 80286/287 processor.

(a) Consider solving the Dirichlet problem (6.1) for the true known potential

(7.1) u(x,y) = RcaXexp I V z2 - 1 z = x + ly.

The branch cut for v z2 - 1 is to be the interval [-1, 1], and the boundary
curve S is this same interval. The Dirichlet data h in (6.1) is generated from
(7.1).

The transformation of the equation (1.1) into (1.4) yields the integral equa-
tion

p(x) log| cos t - cos t| dx = f(t),        0 < t < n,_i f"
nJo
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with f(t) = -^h(cost) and p(t) = g (cost) sin t. Equivalently,

/-,  -^ /     N P(C0S~    X) ,    ^(7.2) gtx) = ?^>t        -X<x<X.
VX-x2

As x —► ±1, we obtain easily the asymptotic behavior of g(x) :

(7.3) V1    *_.  .  .  p(n)/V2g(x) = il7r=-   as*-»-l.
yl +x

Rather than giving values for p(0) and p(n), we give approximate values
for cr(0) and a(n), with

a(t) = zc(cosZ)sinf

and k = g-Xo , from (6.8). The function k(Q) = k(x), -1 < x < 1, is more
appropriate than g(x) in light of the constructions of §6. The values of on(0)
and an(n), together with their differences for successive n , are given in Table
1. The convergence is very rapid, as can be seen from the differences.

In Table 2, we give values of un n(x, y) for the four points

Cx,.,y,) = (l.l,0),(.5,l),(.5,.01),(0,100)
for z = 1,2,3,4.  The convergence is rapid at all points except the third,
(.5, .01). This point is very close to the curve S = [-1, 1], and consequently
the integrand in (6.12) is very peaked. With a more accurate numerical integra-
tion, better values are obtained. For example, with q = 640, the errors in un
act in a more predictable and well-behaved fashion; see Table 3.

(b) Again use S = [-1, 1] ; but use the Dirichlet data

(7.4) h(x) = (X + x)Xog(X + x),        -X<x<X.

Table 1
Density values for (7.1)

on(n)-an_x(n)

2
3
4
5
6
7
8
9

10

<yn(0) - on_x(0)

-5.61E-2
3.17E-2

-8.72E-3
1.88E-3

-3.30E-4
4.90E - 5

-6.30E-6
7.16E-7

-7.30E-8

-.51670183
-.75022883
-.83675543
-.85960064
-.86431966
-.86512296
-.86523943
-.86525415
-.86525580

-3.68E-1
-2.53E-1
-8.65E-2
-2.28E-2
-4.72E - 3
-8.03E-4
-1.16E-4
-1.47E-5
-1.65E-6

*„(0)

09250969
12422289
11550568
11738633
11705635
11710531
11709901
11709972
11709966
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Table 2
Errors in unn(xi,yi)

n        i= X i = 2 i = 3 i = 4

2 3.28E-4         4.96E- 3 1.06E-1 8.33E - 3
3 6.25E-3         1.14E- 4 -2.38E-2 1.98E- 4
4 1.03E-3 -1.21E- 5 -8.42E-2 2.75E - 6
5 4.66E-4 -9.81E- 7 1.39E-2 2.50E- 8
6 1.52E-4 -3.56E- 8 7.67E - 5 1.60E- 10
7 5.55E-5         5.91E- 8 4.83E-2 7.61E-13
8 2.02E-5 -1.16E- 8 8.74E - 3 1.78E-15
9 7.46E-6         1.21E- 9 2.76E-3 -1.44E- 15

10 2.79E-6 -2.79E-11 -3.28E-2 -LUE-15

Table 3
Errors in un   (.5, .01) with q = 640

zz Error zz Error

1 -2.04E-1 6 7.19E-5
2 4.39E-2 7       -1.80E-5
3 1.30E-2 8 9.90E-7
4 -5.48E-3 9 1.04E-7
5 4.68E-4       10       -1.90E-8

This function is not continuously differentiable, although it does belong to
h\-X , X). The change of variable x = cost yields

fit) =-(1 + COS t) 10g( 1 -l-COSZ), 0 < t < 71.
71

This function is once, but not twice, continuously differentiable. However / e
H2 , and in fact, it can be shown that / 6 H25 £ for any e > 0.

The function / satisfies the smoothness assumption of Theorem 6, which
predicts an 0(zz~1+ £) rate of convergence. The empirical results agree with
this rate. In Table 4, we give values of <t„(0) and on(n), together with their
differences for various values of zz. In the table, Dn = an - an,2 and Ratio
denotes the ratio of successive values of Dn . Empirically as zz increases,

c co(x) - a„(n) = -   or   -logzz
" n n

for some constant c. This is the worst behavior in an(t), as might be expected
because of the singularity at x = -1. It conforms rather closely with the rate
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Table 4
Density values an for (7.4)

n         <t„(0)                £»„(0)             Ratio an{n) Dn(n)            Ratio

2      -.427405        -5.97E-2 .111365 -2.56E-1
4      -.417405           1.00E-2         -6.0 -.040274 -1.52E-1           1.69
8      -.416130           1.28E-3            7.8 -.125819 -8.55E-2          1.77

16      -.415998           1.31E-4            9.7 -.171888 -4.61E-2          1.86
32      -.415986           1.28E-5          10.2 -.195900 -2.40E - 2          1.92

Table 5
Errors in unn(xi,yi)

n i= X i = 2 i = 3 i = 4

X 2.84E-1 6.38E-1 -6.79E-1 -2.48E - 1
2 -5.71E-2 2.13E-1 1.50E-3 1.02E-2
3 -4.07E-2 1.46E-1 -1.75E-1 3.93E - 3
4 -1.52E-2 1.15E-1 -2.55E-2 -9.82E-4
5 -3.23E-3 9.30E-2 -7.69E-2 7.52E - 5
6 1.74E-4 7.49E-2 -2.45E - 2 3.78E - 6
7 7.15E-4 6.05E-2 -4.89E - 2 -1.07E-6
8 5.05E-4 4.93E-2 -2.06E - 2 1.90E-9
9 2.27E-4 4.05E-2 -3.53E-2 1.19E-8

10 6.07E-5 3.33E-2 -1.72E-2 4.00E-10

of convergence given by Theorem 6. The empirical rate of convergence of the
approximating potentials un q(x,y) is much better than that of an to a .

(c) Let S be the upper half of the ellipse

(7.5) x2 + 4y2=X,

with y > 0. For a parametrization, use

r(9) = (sin(|ö) ,.5cos(|ö)) ,        -1 <9< 1.

For the boundary data, we take

h(x,y) = ex,        (x,y)GS.

The true solution is unknown in this case; the errors given below are based on
answers zz      computed with much larger n and q .

In Table 5, we give empirical results for the error in un n(x, y) at selected
points (x, y). In particular, denote

(x,, y,) = (1.1,0), (1.001,0), (0,.49), (0, 10)
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Table 6
Errors in u8ji(x,., y,)

q        i = X               i = 2                i - 3 z = 4

8     5.05E-4         4.93E-2       -2.06E - 2 1.90E-9
20     3.17E-5         2.17E-3       -8.31E-3 8.80E - 9
40     3.17E-5       -1.94E-3       -2.97E - 3 8.80E - 9
80     3.17E-5       -3.78E-4       -6.71E-4 8.80E - 9

160     3.17E-5       -3.78E-4       -6.71E-4 8.80E-9

for i = 1,2,3,4. The arc S has the endpoints (±1,0). In solving the
equation (1.4), the singular behavior of the solution g(Q) of (1.1) is easily
recovered from the solution p(t) and the transformation in (1.5), just as was
done in (7.3).

The error in un n(x, y) is relatively large at (1.001, 0) and (0, .49), both
of which are very close to the curve S. To show the improvement in the error
that is possible with a larger number q of quadrature nodes used in evaluating
u„(x > y) > we give results for zzg (x, y) with varying q . These results are given
in Table 6. The needed value of q varies with the point (x, y), with the value
increasing as (x, y) approaches S.
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