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PREFACE

This Memorandum is part of RAND's continuing effort
in the application of network flow theory. It provides
a graphic description of the out-of-kilter algorithm,
together with useful computational methods. Network
flow problems arise in the solution of transportation
and scheduling problems. This work is directed toward
the user and programmer of network-solving algorithms.

Portions of this material were presented at the

SHARE XXIX meeting, August 1967.
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SUMMARY

Network flow problems arise in the solution of trans-
portation and scheduling problems. Divided into four
substantially independent sections, this Memorandum:

1) reviews the types of problems that are representable
as capacitated network problems; 2) explains (with
diagrams) the out-of-kilter algorithm and techniques for
implementing it on a computer; 3) describes modification
of the algorithm to a two-phase algorithm; 4) presents

a method for labeling the nodes by means of a scan list.
Tentative conclusions are that the two-phase algorithm
is undesirable, and that the labeling procedure shortens

computer time at the cost of using more memory.
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SYMBOLS

The subscript notation is equivalent to parentheses

or brackets; e.g., Sj = S(j) = s[jl.

aij Incidence matrix.

bi Node flow.

cj Unit cost.

Ej Reduced cost.

dj Total cost, as a function of flow, in one arc.
ej Cycle indicators.

gj Scrambled source node arc list.
hj Scrambled sink node arc list.

i Node subscript.

J Arc subscript.

J Tafget arc.

k Node subscript.

kj Kilter number.

K Total kilter number.

&j Lower capacity.

Li Node 1label.

m Number of nodes.

n Number of arcs.

P Position of scanner.



~xii-

qj Infeasibility number.
Q Total infeasibility.
R Scan list.

refnode Reference node.

s Length of scan list.

Sj Source node.

Tj Sink node.

uj Upper capacity.

Ui Source node reference list.

Vi Sink node reference list.

Xj Amount of flow.

yj Alternate designation of flow.

yj Special reduced cost.

@ Objective value.

Aj Dual slack variable.

T, Node price. pi(i) is used in ALGOL programs.
Py Temporary symbol for constructing the gj list.
o, Temporary symbol for constructing the Ui list.

T. Temporary symbol for constructing the Vi list.



I. INTRODUCTION

THE CAPACITATED NETWORK PROBLEM

A network is made up of a set of nodes together with

a set of directed arcs. Figure 1 is an example of a net-

work with five nodes and eight arcs. The nodes are desig-

nated by the letters A, B, C, D, and E, and directed arcs

Fig. 1--Example Network

are numbered 1, 2, 3, 4, 5, 6, 7, and 8. An alternative
way of designating these arcs is by ordered pairs of nodes;
hence, arc 1 is also arc (A,B), arc 2 is arc (B,C), arc 3
is arc (C,B), etc. The first node of the ordered pair,
called the source node, is the node from which the indi-

cated arrow is directed; the second node, called the



sink node, is the node toward which the arrow is directed.
Note that afcs 5 and 6 are both designated as arc (D,E),
so that a subscript on the ordered pair of nodes must be
used to distinguish between non-unique ordered pairs.
Hence, arc 5 is arc (D,E)l and arc 6 is arc (D,E)z. Also,

the set of arcs is non-exhaustive; e.g., there is no arc

(C,D) or (D,C) in Fig. 1.
The capacitated network problem consists of a network,
together with the following four quantities for each arc j:

1) cj: The cost of sending one unit of flow along

arc j from its source node to its sink node.

2) wu,: The upper capacity of arc j.

J
3) 2. . .
j: The lower capacity of arc j.
4) x?: The nominal flow along arc j.

Denoting the number of nodes in the network as m and
the number of arcs as n, the nominal flows, xg, determine

the node constraints

n
Za. Xx. = b, i=1,2,...,m .

Here



+1 if node i is the source node
for arc j;
aij = -1 if node i is the sink node

for arc j;

0 otherwise.

And bi is found by evaluating

Note that each column of the (aij) matrix has only two

non-zero entries: <41 and -1. Since

at least one node constraint is redundant. Specifying
a nominal flow, x?, uniquely determines bl’b2""’bm’
such that b1 + b2 +...+ bm = 0. A nominal solution is

any vector (Xl’XZ""’xn) that satisfies

n
-
Z a., X, = b, i=1,2,...,m .



A feasible solution of the capacitated network problem

is any vector (xl’XZ""’Xn)’ such that

n

1) Z aj5 %5 = by i=1,2,...,m
i=1

2) XJ = 'f,j j=l325 :n

3) XJ <= U,J j=1,2; Py S B

that is, a feasible solution is a nominal solution that
satisfies Lj < Xj < uj for all arcs j. If there is at
least one feasible solution to the problem, then an optimal

solution is a feasible solution that minimizes

where & is called the objective value. That is, a

feasible solution (yl,yz,...,yn) is optimal if



The quantity bi’ called the node i flow, is the net

flow out of node i. 1If bi is zero, node i is said to be

conservative. If all nodes are conservative, then the

zero vector is a nominal solution, and the network is
conservative. The algorithm for solving the capacitated
network problem requires a nominal solution rather than
a set of node flows. A simple method of determining a
nominal solution is to make the network conservative. This
is done by adjoining one more node, called the supernode,
to the network, together with an arc from each node that
is not conservative to the supernode. The lower capacity
and upper capacity of each additional arc are both set
equal to the net flow out of the node. The zero vector
is then a nominal solution for this augmented network.
Note that there are no sign restrictions on any of

the quantities Cj’ u,, 4., x?, X, OY bi' However, the

37737 7317 73
problem is trivially infeasible if uj < Lj.
A simple capacitated network is a capacitated network

with lower capacities (&j) of zero. A general network may

be translated to make it simple. Let



§9 = xq - £
J J J
X, =%, - 4
J J J

for all j. The node constraints above were

npr~ B

)

b

]
IO~ B

s8]

™

O

'_l

]

l—-l

N

2]

3

n
b, = ) a x i=1,2,....m .

Substituting the above quantities having a diacritic
tilde into the node constraints, capacity inequalities and

the objective function results in

n n
T ~ < ~0 .
1 a.. + 2 = a..(x. + 4 i=1,2,...,m
) ha G e = ) A G L) _
j=1 j=1
2 X, + 4, =2 ¢ =1,2, ,n
) hj ] k| ]



and

n
1) z a;, % =8B i=1,2,...
j=1
2) ’:23. 20 j=1,2,
3) x, su j=1,2,

Since © is at its minimum if and only if & is at its

minimum, the solution of the translated problem is the

translation of the solution of the original problem.



Other linear, and some non-linear, network and trans-
portation problems are representable as capacitated net-

work problems [ll-d The classical transportation problem

involves a network whose nodes are divided into two classes:
source nodes and destination nodes. If there are s source
nodes and d destination nodes, then there are sd directed
arcs; one arc from each source node to each destination

node. These arcs are uncapacitated, which means that

Lj = 0 and uj = 4o for each arc j. Each source node has

a net flow out of it, called the supply; and each destina-
tion node has a net flow into it, called the demand. Each
arc has a unit cost which is the same as cj above. This
problem may be solved as a capacitated network problem

by making the upper capacities vefy large, although special
algorithms are available that solve specifically this prob-
lem. The capacitated transportation problem is as above,
except that (some of) the upper capacities are not in-
finite. If an upper capacity is zero, the corresponding
arc need not be included when solving the capacitated

transportation problem as a capacitated network problem.

%
See also Ref. 2, Chap. .1l4.



The capacitated network algorithm will solve problems
with non-linear cost functions if the unit cost function
for a given arc is piecewise constant and monotone increasing

(non-decreasing). Let

d(x) = fc(x)dx ,

where c(x) is the unit cost function, and d(x) is the total
cost as a function of the flow x. Then d(x) must be piece-

wise linear and convex. If the cost function has r '"pieces'--

Xg X <X, c(x) = c1 > d(x) = c1X + q

X <X =%, c(x) = cy d(x) = d(xl) + cz(x—xl)

Xy <X £ X, c(x? =c5 d(x) = d(xz).+ 03(x-x2)
Xog <X <%, c(x; =c. d(x) = d(xr_i) + cr(x-xr_l)

where < is arbitrary and

--then this arc is represented by r parallel arcs (having

the same source node and sink node) with
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&l = XO u1 = xl
éz =0 U, = X, = Xy
&3 =0 U = X3 - X,
£ =0 u_ = xX_ - X
r r r r-1
and unit costs C15Cp5Cgs-vesCl and nominal flows such
that
r
z 0
X,
i
i=1

is the nominal flow for the composite arc. The answer

(optimum flow) for the composite arc is

I
»
| el

1

i

This representation of the composite arc is not unique,
as can be seen from the converse. Suppose that there are

r parallel arcs with lower capacities 4 Lr; upper

1,42,...,

capacities ul,uz,...,ur; unit costs CqysCpseeesCy with



¢y = ¢y <...S .3 and nominal flows Xg,xg,...,xg.

-11-

Then

these r arcs are equivalent to the arc with the following

composite unit cost:

Cl .
C2 .

c(x) = < c

with lower capacity

1, + 2

1

u, + 4

1

i-1 r
z uj +-Z Lj
1 i

ul + u

2

2

2

...t 4
r

S X < ul + &2 +.,.+ 4

+...+ &r < X = u1 + u2

+.

..t u

r-1

<x=)

i r
u, + Z{.
J J
1 i+l
4+ 4 < x £ u
r

r

+ 4, +.o..F &r

1

3

+ u

2

+.

.+ u
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and nominal flow

L
b
el )

Thus, for example, the composite arc whose total cost is

the absolute value of the flow has composite unit cost

-1 ¢ ~us=sx=20

c(x) = 5

+1 0 <x<u

and if the lower bound is the negative of the upper bound
u and the nominal flow is xO, then this arc is equivalent

to the two parallel arcs with:

-u + o u., = « C1=‘l X

where « and B are arbitrary. Although o and B are arbi-
trary as far as the optimal flow (x1 + xz) is concerned
(if unique), the value for B may affect the speed of
solution; while if o is not zero, the objective function

($) is decreased by the constant 2u«.
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A (simple) arc éan be reversed in direction by
changing the signs of its unit cost and nominal flow and
reversing the upper and lower capacities and changing
their signs. Denoting a direction reversal by a circumflex,

this transformation is

4 = ~-u
u = -2
c = -c
20 = x0 .

Returning to the capacitated network problem in its

translated form (zero lower capacities)--

n
1) Za..x = b, i=1,2,...,m

2) 0 < x, = u, j=1,2,...,n

n
3) minimize Z c. X,
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--this problem may be stated as a primal linear programming
problem by defining n slack variables Xn+1’xn+2""’X2n'

The linear programming problem is then:

I et I =

minimize cj Xj with XKoo sXy, non-negative, subject to
j=1
n
Z}alj Xj = bi i=1,2,...,m
j=1
x, + xn+j = uJ j=1,2, , I

Associated with the linear programming problem solution is
a set of shadow prices (the negative of the dual variables)
A necessary condition for

MyoMosenesT s Al,kz,...,kn.

optimality is that there exist shadow prices such that

m
c. + z:a.. 7. + A, =20 \
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m
Setting Ej =c, + Z a,, m,:

J ij i
i=1
S.+a.z=0 )
J h|
s j=1,2,...,n
A. =20
J /

Moreover, if Xj (j = n) is positive (then variable j is

basic), the equality holds:

Hence, if
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0 <x. < u.:
J J

The quantities MqsMgsees, are called the node prices.

The quantities 51’62""’Cn are the marginal or reduced

costs. Since only two of the quantities alj’aZj""’amj

are non-zero--in particular, if i is the source node for

arc j, then aij = +1; and if k is the sink node for arc j,

then akj = w]w-

S = Sy T Ty - T
The implications

Ejso if xJ>O

c. =0 if X, < u
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are also sufficient conditions for X sKgsee e sy being an

optimal solution since

n
& = ZCJ XJ
3=1
n m
-5 (aj _— aij)xJ
j=1 i=1
n m n
= D& E s )T ) Ay K
j=1 i=1  j=1
n m
=ZEJXj-anbl
j=1 i=1

cannot be decreased by making a feasible change in the
flow (Xj)' That is, a feasible solution (XI’XZ”"’Xn)

has minimum ® if there exist shadow prices (ﬂl,nz,...,wm)

such that x; > 0 implies Ej < 0 and x; < u implies Ej z 0.
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II. THE OUT-OF-KILTER ALGORITHM

The method described here is similar to that‘éet forth
in Ref. 3. For each arc, j, let S[j] be its source node
and T[j] its sink node. Each node, i, has a price, 7(i)
or .. The reduced cost, Ej’ of arc j, is related to its

unit cost, Cj’ by

Ot
I

e + 7(SLiD) - 7(TL3D)

A set of flows XprXp s X in the arcs is called a nominal

solution if

n
Z‘a.. X, = b, i=1,2,...,m (1)

where the (aij) matrix is such that for each arc j,

+1  if i = S[j]
a,, = (-1 if i =T[j]

0 otherwise

and the bi are integers, known as the node flows. A
nominal solution is a feasible solution if, in addition to

Eq’ (1) >
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L, S X, < u, j=1,2,...,n (2)

where &j and uj are given integers. Lj is known as the
lower capacity, and uj is known as the upper capacity. A

feasible solution is an optimal solution if

is a minimum over all feasible solutions. A necessary
and sufficient condition that a feasible solution be
1,w2,...,nm such that the

Ej calculated from these L satisfy:

optimal is that there exist 7

01
Y%
o
| ot
th
b

Lt
A
o
S

Y 3=1,2,...,n . (3)

For any set of nominal Xj and any T let kj be the

ot

kilter number of arc j, defined as follows:

al

&This differs from the kilter number defined in
Ref. 3.
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or equivalently,
k., = max(0, x, - u,, 4. - x., sgn(c,)(x. - L.), sgn(c,) (x, - u,
J = man(0, ®; - ug, 4y - %y, sgA(Ey) Gy - 45), sgn(Ep) Gy - up)
By comparing kj with Eqs. (2) and (3), it can be seen that

every kj is zero only if the solution is optimal. The value

of kj, never negative, is the amount that arc j is '"out-of-

kilter." The amount that the problem is '"out-of-kilter" is
n
K= ) k,
L¥;
3=1

The network problem could thus be stated as the problem of
finding T and nominal Xj such that K is a minimum. Let

KO be the minimum such K., If KO is zero (i.e., the problem
ié feasible), it is possible to reduce each kj to zero with-

out increasing any of the other kilter numbers in the process.

If the problem is infeasible (KO # 0), the algorithm described
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in this section may not attain K = KO, because if KO >0

a lower value of K is sometimes attainable only at the
expense of increasing the kilter numbers of some arcs.

In order to attain K = KO’ it is (sometimes) necessary to
use a ''two-phase'" algorithm for which the second phase is
given here. The first phase of this '"two-phase' algorithm
is discussed in Sec. III. For most purposes, the algorithm
described in this section is sufficient, since one usually
deals with a feasible problem or a problem with obvious in-
feasibilities.

The algorithm for solving a network problem begins
with any node prices and any nominal solution, then proceeds
as follows. An arc is found with a non-zero kilter number.
Then a labeling procedure is initiated that éttempts to
find a cycle of arcs along which at least one unit of flow
can be pushed without increasing the kilter numbers in any
arc in the cycle. If such a cycle is found, the indicated
flow change is made, thus decreasing the kilter number of
at least one arc. If no cycle is found, a change in the
node prices is made, such that the labeling procedure now
will result in more nodes being labeled. When no more
progress with a particular arc can be made, the algorithm
looks for another out-of-kilter arc. When all arcs are

either in-kilter or in a condition such that no improvement
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in the kilter number can be made, the algorithm terminates.
Convergence of the algorithm is proved by showing that the
number of consecutive labeling procedures that can be
attempted without decreasing the total kilter number is
bounded.

For example, arcs 5, 4, 3, and 7 in Fig. 1 form a
cycle, with arc 7 traversed backwards. To indicate that
arc 7 is traversed backwards, it will be denoted as arc -7.
Thus, the above cycle is 5, 4, 3, -7. In order to define
a cycle in algebraic terms, let €1585 50058 be numbers

such that
+1 if arc j is traversed forward
e, =( -1 if arc j is traversed backward
0 if arc j is not traversed

Then these arcs which are traversed form a cycle if

.. €, i=1,2,...,m .
1] ]

P B
Al
o
]
o

j

Moreover, this cycle is a simple cycle if no node appears

as either a source node or a sink node on any arc in the
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ote

cycle more than twice, i.e., if

n
Z la.. e.] =2 i=1,2,...,m .

Thus, it can be seen that any amount of flow may be pushed
through a cycle without changing the node constraints.
That is, nominality of the flow is preserved by replacing
Xj by Xj + Mej for all j and M any constant.

For Fig. 1 the (aij) matrix has the form

— —
1 0 0 0 0 0 0 -1| node A

-1 1 -1 0 0 0o -1 0] node B

A = 0 -1 1 -1 0 0 0 0|l node C
0 0 0 0 1 1 1 1| node D

0 0 0 1 -1 -1 0 0] node E

and for the above example the ej's are 0, 0, 1, 1, 1, 0, -1,
and O.

For any arc j, we may denote its position in a state
diagram (assuming uj > Lj). Figure 2 shows the 15 possible

combinations of Xj and Ej in relation to the capacities.

ats

“A simple cycle may also be defined as a minimal
dependent set of columns of A.
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c <0 S =0 c >0
X > u X >u X >u
(a5) (B5) (¥5)
c <0 c =0 c >0
X =u X =u X =u
(a&) (B4) (y4)
c <0 c =0 c >0
L <x <u L < x < u L < x < u
(a3) (B3) (¥3)
c <0 c =0 c >0
X =41 X =4 X = 4
(02) (B2) (v2)
c <0 c =0 c >0
x < 4 X < 4 X < 4
(al) (81) (1)

Fig., 2--State Diagram

Note that states o4, B4, B3, B2, and y2 are "in-kilter,"

and that reversing an arc (reversing its direction, its
upper and lower bounds, and changing the signs of c, X,

u, and 4) "reflects" its state through the center box B3.
The arcs in boxes a3, o2, al, Bl, and y1 need to have their
flows increased to bring them into kilter (see upward point-

ing arrows in Fig. 3); and their kilter numbers are precisely
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the amount of flow increase needed to bring them into

kilter.

These arcs will be called sub-kilter arcs.

Similarly, the arcs in states o5, B5, ¥5, ¥4, and ¥3

must have their flows decreased by an amount equal to

their kilter numbers in order to bring them into kilter.

These arcs will be called super-kilter arcs.

Fig.

ot
i
o
0
Vv
o

c <0

3--Flow Changes that Decrease the Kilter Numbers
(Indicated by straight arrows. Waved arrows
indicate flow changes that do not change the
kilter number.)

Moreover, an arc in state B2 or B3 may increase its flow

at least one unit without increasing its kilter number and
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without decreasing its kilter number since the kilter
number is zero. These possible flow increases, together
with possible decreases for the complementary states, are
indicated by the waved arrows in Fig. 3.

Because of the symmetry of the state diagram, a rule
for increasing the flow in a sub-kilter arc has its com-
plementary rule in a super-kilter arc. For the sake of
brevity, we assume that the arcs are directed whichever
way 1s the most convenient for the discussion. Bear in

mind that any arc may be reversed if desired.

LABELING PROCEDURE

The nodes are labeled with arc numbers. Begin with
all node labels L(i) at zero. A node is unlabeled if its
label is zero and it is labeled if its label is non-zero.
Find an arc that is out-of-kilter, and assume that it is
super-kilter (its flow must be decreased). This arc is
the target arc, say arc J. Label its source node S[J]
with the label J, i.e., set L(S[J]) = J. Now find any arc,
j, where one node is labeled and one is not. Assume its
source node, i, is labeled and its sink node, k, is not.

If the flow may be increased without increasing the kilter

number of the arc, then label the sink node of this arc
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with the arc number; i.e., set L(k) = j. Continue looking
for nodes to label until one of two occurrences:

1) The sink node T[J] of the target arc is labeled,
or

2) No more nodes can be labeled.
These two possibilities are known respectively as 1) break-

through and 2) non-breakthrough.

BREAKTHROUGH

Since the sink node of the target arc was labeled,
there is a path of arcs from the source node of the target
arc to the sink node of the target arc, each of which may
have its flow increased without increasing its kilter
number.‘ This path may be traced backward from the sink
node of the target arc by means of the labels on the nodes
to the source node of the target arc. Then calculate the
maximum amount that the flow can be increased in the (non-
target) arcs in the cycle (or decreased in the target arc)
without increasing the kilter numbers of any of these arcs.
Let this number be ¢, and make this change in each arc of
the cycle. The kilter number of the problem has now de-
creased by at least as much as the kilter-number change
in the target arc. The kilter numbers for arcs not in
the cycle are unchanged, and the kilter numbers of the

arcs in the cycle are
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k! = max(0, k. -
3 max ( 5 €)

where k, is the old kilter number and kj is the new kilter
number for the arc j in the cycle. Since we are dealing

with integers, € is at least 1.

NON-BREAKTHROUGH

A non-breakthrough occurs if no more nodes can be
labeled and the sink node of the target arc is not labeled.
The nodes are then divided into two classes, labeled and
unlabeled. The set of arcs that have one node labeled
and one node unlabeled will be called the cut set for this
labeling, since the arcs in the cut set cut off the set of
labeled nodes from the set of unlabeled nodes. The target
arc is a member of this cut set. Suppose that all arcs
in the cut set have their source nodes labeled and their
sink nodes unlabeled. (If an arc is labeled conversely,
we may reverse it by the transformation mentioned above
in Sec. I.) Then all of the arcs in the cut set have the
property that their flows cannot be increased without in-
creasing their kilter numbers. As shown in Fig. 3, these
arcs must be in states o5, B5, ¥5, ob, B4, v4, ¥3, or ¥2.

That is, the flow in each arc is either at or above its
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upper bound or its reduced cost is positive and its flow
is at or above its lower bound. These states are those
in Fig. 4 for which arrows point to the left.

Note that if the prices of the nodes in the unlabeled
set of nodes are increased by any constant, then only the
arcs in the cut set will have their reduced cost changed,
and this change in the reduced cost will be precisely the
negative of the change in node prices of the unlabeled
nodes. The leftward pointing arrows in Fig. 4 indicate
the direction of state change that may occur by decreasing
the reduced cost of the arcs in the cut set. Note that
the arrows point toward states that have no greater kilter
numbers than they do themselves.

Let A be the amount that the unlabeled nodes are going
to have their prices raised, i.e., the amount that the re-
duced costs of that arc in the cut set will be decreased.
Denote by Case 1 the situat%on that exists if there are
any arcs in the cut set which are in states y2 or 73, i.e.,
with x < u (shown shaded in Fig. 4). Case 2 occurs when
all arcs in the cut set have flows at least equal to their
upper capacities.

Consider first Case 1. It is clear that the value of

A must not exceed the value of the reduced cost for any arc
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X > u

X - u X - u X - 4

B aa—— e R e
X = u

0 0

u - x 0
X =4
u - X 0
X < 4
u - X L - x L - x
c <0 c =0 c >0

Fig. 4--Kilter Numbers of the Various States
(Arrows show the states which may have
their reduced costs lowered in a non-
breakthrough cut set.)

in the cut set in state y2 or ¥3, but that the reduced
costs of arcs in the cut set in other states may be de-
creased by any amount without increasing their kilter

numbers. Denote as the critical arc that (or one of the)

arc(s) in state y2 or 3 with the lowest reduced cost.

Let A be the reduced cost of the critical arc and increase
the node prices of all unlabeled nodes by A. 1If the
critical arc is in state y2, its kilter number will remain

at zero.
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Now consider Case 2. All arcs in the cut set have
flows at least equaling their upper capacities. Let the
critical arc be the arc with the maximum reduced cost.

If the critical arc has a positive reduced cost, let A

be this number and raise the prices of the unlabeled nodes
by A. This causes every arc that had a positive reduced
cost to now have a non-positive reduced cost and to have
its kilter number reduced from x - £ to x - u. On the
other hand, if the critical arc has a non-positive reduced
cost, then all arcs in the cut set have a non-positive
reduced cost; and the kilter number of the target arc can-
not be reduced. Hence, the broblem is infeasible. The

cut set is then a cut in the classical sense in that the
target arc has a flow above its upper capacity and the only
way to reduce the flow in the target arc is to increase the
flow in some other arc(s) in the cut set which has a flow
at least equaling its upper capacities. If the flow in

the target arc exceeds its upper capacity, the problem is
infeasible (in Case 2) regardless of the sign of the re-
duced cost of the critical arc, but some improvement of

the kilter numbers occurs if the reduced cost of the

critical arc is positive.
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In any event, for Case 2, after the node prices have
been changed, the kilter number of the target arc has been
minimized (to zero if its flow was at the upper capacity)
and no more labelings with this arc as the target arc
should be attempted. 1In Case 1, the labeling procedures
should now be continued, keeping the labels intact for the
nodes already labeled. At least one more node can be
labeled, in particular, the sink node of the critical arc.
Hence, since there are m nodes, at most m - 1 consecutive
Case 1 non-breakthroughs can occur with the same target
arc. If the problem is feasible, the kilter number for
the problem will be decreased after at most m labelings.

Hence, it is seen that the algorithm converges.



-33-

III. RELATED ALGORITHMS

THE INFEASIBILITY ALGORITHM

For each arc, j, of the network, define qj’ the

infeasibility number:

. = max(0, x, - u,, 4. - X,
93 (0, x5 = uy, 45 = %5,

and Q, the total infeasibility:

It is clear that qj is the amount (if any) that the flow
violates the upper or lower capacities imposed on the arc
j. It is also clear that the kilter number, K, of the
problem can be reduced to the value of Q, and that if Q

is at its minimum value, then K can be reduced to its
minimum value (which is K = Q) using the out-of-kilter
algorithm. If Q is not at its minimum value, and if the
problem is infeasible, then K may not be reduced to its
minimum value by the out-of-kilter algorithm. For example,
the network of Fig. 5 has initially zero flow in each of

its three arcs, the upper capacity is equal to the lower
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S (1,1 (0,0)

O
B (1,1) C

Fig. 5--Example Network (Numbers in parenthesis
are the lower and upper capacities.)

capacity for each arc, and the capacity for arc (A,B) is 1,
for arc (B,C) is 1, and for arc (C,A) is 0. Arc (C,A) is
"in-kilter,'" while the others are not; but any change in
the flow will cause arc (C,A) to go "out-of-kilter,'" hence,
nothing can be done to this network by the out-of-kilter
algorithm. Thus, K remains at 2, despite the fact that.
the minimum K is 1. This minimum is obtained by forcing

a flow of 1 into each arc, thereby increasing the kilter
number (which in this case is also the infeasibility
number) of arc (C,A) to 1 and decreasing the kilter numbers

of the other two arcs to zero. The attainment of the
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minimum K can also depend on the order in which arcs are
chosen to be brought into kilter and on the order in which
nodes are labeled. The network in Fig. 6 is an example in

which either of these possibilities can occur.

A

T @
(1,1)

r

! (1,1)

C

Fig. 6--Another Example of an Infeasible Network

An algorithm will now be developed to solve the prob-
lem of minimizing Q for a network. 1In order to develop
this algorithm, we use the artifice of replacing each arc
of the network by three new arcs. Suppose an arc has
source node A, sink node B, lower capacity 4, ﬁpper
capacity u, and nominal flow x. The three arcs that re-

place this arc (see Fig. 7), each have source node A and
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(_G0 30)

Arc +1

Fig. 7--Artificial Arcs Used in Infeasibility
Algorithm

sink node B, and are denoted as arc -1, arc 0, and arc +l.

These arcs have the following properties:

Unit Lower Upper
Arc Cost Capacity Capacity Flow
arc =1 ¢ =-1 1 = -w u =0 x = min(0, x - 1)
arc O cO = 0 LO = 1 u0 =u xO = max (4, min(u,x))
arc +1 c+ = 41 &+ = 0 u+ = 4w x+ = max(0, x - u)

Note that x = x + x0 + %7, and that the flows are
feasible in each arc. Hence, this new problem is feasible

and its total cost is precisely Q of the original problem.



-37-

Let vy , v, and y+ be the reduced costs for arcs -1, 0, and

+1, respectively, so that

A B
vy =0+ Ty = g
+ —

It is not necessary to deal with node prices for this algo-
rithm, but only with the reduced costs 7y, which for each
- +

arc are initially zero. Hence y = -1 and y = +1 initially.
+ . . . coo :
v must remain non-negative, since it could become negative
only if the flow in arc +1 were at its upper bound, which
would imply that Q is infinite. Similarly, y  must remain

non-positive. Thus,

y =y -150
=y 41 =0,
or
y =1

‘yZ-l:
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i.e., |y] = 1. But y will take on only integral values;
hence, ¥ may only be 0 or 1. Arc -1 will have non-zero
(negative) flow only if x < %2, and its flow may be decreased

(made more negative) only if y = 0, i.e., (since y must be

non-positive) ¥ = 0 or y = 1. Similarly, the flow may be
increased in arc +1 only if y = -1; and arc +1 will have
non-zero flow only if x > u.

The above discussion shows that if node A is labeled
then node B can be labeled:

1) wvia arc -1 if x < 4;

2) wvia arc 0 if x <u and y # 1;

3) wvia arc +1 if y = -1,

The state diagram of this composite arc is shown in
Fig. 8. Note that the states that are impossible for ¥ # 0
are crossed out. If a non-breakthrough occurs, then for each
composite arc that has its source node labeled and its sink
node unlabeled, either {y = 0 and x = u} or {y = +1 and
x = 4}, Increasing the node prices (which are not being
computed) of the unlabeled nodes by +1 is equivalent to
decreasing ¥ of this composite arc by 1 (or increasing
¥y by 1 if the arc is labeled conversely). This moves

the state of the arc one box to the left, and hence to

a labelable state (unless x = 4 = u). Moreover, this
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Fig. 8--Arc States in which Flow may be Increased
in the Infeasibility Algorithm

change of the y's puts the target arc into kilter, since
a composite arc is in kilter if either ¥ # 0 or 4 < X < u.
Hence, the problem of minimizing Q may be solved by
the out-of-kilter algorithm by replacing each arc by three
arcs with appropriate bounds and costs. But these com-
posite arcs were merely an artifice used for determining
a new algorithm based on the out-of-kilter method. Now,
discarding the composite arcs, this method may be

summarized.
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Begin with numbers Y1sYpsees¥y all zero. Look for
an arc, J, with Yy = 0, and either Xy > uj or X < &J.
If no such arc exists, Q has been minimized and we are done.
MWhen an arc is found with these properties, label its source
node if Xq > s and its sink node if X5 < LJ. Then begin
a labeling procedure that terminates if the other node of
arc J is labeled or if no more nodes can be labeled.
If arc j has its source node labeled and its sink
node unlabeled, the sink node can be labeled if
1 v, =0an<:‘lxj <uj,

J
or

2) yj = -1,

or

3 X, < 4£,.
) J J

If the sink node is labeled and the source node unlabeled,

the source node can be labeled if

1 Y. 0 and x., > 4.
)J J i’

or

2) y.

p +1,

or

3) x, >u,.
J J



“41-

When the labeling procedure gesults in a breakthrough
(i.e., both nodes of arc J have been labeled), the cycle
is determined, and ¢ is calculated and added to those arcs
labeled (forward) from source to sink and subtracted from
those arcs labeled (backward) from sink to source. € is
the minimum of

0 and arc j labeled forward,

1) u., - x if y.

j h| J
2) Xy = 4y if vs = 0 and arc j labeled backward,
3) iy - %, if vy = +1 and arc j labeled forward,
4) X, - uy if Y5 = -1 and arc j labeled backward

for all arcs in the cycle. 1If an arc, j, is labeled for-
ward and yj = ~1 or labeled backward and yj = +1, then
this arc imposes no limit on €. All arcs with yj = 0 do
impose a limit, and arc J is one of these. After the ¢

change in the cycle, x, may or may not satisfy x._ = 2

J J °J

and x_. s u If it does satisfy these conditions, then

J J’
look for another arc to label. If it does not satisfy
these conditions, begin the labeling procedure anew with
arc J.

When the labeling procedure results in a non-break-
through, subtract 1 from yj of all arcs with the source

node labeled and the sink node unlabeled, and add 1 to 'yj

for all arcs with the source node unlabeled and the sink
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node labeled. The other arcs do not have a change made
in yj. In particular, arc J has one node labeled and
one unlabeled; hence, now Yy = +1. Thus, another arc must
be found to begin the labeling procedure again.

Eventually, every arc will have either 7y # 0 or
%j < xj s uj. The infeasibility of the flow has then been
minimized. If yj # 0, arc j is not necessarily infeasible,

but all arcs with non-zero y can be thought of as part of

a cut set for all of the infeasible arcs.

THE FEASIBILITY ALGORITHM

The feasibility algorithm is similar to the infeasi-
bility algorithm, except that one is not interested in
minimizing the infeasibility but only in finding a feasible
flow if it exists. If the problem is feasible, no non-
breakthroughs will occur in the infeasibility algorithm.
Hence, the reduced costs, y, will never be made non-zero.

The labeling procedure for the feasibility algorithm
is as follows. If the source node of arc j is labeled and
the sink node is unlabeled, then the sink node can be
labeled if Xj < uj. I1f the sink node is labeled and the
source node is unlabeled, then the source node can be
labeled if xj > Lj. Only arcs which are infeasible are

chosen as target arcs. If a non-breakthrough occurs, the
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problem is infeasible. Otherwise, only breakthroughs will
occur, and the problem will be feasible when all arcs are
made feasible. For this algorithm, no yj are calculated.
Hence, it is simpler computationally than the infeasibility

algorithm.

TWO-PHASE ALGORITHMS

Either the infeasibility algorithm or the feasibility
algorithm may be used as the first phase of a two-phase
algorithm. Then the second phase is the out-of-kilter
algorithm described in Sec. II. If phase 1 causes the
network to be feasible, certain tests in the out-of-kilter
algorithm become unnecessary. In the labeling procedure,
if the source node of arc j is labeled and the sink node
is unlabeled, the sink node can be labeled if cj < 0 and
Xj < uj. The additional case, that Xj < &j and cj > 0,
cannot occur in this algorithm and need not be tested.
Similarly, in the non-breakthrough procedure, the tests

for x > u can be omitted.
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IV. COMPUTATIONAL METHODS

LABELING

The method of labeling nodes described in Sec. II
was that of looking for an arc with one node labeled and
one node unlabeled and then determining whether the un-
labeled node could be labeled. A method has evolved that
requires less searching for arcs with exactly one node
labeled. The idea of this method is to set up what 1is
called a scan list. Associated with the scan list are
two indices: s, the length of the scan list, and p, the
position of the scanner. Denote the scan list itself by
R(1) ,R(2),...,R(s). The procedure begins with p = 1,
s = 1, and R(1) = node which is the labeling origin. Then
look at (i.e., scan) each arc for which the node R(p) is
its source node or its sink node. If the other node of
any of these arcs can be labeled, do so, increase s by 1
and set R(s) to the node just labeled. If R(s) is the
terminal node, then the labeling procedure is done and a
breakthrough has occurred. When all of the arcs joining
node R(p) have been scanned and no breakthrough has occurred,
increase p by 1, then repeat the process for the new node
R(p). If p > s, then the scan list has been exhausted

and a non-breakthrough has occurred.
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When this procedure is used, each arc can be '"looked
at" at most twice: once from each of its nodes. But, in
order for this method to be more efficient than one that
merely searches for arcs with one node labeled, lists must

be set up of the arcs that join each particular node.

LIST STRUCTURE

Let there be n arcs such that the jth arc has source
node S[j] and sink node T[j]. Suppose that there are m
nodes numbered from 1 through m and, therefore, that S and
T have values in this range. Assuming that the arcs are
in no particular order, it is necessary to set up four
lists, say U, V, g, and h, where U and V are arrays of
length mtl and g and h are of length n. Let o, be the
number of arcs that have node i as their source node and
let s be the number of arcs that have node i as their
sink node. Either o, or T., but not both, may be zero.

Then U and V are defined recursively:

U, ., =U. + 0. i=1,2,...,m

and
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Vl =1
Vi+l = Vi + T, i=1,2,...,m .
Now, let p; = Ui for i=1,2,...,m. For each j from 1

through n, let i = S[j7J, g[pi] = j, and then increase Py
by 1. When this is done, g[Ui] through g[Ui+1 -17 is a
list of the arcs with node i as the source node. The

same procedure is repeated for V and h with the sink nodes,
giving a list of the arcs with the same sink node.

The ALGOL procedure in the Appendix uses the above
lists. This procedure executes the out-of-kilter algorithm
as described in Sec. II. This may be compared with the
simpler program in Ref. 4. The symbols used in this pro-
gram are substantially the same as the ones given at the
beginning (p. xi) and used throughout this Memorandum.

Space may be saved by arranging the arcs so that the
source nodes are in order. Then the list g is unnecessary
since g(j) = j. This procedure is used in the FORTRAN
program of Ref. 5.

More complicated list structures may be needed if
this procedure must store data on such peripheral devices

as disks. In this event, it may be useful to double each
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arc so that it has its forward and backward representa-
tions in the lists. Then only one 'disk file' need be

retrieved for scanning each node.

'TENTATIVE CONCLUSIONS

Several experiments were done with the methods de-
scribed above. Since these experiments were not at all
extensive, and since the results depend greatly on the
type of problem and machine software, these conclusions
should not be regarded as final.

Several problems were solved using the algorithm
described in Ref. 4 and the algorithm given in the Appendix.
The largest problem solved had 1530 arcs. This problem
was run on a relatively slow machine (IBM 360 Model 40)
with the result that the program with the list structure
described above ran five times as fast as the program with-
out this list structure (30 min vs. 2.5 hr). This time
ratio should increase on larger problems and decrease on
smaller problems. The faster problem solution using the
program with the list structure must be balanced against
the greater storage capacity needed for the lists.

Several tests were made employing a two-phase algo-
rithm, with the first phase being the feasibility algorithm

described in Sec. ITI. This modification increased the
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number of calculations, and hence cannot be recommended.
In fact, Fulkerson's [3] original description of the
algorithm seems to be the most efficient, even though
certain Case 2 non-breakthrough calculations were not
made. Therefore, some of these calculations are not

included in the appended ALGOL procedure.
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Appendix

ALGOL PROCEDURE

This ALGOL procedure should be self-explanatory since
it uses the symbols appearing in the body of this Memo-
randum. Upper and lower case symbols are distinct. The
symbol "pi" corresponds to the symbol 7 in the text, "out-
kilter" is the number of arcs that could not be brought
into kilter by the procedure, and 'refnode' is an arbitrary
node whose 7 value is not changed by the procedure. This
procedure was not checked in the ALGOL language; hence,

all errors may not have been detected.

Procedure network (m,n,S,T,c,u,4,x,pi,refnode,outkilter)
integer m,n,refnode,outkilter;

integer array S,T,c,u,{,x,pi;

begin integer array U,V[1:m+2],g,h[1:n7],L,R[1:m];

integer J,aa,term,laborg,origin,i,j,p,k,s,a,kp,Kq,eps,epsl;

Boolean breakthru;
outkilter:= 0;
g0 to setup;

endsetup: for j:= 1 step 1 until n do

c(j):= c(3)+pi(S[iN-pi(TLID)s
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comment look for an out-of-kilter arc;
search: J:= 1; aa:= 0; breakthru:= true;
mainlp: if x(J)<2(J)Ve(I)<0Ax(J)<u(J) then go to fd;
if x(J)>u(J) Ve (J)>0Ax(J)>4(J) then go to bd;
return: J:= J+1;
if J<n then go to mainlp;

for j:= 1 step 1 until n do.

c(3):=c(§)-pi(S[3N+pi(TLj]); go to endn;

fd: term:= S[J]; origin:= T[J]; laborg:= J;

g0 to prelab;

bd: term:= T[J]; origin:

I

S[J]; laborg:= -J;
prelab: R(l):= origin; go to label;
comment count arcs beginning and ending at nodes;

setup: for i:= 3 step 1 until m + 2 do

begin U(i):= 0; V(i):= 0 end;

for j:= 1 step 1 until n do

begin U(S[j] + 2):= U(s[j] + 2) + 1;
V(T[j] + 2):= V(T[j] + 2) + 1 end;
comment cumulate counts;
U(l):= 1; U(2):= 1;
V(1l):= 1; V(2):= 1;

for i:= 3 step 1 until m + 1 do
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begin U(i):= U(i) + U(i-1);
V(i):= V(i) + V(i-1) end;
comment set up arc locator lists;

for j:= 1 step 1 until n do

begin glU(S[3i] + 1)J:= j;
hIv(T[j] + 1) ]:= j;

U(s[j] + 1):

U(sij] + 1) + 1;

!

V(T[j] + 1):= V(T[j] + 1) +1
end;
go to endsetup;
label: if —breakthruAJ=aa then go to label2;

comment zero out labels;

for i:= 1 step 1 until n do L(i): = 0;

s:= 1;
label2: p:= 1; aa:= J; breakthru:= false; L(origin)
comment try to label the forward arcs;

label3: i:= R(p);

for a:= U(i) step 1 until U(i+l)-1 do begin

j:= glal; k:= T3]3
if L(k)=0Alx(j)<t(§)Ve(§)=0rx(j)<u(j)] then
begin L(k):= j; s:= s+l; R(s):= k end; end;

comment try to label the backward arcs;

:= laborg;
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for a:= V(i) step 1 until V(i+l)-1 do begin

j:= hla]; k:= S[j];
if L(0)=0ATx(3)>u(3) Ve (3)20/x(3)>4(3) ] then
begin L(k):= =j; s:= s+1; R(s):= k end; end;
comment test for terminal labeled;
if L(term)#0 then go to break;
p:= ptl;
comment if scan list exhausted, non-breakthru;
if p>s then go to nobreak;
go to label3;
comment find flow increment in cycle;
break: eps:= 999999999; breakthru:= true;
Kt:= term;
je=1
breakloop: Kq:= L(Kt); kp:= abs(Kq);
if Kg>0 then go to forwardbreak; Kt:= T(kp) ;
if c(kp)=0 then go to lowerbreak;
go to upperbreak;
forwardbreak: Kt:= S{kp]
if c(kp)>0 then go to lowerbreak;
upperbreak: eps:= min (eps,abs (u(kp) -x(kp)));

go to endbreakloop;
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lowerbreak: eps:= min(eps,abs (L (kp)-x(kp)));
endbreakloop: R(j):= Kq;

if Kt = term then go to increment;

j:= j+1l; go to breakloop;

comment increment flow;

increment: for i:= 1 step 1 until j do
if R(i)>0 then
x(R(1)) := x(R(1)) + eps
else x(-R(i)):= x(-R(1)) - eps;
go to mainlp;
comment find delta for non-breakthru;
nobreak: epsl:= 999999999;

for j:= 1 step 1 until n do

if L(S[3 1 #A0AL(Tj])=0nx(j)<u(l)
VL(S[31)=0AL(T[j 1) #0/x(3)>¢(3)

then epsl:= min(eps,abs(c(j)));

comment test for case 2;

eps:= epsl;

if eps#999999999 then go to change;

if c(J)=OVsign(L(origin))=sign(c(J))
then go to infeas;

eps:= abs(c(J));
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comment change reduced costs;

change: for j:= 1 step 1 until n do

if L(S[j1)=0AL(TLj1)#0

then c(j):= c(j) + eps else
if L(S[31)#0AL(T[31)=0

then c(j):= c(j) - eps;
comment change node prices;

if L(refnode)#0 then

for i:= 1 step 1 until m do begin

if L(i)=0 then pi(i):= pi(i) + eps end else

for i:= 1 step 1 until m do

if L(i)#0 then pi(i):= pi(i) - eps;
if eps=epslvx(J)=2(J)Vvx(J)=u(J) then
0 to mainlp;
infeas: outkilter:= outkilter + 1; go to return;

endn: end network
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