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Abstract

In this paper we consider Newton’s problem of finding a convex body of least

resistance. This problem could equivalently be written as a variational problem

over concave functions in R
2.

We propose two different methods for solving it numerically. First, we discretize

this problem by writing the concave solution function as a infimum over a finite

number of affine functions. The discretized problem could be solved by standard

optimization software efficiently.

Second, we conjecture that the optimal body has a certain structure. We exploit

this structure and obtain a variational problem in R
1. Deriving its Euler-Lagrange

equation yields a program with two unknowns, which can be solved quickly.

1 Introduction

The problem considered in this paper was raised by Newton in the late 17th century.
It consists of finding a convex body P with given base Ω̄ and height L, such that the
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resistance induced by the movement through a rare medium is minimal. By describing
the body P by a concave function f : Ω̄ → R,

P = {(x, y, z) ∈ R
3 : (x, y) ∈ Ω̄, z ∈ [0, f(x, y)]},

the problem can be written as a variational problem

Minimize J(f) =

∫

Ω

1

1 + ‖∇f(x, y)‖2
d(x, y)

such that f : Ω → [0, L] is concave.
(P)

Note that the concavity of f implies that f belongs to W 1,∞
loc (Ω). Hence, the objective is

well defined. For a derivation of the objective, we refer to Buttazzo et al. [1995], Buttazzo
and Kawohl [1993]. Since the class of bounded convex functions is compact in W 1,p

loc
(Ω),

the existence of minimizers of (P) can be proven, see [Buttazzo et al., 1995, Thm. 2.1].

The case considered by Newton himself and which is dealt with here and in many papers
is that Ω the interior of the unit disc

Ω = U1(0) = {(x, y) ∈ R
2 : x2 + y2 < 1}.

Under the assumption that the optimal f is rotational symmetric, Newton was able to
give an explicit solution. However, in Brock et al. [1996] it was shown that Newton’s
radial solution is not a local optimum of (P). Hence, the minimizer cannot be rotationally
symmetric and the actual shape of the minimizers became an open problem.

In Lachand-Robert and Peletier [2001], the authors restricted the optimal body P to the
set of bodies which can be written as a convex hull

conv
(

(∂Ω× {0}) ∪ (N0 × {L})
)

,

where N0 ⊂ R
2 is the upper face of the body. They showed that the optimal set N0

is a regular polygon centered at the origin (0, 0). In particular, the optimal P has the
symmetry group Dm for some m ≥ 2. Here, Dm is the dihedral group, which is the
symmetry group of the regular, m-sided polygon. The minimizers in this class of bodies
have smaller objective values than Newton’s radial solutions.

There is only one contribution in the literature which considers a numerical approxima-
tion of (P), see Lachand-Robert and Oudet [2005]. Their results show that the solution of
Lachand-Robert and Peletier [2001] is not optimal for (P). Lachand-Robert and Oudet
[2005] does not report computational times. However, since their method includes a ge-
netic algorithm, it is to be expected that the method is rather slow. Moreover, in the case
L = 0.4 they found only a local minimizer, see Section 4 and in particular Table 4.1.

The contribution of the present paper is twofold. In Section 2 we propose an algorithm
for the solution of (P). We discretize the concave function f by an infimum of a fi-
nite number of affine functions. The discretized problem could be efficiently solved by
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standard optimization software (by using the full gradient). Altogether, we are able to
compute approximations of the minimizers of (P) in a few minutes.

By the results obtained in Section 2, we conjecture in Section 3 that the optimal body P
belongs to a certain class (for heights L smaller than about 1.4). Using this conjecture,
we are able to reduce (P) to a one-dimensional variational problem. By deriving the
associated Euler-Lagrange equation, we further reduce the problem to a minimization
problem with two unknowns. These minimization problems could be solved in a few
seconds. Moreover, the results obtained by this method are slightly better than the
results obtained in Section 2, which consolidates the conjecture.

In Section 4 we summarize the results.

2 Discretization by the Infimum of Hyperplanes

Let n ≥ 1 be given. We discretize problem (P) by considering only those functions f ,
which can be written as an infimum over n affine functions. To be precise, let A ∈ R

n×3

be the matrix of coefficients. Then f(A) : Ω → R is defined by

f(A, x, y) = inf
i=1,...,n

fi(A, x, y), (2.1)

where the affine functions fi are given by

fi(A, x, y) = Ai,1 x+Ai,2 y +Ai,3 for i = 1, . . . , n. (2.2)

The function f(A) is concave by definition. Moreover, problem (P) can be approximated
by this discretization, see [Lachand-Robert and Oudet, 2005, Lemma 1] for a similar
result.

In Section 2.1 we derive formulas for J(f) in terms of the coefficients A. Moreover, we
provide the derivatives w.r.t. the coefficients A. We deal with the constraint f(A, x, y) ∈
[0, L] for all (x, y) ∈ Ω in Section 2.2. In Section 2.3 we present a preliminary numerical
result. The refinement of a given solution and further improvements of the implementa-
tion are addressed in Sections 2.4 and 2.5. Finally, the numerical results are presented
in Section 2.6.

2.1 Evaluation of Function Values and Derivatives

In this section we will compute the objective J(f(A)) and the derivative dJ(f(A))/dA
in terms of the coefficients A.

Let us denote by

Di(A) = {(x, y) ∈ Ω̄ : fi(A, x, y) ≥ fj(A, x, y) for all j = 1, . . . , n}
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the dominating region of the function fi. Often we will suppress the dependence of
f , fi and Di on A. The function fi is called active if Di 6= ∅, and strictly active if
µ2(Di) > 0. Here, we denote by µd the d-dimensional Hausdorff measures. For a strictly
active function fi, the set Di is a curvilinear convex polygon (the intersection of a convex
polygon with Ω̄). All straight edges are of the form Di ∩ Dj , whereas the non-straight
edges are of the form Di ∩ ∂Ω. The computation of Di is discussed in Section 2.2.

For the differentiability results, we assume that the discretization is not degenerated.

Assumption 2.1. For all i 6= j we have

µ2(Di ∩Dj) = 0.

Moreover, for pairwise different indices i, j, k we have

µ1(Di ∩Dj ∩Dk) = 0.

The first part of this assumption is equivalent to requiring that all active functions fi are
distinct. Moreover, it implies

J(f) =

n
∑

i=1

µ2(Di)
1

1 +A2
i,1 +A2

i,2

.

In order to compute the derivative of the area of Di with respect to the coefficients A,
we first have a look on the derivative of the area of a polygon P with respect to the
coordinates of its vertices. Let a polygon P with vertices pi = (xi, yi) (in counterclock-
wise orientation), i = 1, . . . ,m be given. Using the shoelace formula we find that the
area µ2(P ) is differentiable w.r.t. the coordinates of the vertices and the coordinate-wise
derivatives are given by

dµ2(P )
dxi

=
1

2
(yi+1 − yi−1) and

dµ2(P )
dyi

=
1

2
(xi−1 − xi+1), (2.3)

where we used the convention x0 = xm, x1 = xm+1 and the same for yi. A simple
calculation shows

dµ2(P )
d(xi, yi)

=
1

2

(

‖pi − pi−1‖ni + ‖pi+1 − pi‖ni+1

)

, (2.4)

where ni is a outer normal vector of the edge ei between pi−1 and pi, see Figure 2.1. In
the case of a degenerate vertex pi = pi+1, we have

dµ2(P )
d(xi, yi)

=
1

2
‖pi − pi−1‖ni and

dµ2(P )
d(xi+1, yi+1)

=
1

2
‖pi+2 − pi+1‖ni+2
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pi

pi−1

pi+1

ei

ei+1ni

ni+1

Figure 2.1: Two adjacent edges of a polygon with their normal vectors and incident
vertices.

since ‖pi − pi+1‖ = 0. Note that the degeneracy of the polygon does not induce a
non-differentiability.

Finally, we give an expression for the directional derivative of the area. Given variations
δpi, i = 1, . . . ,m of the coordinates of the points pi, the variation of µ2(P ) can be
computed as

δµ2(P ) =
1

2

n
∑

i=1

(

‖pi+1 − pi‖n
⊤
i+1 (δpi + δpi+1)

)

. (2.5)

Note that the sum can be understood edge-wise (the ingredients of each summand are
the length of the edge and its outer normal vector) and degenerate edges (i.e., edges with
length 0) do not contribute to the derivative.

Formulas (2.4) and (2.5) remain true if the connection of the points pi−1 and pi is not a
straight edge, but a part of the boundary ∂Ω. In this case, we have to replace ni by the
outer normal vector of Ω in pi. A (tangential) perturbation δpi of pi induces the change
of the area

δµ2(P ) =
1

2
‖pi+1 − pi‖n

⊤
i+1 δpi.

This formula does not contain a contribution related to the boundary arc (pi−1,pi), since
δpi is tangential to the boundary of Ω and hence n⊤

i δpi = 0. Hence, in the generalization
of (2.5) to this case of a curvilinear polygon, we have to sum only over those indices i
such that the edge between pi−1 and pi is a straight edge.

Now we are in the position to prove the key lemma of this section.

Lemma 2.2. The functions µ2(Di) are differentiable w.r.t. A. The partial derivatives
are given by

dµ2(Di)

d(Aj,1, Aj,2, Aj,3)
(δAj,1, δAj,2, δAj,3) = 0

for i 6= j such that µ1(Di∩Dj) = 0 (the dominating regions Di and Dj are not adjacent).
In the case i 6= j and µ1(Di ∩ Dj) > 0 (the intersection of Di and Dj is an edge), we
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have

dµ2(Di)

d(Aj,1, Aj,2, Aj,3)
(δAj,1, δAj,2, δAj,3) =

1

2
‖pi,j−qi,j‖

(δAj,1, δAj,2) (pi,j + qi,j) + 2 δAj,3

(Ai,1 −Aj,1, Ai,2 −Aj,2)ni,j

where pi,j and qi,j are the vertices of the edge between Di and Dj and ni,j is the normal
vector of the edge pointing towards Dj .

Finally we have

dµ2(Di)

d(Ai,1, Ai,2, Ai,3)
(δAi,1, δAi,2, δAi,3) = −

∑

j 6=i
µ1(Di∩Dj)>0

dµ2(Dj)

d(Ai,1, Ai,2, Ai,3)
(δAi,1, δAi,2, δAi,3).

Proof. The above reasoning shows that we have to compute the derivative of the normal
displacements of the vertices of each edge of Di.

Let us consider a small perturbations δA of the coefficients.

Let i be a fixed index and let j be another arbitrary index, such that Di(A) and Dj(A)
share a common edge. This edge is a subset of the line

{

(x, y) ∈ R
2 : (Ai,1 −Aj,1)x+ (Ai,2 −Aj,2) y + (Ai,3 −Aj,3) = 0

}

.

Let us denote the end points of the edge by pj and qj , and let nj be the normal vector
of the edge pointing towards Dj (since i is fixed, we suppress the dependence on i in the
proof).

Due to the regularity assumption, Di(A + δA) and Dj(A + δA) share a common edge
after the perturbation δA. By δpj and δqj we denote the perturbation of the end points
of the edge. In order to apply (2.5), we have to project δpj and δqj on nj . We use the
decompositions δpj = kpj,1nj+k

p
j,2 (pj−qj) and δqj = kqj,1nj+k

q
j,2 (pj−qj). Note that

n
⊤
j (pj − qj) = 0, hence n

⊤
j δpj = kpj,1. We have

(

Ai,1 + δAi,1 − (Aj,1 + δAj,1)
Ai,2 + δAi,2 − (Aj,2 + δAj,2)

)⊤

(pj + δpj) +Ai,3 + δAi,3 − (Aj,3 + δAj,3) = 0.

Ignoring terms of higher order yields

(

δAi,1 − δAj,1
δAi,2 − δAj,2

)⊤

pj +

(

Ai,1 −Aj,1
Ai,2 −Aj,2

)⊤

δpj + δAi,3 − δAj,3 = o(δA).

Using (Ai,1 −Aj,1, Ai,2 −Aj,2) (pj − qj) = 0, we find

(

δAi,1 − δAj,1
δAi,2 − δAj,2

)⊤

pj +

(

Ai,1 −Aj,1
Ai,2 −Aj,2

)⊤

(kpj,1n) + δAi,3 − δAj,3 = o(δA).
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Hence,

kpj,1 = −
(

(

δAi,1 − δAj,1
δAi,2 − δAj,2

)⊤

pj + δAi,3 − δAj,3

)(

(

Ai,1 −Aj,1
Ai,2 −Aj,2

)⊤

n

)−1
+ o(δA).

A similar formula can be obtained for kqj,1. Finally, (2.5) implies

δµ2(Di) =
1

2

∑

j

‖pj − qj‖ (k
p
j,1 + kqj,1) + o(δA)

=
1

2

∑

j

‖pj − qj‖
(δAj,1 − δAi,1, δAj,2 − δAi,2) (pj + qj) + 2 (δAj,3 − δAi,3)

(Ai,1 −Aj,1, Ai,2 −Aj,2)n

+ o(δA),

where we sum over all j such that Di and Dj share an edge. The limit δA → 0 yields
the claim.

Note that also topological changes are possible. Let us consider a vertex p, such that p is
contained in Di for i = 1, . . . , 4, such that D4 = {p} and µ2(Di) > 0 for i = 1, . . . , 3, see
Figure 2.2. Then there are perturbations, which induce a change in the topology, namely

p

D1

D2

D3
D4

D1

D2

D3

Figure 2.2: Topology change: after a small perturbation, the point p becomes the domi-
nating region D4.

f4 becomes strictly active. However, µ2(D4) is only a small-o of the perturbation and the
differentiability result remains valid. Another (differentiable) topology change happens
if again p is contained in Di, i = 1, . . . , 4 and µ2(Di) > 0 for i = 1, . . . , 4. Then, after a
perturbation, the vertex p may become two vertices and an edge. Note that if D1 and
D2 share a common edge and if D3 = D1 ∩D2 (i.e. D3 equals this common edge), then
µ2(D3) is not differentiable. However, this situation is excluded by Assumption 2.1.

This lemma enables us to prove the main result of this section.
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Theorem 2.3. For f(A) given by (2.1), (2.2), we have

dJ(f(A))
d(Ai,1, Ai,2, Ai,3)

= µ2(Di)
−2

(1 +A2
i,1 +A2

i,2)
2





Ai,1
Ai,2
0





+
n
∑

j=1

dµ2(Dj)

d(Ai,1, Ai,2, Ai,3)
1

1 +A2
j,1 +A2

j,2

,

where the derivative of µ2(Di) is given in Lemma 2.2.

[Lachand-Robert and Oudet, 2005, Theorem 1] computed the derivative w.r.t. the co-
efficients Ai,3 in a slightly more general framework. However, in contrast to their im-
plementation, we also use the derivative information w.r.t. Ai,1 and Ai,2. Moreover, we
cannot share their opinion of using the full gradient information is of “little advantage”,
see [Lachand-Robert and Oudet, 2005, p. 372].

2.2 Details of the implementation

In this section we deal with two implementational issues neglected in the previous section:
The treatment of the constraints and the computation of the dominating regions Di as
well as their adjacencies.

First we consider the constraint f(x, y) ≤ L for all (x, y) ∈ Ω. We deal with this
constraint by enforcing f1 to be equal to L. In terms of coefficients, we fix

A1,1 = A1,2 = 0 and A1,3 = L.

The constraint f(x, y) ≥ 0 for all (x, y) ∈ Ω is equivalent to fi(x, y) ≥ 0 for all i = 1, . . . , n
and all (x, y) ∈ Ω. Since fi attains its minimal value at

(x, y) = −
(Ai,1, Ai,2)

‖(Ai,1, Ai,2)‖
,

we find this constraint equivalent to

Ai,3 −
√

A2
i,1 +A2

i,2 ≥ 0 (2.6)

for all i = 1, . . . , n.

It remains to discuss the computation of the dominating regions Di. By definition, we
have

Ai,1 x+Ai,2 y +Ai,3 ≥ Aj,1 x+Aj,2 y +Aj,3 for all (x, y) ∈ Ω
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for all j = 1, . . . , n. This is equivalent to

(xi − x)2 + (yi − y)2 − wi ≤ (xj − x)2 + (yj − y)2 − wj for all (x, y) ∈ Ω (2.7)

for all j, where

xi = Ai,1/2, yi = Ai,2/2, wi = Ai,3 + x2i + y2i ,

see also [Boissonnat et al., 2006, Section 2.3.3]. Hence, Di is the region of points (x, y)
whose power w.r.t. the weighted point (xi, yi, wi), which is defined by the left-hand side
of (2.7), is not greater than the power w.r.t. (xj , yj , wj), j = 1, . . . , n. Therefore, the
computation of the sets Di can be transformed to the problem of computing the power
diagram of the weighted points (xi, yi, wi). Note that the power diagram is a gener-
alization of the Voronoi diagram (set wi = 0 for all i). Moreover, it is the dual of a
weighted Delaunay triangulation (so called regular triangulation). We use the computa-
tional geometry library CGAL to compute this power diagram, see in particular Yvinec
[2012].

2.3 Preliminary numerical results

Using the results from the previous two sections, we are able to implement a basic algo-
rithm. Starting from a random initial guess A, we use Matlab’s optimization function
fmincon to compute a minimizer of J . A possible solution for n = 10 and L = 1 is
shown in Figure 2.3. The computational time was about 1 second.1 Note that only 8
affine functions (including f1 ≡ L) are strictly active, whereas the remaining functions
are inactive.

Figure 2.3: Solution with 8 active functions, and height L = 1.

1All computations were done using a computer with two Intel Xeon Dual Core CPU (4×3.0GHz) with
16GB RAM.
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2.4 Refinement strategies

Given a solution A ∈ R
n×3, one is interested in refining the solution by adding some

degrees of freedom (i.e., by adding additional affine functions). In this section we discuss
two refinement strategies which have been proven to be successful.

Boundary refinement

In Figure 2.3 we see that f attains local maxima on the boundary at those points, which
are incident to an edge. This fact suggests the following refinement strategy.

• Determine all edges (vertices pi, qi) which are adjacent to the boundary. The
vertex incident to the boundary is called pi.

• Construct a new affine function g which satisfies

g(pi) = 0, g((pi + qi)/2) = f(A, (pi + qi)/2), g ≥ 0 on Ω̄.

• Add the coefficients of g to A.

Note that g is unique determined by the three given conditions.

Tangential refinement

In addition to the previous strategy, which only refines near the boundary, we use a
second one refining large interior cells Di:

• Determine all cells Di whose area µ2(Di) is larger than a given threshold.

• Replace the coefficients of the function fi in A by the coefficients of two new affine
functions, such that the cell Di is split tangentially (e.g. through its center of mass)
after the refinement.

2.5 Further improvements

In this section we describe shortly two further improvements which reduce the overall
computational time.
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Exploiting the symmetry

It is to be expected from results known from the literature, see Lachand-Robert and
Peletier [2001], Lachand-Robert and Oudet [2005], that the solution f of (P) has the
same symmetry group as a regular m-sided polygon (i.e., the dihedral group Dm). The
symmetry parameter m depends on the height L and is monotone decreasing in L, see in
particular [Lachand-Robert and Oudet, 2005, Figure 6], [Lachand-Robert and Peletier,
2001, Table 1 and Figure 1]. Given m, we have to carry out the computations only on
1/(2m) of the circle. For the same accuracy, we also need only 1/(2m) of the number of
affine functions. Hence, with the same number of affine functions (and with a comparable
computational time), we can achieve more accurate results, compare Figure 2.4 with
Figure 2.3.

Figure 2.4: Solution with 8 affine functions, symmetry parameter m = 3, and height
L = 1.

Transformation to simple bound constraints

The constraint (2.6) is a nonlinear constraint, which can be handled by typical optimiza-
tion routines. However, the nonlinearity of (2.6) adds an additional difficulty. Introducing
a slack variable si ≤ 0 and substituting Ai,3 in the objective via

Ai,3 =
√

A2
i,1 +A2

i,2 − si

yields an optimization problem with simple bound constraints si ≤ 0 and all nonlinearities
are hidden in the objective. Note that the slack variable si has also a nice geometric
interpretation, it is just the negative of the minimum value of fi on ∂Ω.

2.6 Numerical Results

In this section we present numerical results obtained by using the improvements of the
previous section.
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In Figure 2.5, the optimal shapes are shown. The computational times were between

Figure 2.5: Solutions for L = 0.4 (top left), L = 0.7 (top right), L = 1.0 (bottom left)
and L = 1.5 (bottom right)

2 and 5 minutes and the number of unknowns was below 600. For the values of the
objective function we refer to Table 3.2 and for a comparison with results known from
the literature, we refer to Section 4.

3 The solution in a set of symmetric and

developable bodies

In this section we restrict problem (P) to a smaller class of functions. We will see
that for a height L smaller than about 1.4, we obtain slightly better result than those of
Section 2.6. Hence, it is to be conjectured that the minimizer of (P) for L ∈ {0.4, 0.7, 1.0}
(or more generally for L ∈ (0, L̄) for some L̄ > 0) belongs to this class of functions.

In this section it is more appropriate to speak in terms of the body

P = {(x, y, z) ∈ R
3 : (x, y) ∈ Ω̄, 0 ≤ z ≤ f(x, y)}

12
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instead of the function f .

A similar approach was used in Lachand-Robert and Peletier [2001]. There, the authors
considered bodies whose extremal points lie solely on the lower boundary ∂Ω×{0} or on
the upper boundary N0 × {L} for some N0 ⊂ R

2. They showed that N0 is a regular m-
sided polygon (with m depending on L) which is centered at the origin (0, 0). However,
[Lachand-Robert and Oudet, 2005, Table 1] shows that the minimizers of (P) does not
belong to this class of functions.

In Figure 2.5 we could see that the optimal bodies (for L ≤ 1) have the symmetry group
Dm, see also Section 2.5. Let us define ϕ = π/m. Moreover, for L ≤ 1, the extremal
points of these bodies belong to the set

∂Ω× {0} ∪ {(x, y, z) ∈ R
3 : (x, y) = r

(

cos(2 i ϕ), sin(2 i ϕ)
)

, i = 0, . . . ,m− 1, r ∈ [0, 1]}

Hence, the extremal points lie on the boundary ∂Ω (with height 0) or on the rays with
angles 2 i ϕ, i = 0, . . . ,m− 1.

In order to describe the body P , it is therefore sufficient to choose a concave function
g : [0, 1] → [0, L] satisfying g(0) = L and g(1) = 0. Then, the body P is given as the
convex hull of the points

P = conv
(

∂Ω× {0} ∪ {(r cos(2 i ϕ), r sin(2 i ϕ), g(r)), i = 0, . . . ,m− 1, r ∈ [0, 1]}
)

.

Finally, we could reconstruct the function f by

f(x, y) = sup{z : (x, y, z) ∈ P}.

The expected shape of the optimal body P on 1/(2m) of Ω is depicted in Figure 3.1. The

I

II

IV

III

V

ϕ

ψ

r1 r2

Figure 3.1: Structure of the solution

domain Ω is divided into five regions. In each region it is possible to express f (and P ) in
terms of the function g, see in particular Section 3.2. On the horizontal axis, the height
of P is given by the function g, whereas on the remaining part it is implicitly defined via
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the convex hull. The thin lines in this figure represent (the projections to R
2 of) some

tangent lines, i.e., they are intersections of tangent planes of P with its boundary ∂P .
Note that the outer normal of P is constant on these tangent lines. The body P is flat
in the regions III and V in Figure 3.1.

3.1 Assumptions

We will fix some assumptions on the optimal g in order to compute J in terms of g.

• g ∈ C([0, 1]), g is concave, g(0) = L, and g(1) = 0,

• there are 0 ≤ r1 ≤ r2 ≤ 1 such that

g|[0,r1] ≡ L,

g|[r1,r2] ∈ C2([r1, r2]),

g|[r2,1] ∈ C2([r2, 1]),

• argmax g(r)
1−r cosϕ = {r2} (this implies that the flat region III will touch the x-axis

only at r = r2),

• g′(r2−) = − cos(ϕ) g(r2)
1−r2 cos(ϕ) (this implies that regions III and IV will touch tangen-

tially),

• g′|(r2,T ) is strictly monotone decreasing (this implies that the relation r ↔ α in
region I is one-to-one, see Section 3.2).

The last three assumptions are not restrictive. They rather exclude some artificial cases
and make the analysis a little bit easier.

3.2 Determination of J in terms of g

In this section we compute the contributions of the regions I–V to the objective J . To
this end, we need some longish and tedious geometric computations. Therefore, some of
them are sketched and presented in an abbreviated way.

First, we give a formula for the angle ψ ∈ [0, ϕ]. The angle ψ can be characterized as
the smallest angle α, such that there is a tangent plane of P passing through the points
(r2, 0, g(r2)) and pα = (cos(α), sin(α), 0).

Let such an angle α be given. The tangent plane of P passing through pα is given by

z = Cαn
⊤
α (nα − (x, y)⊤),

14
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for some Cα ≥ 0, where nα = (cos(α), sin(α)). The point (r2, 0, g(r2)) lies on this tangent
plane, whereas all other points (r, 0, g(r)), r ∈ [0, 1] \ {r2} lie below this tangent plane.
This yields

Cα =
g(r2)

1− r2 cos(α)
, and (3.1)

g(r)

1− r cos(α)
≤

g(r2)

1− r2 cos(α)
for all r ∈ [0, 1].

Since g is positive, decreasing and concave and r 7→ 1/(1−r cos(α)) is positive, increasing
and concave, the product function is concave. Therefore, 0 belongs to the superdifferential
of r 7→ g(r)/(1− r cos(α)) at r2. Hence,

0 ∈
[g′(r2+), g′(r2−)]

1− r2 cos(α)
+

g(r2) cos(α)

(1− r2 cos(α))2
.

The smallest α, such that this condition is satisfied is characterized by ψ ∈ [0, ϕ] and

cos(ψ) =
−g′(r2+)

g(r2)− r2 g′(r2+)
.

Note that in the case g′(r2−) = g′(r2+), we have ψ = ϕ.

Region I

We show that there is a one-to-one relation between r ∈ [r2, 1] and α(r) ∈ [0, ψ], such
that the there is a tangent plane of our body P which touches in the points (r2, 0, g(r2))
and pα(r) = (cos(α(r)), sin(α(r)), 0).

The tangent plane through pα(r) and above ∂Ω× {0} is of the form

z = Cα(r)n
⊤
α(r) (nα(r) − (x, y)⊤)

where nα(r) = (cos(α(r)), sin(α(r)))⊤ and Cα(r) > 0. The constant Cα(r) and the touch-
ing point r are determined by the requirement that the points (s, 0, g(s)) lie below this
tangent plane:

g(s) ≤ Cα(r)n
⊤
α(r) (nα(s) − (r, 0)⊤) for all s ∈ [0, 1],

where equality holds for s = r. This yields

r = argmax
s∈[0,1]

g(s)

1− s cos(α(s))
,

Cα(r) = max
s∈[0,1]

g(s)

1− s cos(α(s))
=

g(r)

1− r cos(α(r))
.

15
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Hence, we have (for r = r2, we use the convention g′(r) = g′(r2+), and similarly for the
second derivative)

cos(α(r)) =
−g′(r)

g(r)− r g′(r)
.

In order to compute the contribution to the objective, we consider a small area dA, see
Figure 3.3. Using the shoelace formula, we can compute the size of dA. Up to higher

r r + dr

α+ dα

α

dA

Figure 3.2: A small part dA of region I.

order terms, we find

dA =
1

2

[d sin(α(r))

dr

(

cos(α(r))− r
)

− sin(α(r))
(d cos(α(r))

dr
+ 1

)]

dr.

A simple calculation shows

sin(α(r)) =
√

1− cos(α(r))2,

d cos(α(r))

dr
=

−g′′(r) g(r)

(g(r)− r g′(r))2
,

d sin(α(r))

dr
= − cot(α(r))

d cos(α(r))

dr
.

The integrand on dA is given by (note that the gradient of f equals Cα(r)nα(r) on dA)

1

1 + (Cα(r))2
=

1

1 + (g(r)− r g′(r))2

Finally, we arrive at

J1 =
1

2

∫

1

r2

d sin(α(r))
dr

(

cos(α(r))− r
)

− sin(α(r))
(

d cos(α(r))
dr

+ 1
)

1 +
(

g(r)− r g′(r)
)2 dr

Since g is assumed to be twice continuously differentiable on [r2, 1], it satisfies the as-
sociated Euler-Lagrange-Equation (ELE). Since g′′ enters the integrand (affine) linearly,
the ELE is an ordinary differential equation of second order.

16
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Region II

Let an angle α ∈ [ψ, ϕ] be given. In order to compute the contribution to the objective,

r2

α+ dα

α

dA

Figure 3.3: A small part dA of region II.

we consider a small part of the area dA. We find (up to higher order terms) dA =
(1 − r2 cos(α))/2. The integrand can be obtained similarly to region I (see also (3.1))
and we arrive at

J2 =
1

2

∫ ϕ

ψ

1− r2 cos(α)

1 + (g(r2)/(1− r2 cos(α))2
dα

Region III

In this region, the function f is affine. Hence, the gradient is constant and the contribu-
tion to the objective can be computed as

J3 =
1

2

r2 sin(ϕ) (1− r2 cos(ϕ))

1 +
(

g(r2)/(1− r2 cos(ϕ))
)2 .

Region IV

On this region, the body P is given as the convex hull of the points

{(r, 0, g(r)) : r ∈ [r1, r2]} ∪ {(r cos(2ϕ), r sin(2ϕ), g(r) : r ∈ [r1, r2]}.

Similar to regions I and II, one can express the contribution to the objective as an integral
over r ∈ [r1, r2]. One obtains

J4 =
1

2
sin(2ϕ) cos2(ϕ)

∫ r2

r1

r

cos2(ϕ) + g′(r)2
dr

Similar as for region I, we know that the optimal function g satisfies the associated Euler-
Lagrange-Equation (ELE). Again, the ELE is an ordinary differential equation of second
order.

17
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Region V

On this region, the gradient of f equals 0 and we obtain

J5 =
1

2
r21 cos(ϕ) sin(ϕ).

3.3 Algorithm

Using the results from the previous section, we find

J(f(P )) = 2m (J1 + J2 + J3 + J4 + J5).

In order to find the optimal g, we propose the following strategy.

(i) Choose two parameters g′(1) < 0 and R2 ∈ [0, 1].

(ii) Integrate (backwards in time) the ELE from region I, until

r = R2 or
−g′(r)

g(r)− r g′(r)
= cos(ϕ)

is satisfied.

(iii) Set r2 = r and g′(r2−) = − cos(ϕ) g(r2)
1−r2 cos(ϕ) .

(iv) Integrate (backwards in time) the ELE from region IV until

r = 0 or f(r) = L

is satisfied and set r1 = r.

(v) Compute the value of the objective

J(f(P )) = 2m (J1 + J2 + J3 + J4 + J5).

Hence, the optimization problem is reduced to a problem with two real parameters g′(1)
and R2. Furthermore, in the cases L ≤ 0.9 or L ≥ 1.3, the integration of the ELE from
region I in step (ii) is stopped due to the second condition and hence, the parameter R2

is not used. Hence, we have to optimize only w.r.t. g′(1) in these cases.

The evaluation of J in terms of the two parameters g′(1) and R2 takes only about 0.05
seconds. Hence, the optimization w.r.t. these parameters can be done easily, e.g. via a
simple bisection.

18
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L m g′(−1) R2 J

1.0 3 -3.380 0.638 1.137751
0.7 4 -2.581 1.545461
0.4 4 -1.928 2.100331

Table 3.1: Optimized values for g′(−1) and R2 for different values of the height L.

3.4 Numerical results

In this section we present the results obtained by the algorithm described in Section 3.3.
The optimized values for g′(−1) and R2 are shown in Table 3.1. The associated bodies
are shown in Figure 3.4. Finally, we compare the values of the objective obtained in
[Lachand-Robert and Oudet, 2005, Table 1] with those obtained of Section 2 and Section 3
in Table 3.2.

L literature Section 2 Section 3
1.5 0.7012 0.699923
1.0 1.1379 1.137781 1.137751
0.7 1.5457 1.545487 1.545461
0.4 2.1006 2.099645 2.099606

Table 3.2: Comparison of the optimal values of J , which are known from [Lachand-Robert
and Oudet, 2005, Table 1] (left column), obtained in Section 2 (middle column)
and in Section 3 (right column).

4 Summary

In this paper we proposed two different numerical methods for Newton’s problem of
finding a concave function of least resistance.

In Section 2 we discretized a concave function by the infimum of a finite number of
affine functions. Using the gradient of the objective w.r.t. the coefficients of the affine
functions in an optimization solver together with reasonable refinement strategies yields
an efficient algorithm. In a couple of minutes we are able to obtain slightly better results
than Lachand-Robert and Oudet [2005]. Note that Lachand-Robert and Oudet [2005]
does not report computational times. However, since their method includes a genetic
algorithm, it is to be expected that their computational times are much larger. Moreover,
for L = 0.4 we found that a body with symmetry group D7 is better than the solution
of Lachand-Robert and Oudet [2005], which has the symmetry group D6.

From the results obtained in Section 2 we conjecture that the optimal body (for L ∈
(0, L0), for some L0 > 0) belongs to a certain class, see Section 3. Exploiting the
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Figure 3.4: The optimal shapes determined by the algorithm of Section 3, for L = 0.4
(top left), L = 0.7 (top right), and L = 1.0 (bottom).

structure of this class of functions, Newton’s problem could be reduced to a variational
problem in R

1. We are able to set up an algorithm which computes the optimal body in
a few seconds. Moreover, the objective values are a little bit smaller than those obtained
in Section 2. This consolidates the conjecture that the optimal body indeed belongs to
the considered class of functions.

Further numerical experiments suggest that the optimal body belongs to the class con-
sidered in Section 3 if and only if this body has the symmetry group Dn with n ≥ 3.
Moreover, the transition of the symmetry group from D2 to D3 happens for L between
1.4 and 1.5.

More results for various heights L are given in Table 4.1. For m = 2 and L = 1.4 we
obtain the objective value 0.773696 using the algorithm of Section 2, which is worse than
the value obtained with m = 3. Similar to the results in Lachand-Robert and Peletier
[2001], the optimal value of m seems to be monotone decreasing in dependence of L.
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L\m 3 4 5 6 7 8

1.5 0.6999493
1.4 0.7677364 0.7792766
1.3 0.8441426 0.8544164
1.2 0.9303614 0.9387926
1.1 1.027729 1.033598
1.0 1.137751 1.140152
0.9 1.261989 1.259905 1.265067
0.8 1.402272 1.394439 1.397488
0.7 1.560453 1.545461 1.545781
0.6 1.714798 1.711683 1.712854
0.5 1.897056 1.896107 1.896892
0.4 2.100331 2.099606 2.099854

Table 4.1: Comparison of the optimal values of J for different values of the height L and
the symmetry m obtained by the algorithm described in Section 3. Bold values
highlight the optimal symmetry for given height L. Blank entries means that
the value was not computed.

Hence, the symmetry Dm is optimal for M̂m ≤ L ≤ M̂m+1, with M̂m given by

1.4 ≤ M̂3 ≤ 1.5, M3 ≈ 1.179535875,

0.9 ≤ M̂4 ≤ 1.0, M4 ≈ 0.754344515,

0.6 ≤ M̂5 ≤ 0.7, M5 ≈ 0.561232469,

0.5 ≤ M̂6 ≤ 0.6, M6 ≈ 0.447571675,

0.4 ≤ M̂7 ≤ 0.5, M7 ≈ 0.372163842.

Note that the values M̂m are significantly larger than Mm, which have same meaning
for the solution in the class of developable functions, see [Lachand-Robert and Peletier,
2001, Table 1].

The structure of the solution in the case m = 2 remains an open question.
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