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Critical comments on the complexity of computational systems and the basic singularly perturbed (SP) concepts are given. A class
of several complex SP nonlinear elliptic equations arising in various branches of science, technology, and engineering is presented.
A classification of complex SP nonlinear PDEs with characteristic boundary value problems is described. A modified explicit
preconditioned conjugate gradient method based on explicit inverse preconditioners is presented. +e numerical solution of a
characteristic 3D SP nonlinear parabolic model is analytically given and numerical results for several model problems are
presented demonstrating both applicability and efficiency of the new computational methods.

1. Introduction

1.1. Complexity of Computational Systems. A wide spectrum
of complex computational problems can be found in
computer science and information management, as well as
in different disciplinary fields, such as applied mathematics,
engineering, business, finance, medicine, computational
biology, social networks, transportation, telecommunica-
tions, education, government, and healthcare.

In recent times, complex systems of all types, like web-
based systems, cloud infrastructures and big data centres,
social networks, peer-to-peer, mobile and wireless systems,
cyber-physical systems, the Internet of things, and real-time
and embedded systems, have increasingly distributed, and
dynamic system architectures providing high flexibility also
increase the complexity of managing end-to-end application
performance.

1.2. Singular Perturbation Problems. Singular perturbation
(SP) problem in computer mathematics is a computational
problem containing small parameters that cannot be ap-
proximated by setting the parameter values to zero; that is, the

problem solution cannot be uniformly approximated by as-
ymptotic expansions. +e term singular perturbation was in-
troduced in the 1940s by Wasow [1], and SP problems are
generally characterized by dynamics operating on multiple
scales.

Basic SP methods include the method of matched asymp-
totic expansions, the Poincaré–Lindsted method, the method of
multiple scales and periodic averaging, and the WKB approx-
imation for spatial problems [2–5]. Numerical techniques for
solving nonlinear elliptic SP problems have been developed in
several branches of science, technology, and engineering.

1.3. Topics of Various SP Problems. Topics of various prob-
lems are raised in several mathematical models in mathe-
matical physics, optimization, and economic, where nonlinear
PDEs of elliptic type arise almost in every scientific field.
Solutions of such equations occur in diverse fields of math-
ematics, such as functional analysis, algebraic topology, dif-
ferential geometry, variational calculus, and potential theory,
while SP problems can occur in various areas of applied
mathematics and engineering, i.e., fluid dynamics, fluid me-
chanics, quantum mechanics, magnetohydrodynamics,
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elasticity, chemical reactor theory, and reaction-diffusion
processes. +e topics of boundary-layer theory and approxi-
mation of solutions of various computational problems, where
SP parameters (large or small) exist in complex solutions, and
other critical problems require their analyses of asymptotic
methods.

+e asymptotic analysis for differential operators refers to
operative perturbations over (very) narrow regions across de-
pendent variables with very rapid chances, and the small pa-
rameters multiply the highest derivatives. +ese are usually
referred very difficult for numerical solving, such as boundary
layers in fluid mechanics, skin layers in electrical applications,
shock layers in fluid and solid mechanics, transition points in
quantummechanics, Stokes lines, and surfaces.+e terminology
boundary layer has been introduced by Prandl [6], and since
then, several 2D nonlinear SP problems remain unsolved [7].

During the last decades, several approximate methods for
analysing nonlinear SP problems have been developed in-
cluding the boundary-layer method, the method of averaging,
the method of matched asymptotic expansion, and multiple
scales, while a class of SP nonlinear boundary value problems
for ODEs, the reaction-diffusion equations [8], the shock layer
solution of nonlinear equations for SP problems, and prob-
lems of atmospheric physics [9] have been also developed.

+e numerical solution of SP elliptic PDEs plays an im-
portant role in computational fluid dynamics for the simu-
lation of flow problems [10, 11], but the derivation of
computational discretization schemes appropriate for all types
of linear and nonlinear SP elliptic equations is still an open
problem. Note that the SP problems can be classified in nu-
merical and asymptotic problems. Numerical analysis pro-
vides quantitative information about the given problem, while
asymptotic analysis provides elements of quantitative behavior
of classes of problems by giving semiquantitative information
about any particular member of this class of problems.

In this research work, a modified version of the explicit
adaptable preconditioned conjugate gradient method based
on a new explicit inverse preconditioner is presented. +e
application of the new adaptable modified explicit pre-
conditioned method, based on the new explicit pre-
conditioner, leads to faster numerical solution of singular
perturbed parabolic differential equations, especially in the
case of three space variable problems. Note that proposed
methods based on EPCG and inverse preconditioners by
choosing the appropriate preconditioner lead to more
accurate numerical solution methods than these with no
preconditioner for solving distinct complex inverse
problems. +e usage of such powerful explicit inverse
preconditioner, in the case that the original coefficient
matrix of the given discretized partial differential equation
is a nonsingular (m × n) nonsymmetric matrix of irregular
structure, for solving complex computational problems,
yields efficient solutions of 3D singular perturbation time-
dependent differential equations.

2. Classification of SP Nonlinear PDEs

Many physical phenomena in science and engineering can be
modelled as boundary value problems associated with various

types of PDEs or systems of PDEs. During the solution of
these models, the important qualities can be retained by
omitting negligible quantities involving (very) small param-
eters. A class of several complex SP nonlinear elliptic equa-
tions arising in various branches of science, technology, and
engineering has been recently presented [12]. For the ap-
plication point of view such models include the following
physical phenomena: nonlinear waves arising in gas dy-
namics, water waves, flood waves in rivers, transport of
pollutants, chemical reactions, traffic flow, chromatography,
and various biological and ecological systems.

+ese classes of applications contain nonlinear elliptic/
parabolic equations with singular perturbation, such as the
following characteristic equations:

(i) Reference [13] considered the problem arising in the
study of reaction-diffusion systems with chemical or
biological motivation:

−ε2Δu + u � up, u> 0 in Ω,

θ
zu

zθ
( ) � 0 on zΩ,

(1)

where Ω is the bounded domain in Rn with smooth
boundary zΩ, ϑ denotes the unit outer normal at
zΩ, and p ∈ (1, (n + 2)/(n− 2)).

(ii) +e standing waves of the nonlinear Schrodinger
equation are considered by [14]

−ε2Δu + V(x)u � up, u> 0 in Rn, u> 0,
u ∈W1,2 R

n( ), (2)

where p> 1 is subcritical and V is the smooth
bounded potential.

(iii) A basic model is the system, according to [15],
which models the densities of a chemical activatorU
and an inhibitor V and is used to describe exper-
iments of regeneration of hydra:

Ut � d1ΔU−U +
UP

Vq
in Ω ×(0,+∞),

Vt � d2ΔV−V +
Ur

Vs
in Ω ×(0,+∞),

zU

zθ
�
zV

zθ
,

(3)

where d1, d2, p, q, r, s> 0, with the constraints
0< ((p− 1)/q)< (r/(s + 1)).

(iv) Nerve impulse application concerns the following
nonlinear elliptic singular perturbation equation:

−ε2Δu + f(u) + εcv � 0 in Ω,
Δu + v− u � 0 in Ω,

zvu � zuv on zΩ,
(4)

on the smooth bounded domain Ω. +e perturba-
tion parameter ε is positive and small.
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Note that considerable research work in special topics of
SP nonlinear differential equations has been recently pre-
sented [16–26].

Conclusively, it is stated that a wide variety of important
problems in science and engineering have been formulated
in terms of nonlinear elliptic SP PDEs, which model non-
linear waves, arising in gas dynamics, water waves, chemical
reactions, transport of pollutants, flood waves in rivers,
chromatography, traffic flow, and a wide range of biological
and ecological systems.

2.1. SP Nonlinear Parabolic/Elliptic Differential Equations.
SP parabolic first BV problems have been discussed by
several researchers [27–29]. Various convection diffusion
problems governed by second-order semilinear parabolic/
elliptic equations with small parameters multiplying the
second-order space derivatives subject to mixed types pre-
scribed parabolic boundaries of the domains of the problems
trying to determine how close the obtained approximate
solution is to the actual solution of the problem [30, 31].

+e differential equations

zui
zt
� Kiz

2ui + O
∗ t, x, u1, u2, . . . , un( ), i � 1, 2, . . . , n,

(5)
when K≥ 0, which is sufficiently small, then the corre-
sponding BV problem is a singular perturbation problem
which arises in electrochemistry [32].

+e area of SP is a field of increasing interest to applied
mathematicians and computer mathematics scientists.
During the last decades, considerable contributions on the
topic and its applications have been made by several re-
searchers [1, 32–41]. Note that considerable research work in
special topics of SP nonlinear differential equations has been
recently presented [16–21].

Conclusively, it is stated that a wide variety of important
problems in science and engineering has been formulated in
terms of nonlinear elliptic SP PDEs, which model nonlinear
waves, arising in gas dynamics, water waves, chemical re-
actions, transport of pollutants, flood waves in rivers,
chromatography, traffic flow, and a wide range of biological
and ecological systems.

2.2. SolvingComplex SPNonlinearProblems: RecentAdvances
on Special Topics. Singular perturbation theory concerns the
study of problem featuring parameters for which the so-
lutions of problems at a limiting value of parameters are
different in character from the limit of solutions of the
general problem, i.e., the limit is singular. In contrast, for
regular perturbation problems, the solutions of the general
problem converge to solutions of the limit problem as the
parameters approaches the limit values. Singular pertur-
bation problems occur in a wide spectrum contexts, areas of
applied mathematics, science and engineering, such as fluid
mechanics (boundary-layer problems), elasticity (edge effort
in shells), and quantum mechanics [19, 42–54].

Perturbation theory is a collection of methods for
obtaining approximate solutions to problems involving
small parameters ε. +ese methods are very powerful; thus
sometimes it is actually advisable to introduce a parameter ε
temporarily into a difficult problem having no small pa-
rameter, and then finally to set ε � 1 to recover the original
problem. +e approach of perturbation theory is to de-
compose a difficult problem into a (infinite) number of
relatively easy ones. +e perturbation theory is most useful
when the first few steps reveal the important features of the
solution and the remaining ones give small corrections.
Perturbation solutions can be classified into two types. A
basic feature of regular perturbation problems is that the
exact solution for small but nonzero ε smoothly approaches
the unperturbed solution as ε⟶ 0. A singular perturbation
problem is defined as the one whose solution for ε � 0 is
fundamentally different in character from the “neighbour-
ing” solutions obtained in the limit ε⟶ 0 [53, 55–64].

Singular perturbation theory concerns the study of
problems featuring parameters for which the solutions of
problems at a limiting value of parameters are different in
character from the limit of solutions of the general problem;
that is, the limit is singular. In contrast, for regular per-
turbation problems, the solutions of the general problem
converge to solutions of the limit problem as the parameters
approach the limit values.

+e computational singular perturbation (CSP) method
[65] is a commonly used method for finding approximations
of slow manifolds in systems of ordinary differential
equations (ODEs) with multiple time scales. +e validity of
the CSP method was established for fast-slow systems with a
small parameter [42, 44, 46, 52–54, 61, 66, 67].

3. Numerical Solution of a 3D SP Nonlinear
Parabolic Model

Let us consider the general SP quadratically nonlinear el-
liptic Dirichlet problem:

εΔu � A(x, u)(∇u,∇u) + B(x, u)∇u + C(x, u), x ∈ Ω,
u(x, ε) � f(x) for x on Γ,

(6)
where Ω is an open and bounded set in Euclidean n-space
En; Γ is the boundary of Ω; and A, C, a, f, and B are
smooth functions, while the parameter ε is a very small,
positive number [68].

Let us consider a class of singular perturbation (SP)
nonlinear parabolic partial differential equation (PDE) in
three space dimensions of the form:

zu

zt
( )εspΔu(x, y, z, t) � en, εsp⟶ 0+,

(x, y, z) ∈ R and t≥ 0,
(7)

where Δ is the operator (Δ ≡ ((z/zx), (z/zy), (z/zz))); εsp is
the real SP parameter; c and β are the real parameters; and t
is the time, subject to the boundary conditions
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u(x, y, z, t) � a, t> 0, (x, y, z) ∈ zR, (8)

and the initial conditions

u(x, y, z, 0) � g(x, y, z), 0≤x, y, z≤ c. (9)

�e nonlinear PDE can be solved, after the FD/FE
discretization by a linearized inner-outer iterative scheme,
where the outer iteration is carried out by a Newton iteration
of the form

h2

εs
[ ] 1

Δt− e
u(k)[ ]u(k+1)i,j − Lhu

(k+1)
i,j

�
h2

εs
[ ] eu(k)

Δt + 1− u(k)[ ]eu(k)[ ],
(10)

where Lh is the discretized differential operator. �e
backwards difference process can be used for the dis-
cretization of time.

�e resulting nonlinear system is

Aku
(k+1)

� s u(k)[ ], k> 0. (11)

�e inner iterative scheme can be performed by using an
explicit preconditioned conjugate gradient method with
termination criterion:

ri
���� ����∞< 10−4, (12)

while the outer iteration termination criterion was chosen as

maxj∈[1,n]
u(k+1)j − u(k)j[ ]
1 + u(k)j[ ]

  < 10−5. (13)

Note that m and p are the semibandwidths of the co-
efficient matrix; l1 and l2 are the width parameters in
semibandwidthsm and p, respectively; r1 and r2 are the fill-in
parameters in semibandwidthsm and p, respectively; and δli
are the so-called “retention” parameters; that is, the number
of diagonals retained in approximate inverse matrix [69].
For the numerical experimentation, the values of the fill-in
parameters were chosen as r1 � r2 � 2 and the width pa-
rameters were chosen as l1 � l2 � 3.

4. Modified Explicit Preconditioned Conjugate
Gradient Method

Let us assume that the coefficient matrix in Section 1.3 is in
general a large nonsingular real unsymmetric matrix of
semibandwiths m and p, respectively, retaining nonzero
elements in widths l1 and l2 retaining r1 and r2 fill-in terms,
respectively. �e coefficient matrix A is considered to be a
banded matrix of irregular structure. Let us also consider
that there is a class of approximate inverses of A, withM the
exact inverse of A [69].

�en, the following subclasses of approximate inverses,
depending on the accuracy, storage, and computational
work requirements, can be derived as it is shown in (14):

Subclass I Subclass II Subclass III Subclass IV

δl
1
,δl

2

r
1
=m–1,r

2
=p–1M

δl
1
,δl

2

r
1
,r

2
M

δl
1
,δl

2

r
1
=m–1,r

2
=p–1MS δl

1
,δl

2

r
1
,r

2
M∗A−1

 ≡ M  ≡ M∗

(14)
where MSδl1,δl2

r1�m−1,r2�p−1 of subclass I is a banded form of the
exact inverse retaining δl1 and δl2 elements along each row
and column, respectively, while its elements are equal to the
corresponding elements of the exact inverse. �e term

MSδl1,δl2
r1�m−1,r2�p−1 of subclass II is a banded form ofM, retaining

only δl1 and δl2 elements along each row and column during
the computational procedure of the approximate inverse, and
under certain hypotheses, it can be considered as a good
approximation of the original inverse, while the entries of the
approximate inverse in subclass III have been retained after
computing M∗(r1 <m− 1 and r2 <p− 1) and are less ac-
curate than the corresponding entries ofM∗

δl1,δl2
r1 ,r2 . Finally, in

subclass IV, the elements of the approximate inverse can be
computed [70–72].

�e SP nonlinear parabolic system can be solved by
using an inner-outer iterative scheme. In this section, a
modified explicit preconditioned conjugate gradient method
is presented.

4.1. Adaptive Preconditioned Conjugate Gradient Method
Using the Explicit Approximate Preconditioner. �e PCG
method can solve the problem min||b−AR−1 x||, where R is
the sparse, nonsingular QR factor, while the precondi-
tioned CGLS method can solve the following equations:
M � RTR, R−TATAR−1 u � R−TATb, and u � Rx. In order
to compute efficiently the solution of the linear system
Ax � b, a modified explicit preconditioned conjugate
gradient (mEPCG) method is applied in the format of
Algorithm 1.

�is algorithm requires the additional work that is
needed to solve the linear system

εPM
∗r̃n � rn, (15)

once per iteration. �erefore, the preconditioner (εP M
∗)

should be chosen such that the process can be done easily
and efficiently.

�e preconditioner (εP M
∗) � G that results in a

minimal memory use. �e storage requirement was the
vectors r, x, y, and p and the upper triangular matrix G, in
the data implementation. �e convergence rate of pre-
conditioned CG is independent of the order of equations,
and the matrix vector products are orthogonal and in-
dependent. �e preconditioned CG method in not self-
correcting and the numerical errors accumulate every it-
eration. �erefore, to minimize the numerical errors in the
PCG, double precision variables were used at the cost of
memory usage. An explicit PCG method of second order
can be alternatively used in conjunction with the explicit
approximate inverse M∗μ for solving complex computa-
tional problems with the appropriate selection of the it-
erative parameters [71].
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5. Numerical Results

Let us consider a characteristic singular perturbation (SP)
nonlinear parabolic PDE in three space dimensions in a
predetermined region. +e FE discretization of this problem
leads to the solution of a nonlinear system, where the co-
efficient matrix is a nonsingular, large sparse nonsymmetric
(n × n) matrix of irregular structure [73]. In order to
demonstrate both capabilities and efficiency of the proposed
methods, a model problem has been selected and corre-
sponding numerical results are indicatively presented.

Two hybrid inner-outer iterative methods have been
considered, i.e., the Newton-mEPCG method, with inner
iteration the modified explicit preconditioned conjugate
gradient (mEPCG) method, and the Newton-EPBICG-
STAB method, with inner iteration the explicit precondi-
tioned biconjugate conjugate gradient (EPBICG-STAB)
method.

+e convergence behavior of Newton (outer iteration)
and mEPCG/EPBICG-STAB (inner iteration) is shown in
Tables 1–4 and Figures 1 and 2 for a model problem of
n� 3375, m � 26, and p � 226, with several values of SP
parameter εS, selected values of time step Δt, and several
values of retention parameters δl.

+e explicit preconditioned biconjugate conjugate
gradient-STAB (EPBICG-STAB) method and variants have
been presented in related research works [73, 74]. It should
be noted that the explicit preconditioning methods and
explicit approximate inverse combined with appropriate
preconditioners can be applied in a wider application fields
in applied and computer mathematics, while explicit ap-
proximate inverses can be combined with multigrid
methods and other related hybrid computational techniques.

6. Conclusions

Basic elements of complexity and singularly perturbed
concepts have been discussed. A classification of complex SP

nonlinear elliptic equations arising in various branches of
science and engineering in the form of a two-decade survey
has been presented.

Purpose: a modified PCG method is used for solving a given system of linear equations
Input: A is a symmetric and positive definite coefficient matrix, b is the right-hand side vector, tol is the predermined tolerance, x0 is
the initial guess, εP is a SP-inverse parameter, and M∗ is the required inverse preconditioner
Output: x the solution vector.
Computational Procedure
Step 1: given x0, εP SP-inverse parameter, inverse preconditioner M∗

Step 2: set r0 � A∗ x0 − b
Step 3: solve εPM

∗y0 � r0, for y0
Step 4: set p0 � −y0, k � 0
Step 5: while rk ≠ 0
Step 6: compute a step length ak � (r

T
k ∗yk)/(pTkA∗pk)

Step 7: update the approximate solution xk+1 � xk + ak ∗pk
Step 8: update the residual rk+1 � rk + ak ∗A∗pk
Step 9: solve (εPM

∗) · yk+1 � rk+1
Step 10: compute a gradient correction factor βk+1 � (r

T
k+1 ∗yk+1)/(rTk ∗yk)

Step 11: set the new search direction pk+1 � −yk+1 + βk+1 ∗pk
Step 12: κ � κ + 1
Step 13: end (while)

ALGORITHM 1: mEPCG (A, b, tol, x0, εP,M
∗, x).

Table 1:+e convergence behavior of Newton-mEPCGmethod for
solving the given nonlinear problem (time step Δt � 0.010).

Inner
iterations

(method mEPCG) Δt Outer iterations
(method Newton)

εS 1 m p

1.00 49 42 34
0.010

6
0.10 98 96 81 16
0.01 333 369 342 93

Table 2: +e convergence behavior of Newton-EPBICG-STAB
method for solving the given nonlinear problem (time stepΔt� 0.010).

Inner iterations
(method

EPBICG-STAB) Δt
Outer iterations

(method
Newton)

εS 1 m p

1.00 28 28 22
0.01

6
0.10 64 63 52 16
0.01 243 252 234 93

Table 3: +e convergence behavior of Newton−mEPCG method
for solving the given nonlinear problem (time step Δt� 0.005).

Inner
iterations

(method mEPCG) Δt Outer iterations
(method Newton)

εS 1 m p

1.00 57 50 42
0.005

7
0.10 129 131 114 25
0.01 527 594 557 165

Modelling and Simulation in Engineering 5



A modified explicit preconditioned conjugate gradi-
ent method based on explicit inverse preconditioners is
introduced for solving complex nonlinear parabolic prob-
lems.�e numerical solution of a characteristic SP nonlinear
initial/boundary value is presented, and numerical results
demonstrating both applicability and effectiveness of the
derived new methods are given. Future research work is
planned towards the implementation of the new compu-
tational methods in parallel computer environments.

Data Availability

�e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 2: Inner iterations (methods mEPCG (a) and EPBICG-STAB (b)) of the hybrid schemes Newton-mEPCG and Newton-EPBICG-
STAB with Δt � 0.005.

Table 4: �e convergence behavior of Newton-EPBICG-STAB method for solving the given nonlinear problem (time step Δt � 0.005).

Inner iterations (method EPBICG-STAB)
Δt

Outer iterations
(method
Newton)εS 1 m p

1.00 36 32 26
0.005

7
0.10 87 85 77 25
0.01 382 404 338 165
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Figure 1: Inner iterations (methods mEPCG (a) and EPBICG-STAB (b)) of the hybrid schemes Newton-mEPCG and Newton-EPBICG-
STAB with Δt � 0.01.
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