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CHAPTER 1
INTRODUCTION

The quest for the second and higher approximations to the
laninar boundary layer over a finite flat plate immersed in an
incompressible viscous fluid has been accompanied by considerable
controversy. It has been and is the cause of extensive analytical
and numerical efforts. The controversy arose anew about 1969 when
Stewartson (1969), and separately Messiter (1970), derived a rational,
consistent expansion procedure for the neighborhood of the trailing
edge, Their analyses predict that the second order term in the
Reynolds number expansion for the drag of the plate is O(R'7/8). The
Reynolds number is based on the plate length, L, freestream velocity,
Uos and kinematic viscosity, v. A numerical solution to the funda-
mental problem of the trailing edge is required to determine the
multiplicative constant appearing in this term.

It is the purpose of this dissertation to present the results
of numerical computations which clearly demonstrate that a physically
acceptable numerical solution to the fundamental probloem of the
traliling edge exists and determines the constants which are required
to complete Stewartson's (1969) analysis,

The controversy concerns the streamwise extent of the region

influenced by the change in boundary conditions at the trailing edge.
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As pointed out by all the current authors concerned with this problem,
the assumptions on which the boundary-layer equations are baéed fail
in a neighborhood of the trailing edge of O(R'ala). The Navier Stokes
equations must be applied in this region and its relevance is not the
cause for the controversy, If this 0(R'3/4) region were the entire
streamwise extent of the influence of the trailing edge, as contended
by some authors, the second-order term in the drag equation is O(R'l),
as shown by Imai (1957). The O(R'ala) region contributes a still
higher-order term, O(R'S/a). However, the basic hypothesis of the
triple-deck analyses of Stewartson (1969) and Messiter (1970) that
leads to a consistent description of the flow fleld is that the
streamvwise region influenced by the trailing edge is 0(R'3/8). This
larger region produces a term of 0(R”7/8) in the finite flat plate
drag equationj thus it intervenes to become second-order in the
expansion of Imal (1957). This larger region also produces a term
O(R'l), as well as higher fractional-order terms, that will modify
the constant derived by Imai (1957) who considered the displacement
effect of the boundary layer over the semi-infinite flat plate using
a momentum balance applied on a large circle centered on the leading
edge., A review of Imai's analysis and several additional analyses
based on inverse half-power Reynolds number expansions, as well as
the additional controversy concerning the multiplicative constant
wvhich appears in the R"'l term, are contained In Van Dyke's (1964)
book, The various values of the constant'are: 4,12 (Kuo (1953)),
2.326 (Imai (1957)), and 5.3 (Van Dyke (1964)). Van Dyke proposes
that the tralling-edge region can contribute only a third~order

3/2

term, proportional to R™°/“, to the drag equation since it is



sheltered by a relatively thick boundary layer, whereas the leading
edge is exposed to the free stream,

The controversy is resolved by the present numerical solution
to the fundamental problem of the trailing edge, a boundary-layer
equation coupled to a Cauchy integral through the boundary condition
at the outer edge. The numerical integration of the skin friction

completely determines, to second=order, the drag on the plate, Thus

d
C D 1.328 2 (1)

- = * ’ L] L d L] ;

1/2p U2 L pl/2 - p//8

the leading term coming from Blasius' solution to the boundary=-layer
equations, the numerical factor being determined by Goldstein (1930)
who elucidated the double structure of the near wake in the same paper
using the notion of matched asymptotic expansions, In the above
equation, D is the drag due to one side of the plate and p is the
constant viscosity of the flow., In the present study the constant dj
was found to be 2.694., The drag predicted by Equation (1) with this
value of dy has been compared with the drag from the numerical solu-
tions to the Navier=Stokes equations of Dennis (1973), Dennis and
Chang (1969), and Dennis and Dunwoody (1966). This comparison has
confirmed the validity of Equation (1) for a wider range of Reynolds
numbers than could be expected-«eijght and one-half per cent high at

R = 1! A comparison with the oil flow data of Janour (1951) has a
mean error of 1,5 per cent, a maximum error of 7.5 per cent, and a
root mean square error of 3.5 per cent for Reynolds numbers from 12 to
2335. This equation 1Is the most accurate correlation of Janour's data

known,
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Detalled comparisons of the wake cen;erline velocity and overs=
all pressure distribution are in reasonable agreement with the data of
Schneider and Denny (1971) for their single Reynolds number of 105.
Their method of solution used a separate numerical method in each of
three regions. The pressure-displacement thickness in an outer,
potential region was obtained by employing a source distribution of
appropriate strength on the displacement thickness such that the flow
normal to the displacement surface is zero, An implicit Cranke
Nicholson type difference analogue was used to solve the boundary-layer
equations in a transformed coordlnate system which magnified the
trailing-edge region. The second-order boundary-layer solution was
obtained by manually constructing succeeding iterates using the trans-
formed boundary-layer equations to obtain the displacement thickness
wvhich was input to the potential flow program to obtain improved
values of the pressure. The boundary-layer solution provided the
boundary conditions for the third, innermost region in which the full
Navier-Stokes equations were solved by an Integral averaging method.
Schnelder and Denny (1971) conclude that their Navier-Stokes solution
appears to match their second-order boundary=-layer solution on a
circle of radius about R-3/4 for R = 10°,

Dennis (1973) has obtained numerical solutions to the Navier=
Stokes equations in elliptic coordinates for the finite flat plate,
By fitting his skin friction results at R = 40, 100, and 200 he finds

a larger tralling-edge region of influence that scales with R'3/8, i

n
agreement with Stewartson (1969) and Messiter (1970).
Plotkin and Flugge-Lotz (1968), using a numerical technique

to solve the Navier-Stokes equations in boundary-layer variables, also



have found the influence of the trailing edge to extend much further

3/4 in the streamwise direction. They attempt to find an

than R~
improved first approximation to the solution in a region approximately
centered on the trailing edge, thus the displacement thickness effect
of the boundary layer is neglected. As pointed out by several authors,
their grid size is larger than R'3/4; it is not, however, larger than
R=3/8, since their problem is not the problem considered here due to
thelr neglect of the displacement thickness effect, detailed compari-
sons would not be valid. Qualitatively their results for the pressure,
wake centerline velocity, and skin friction are in agreement with the
present results,

The relevance of the 0(R'3/8) scaling is implicit in the
coordinate straining of Goldberg and Cheng (1961) and is a consistent
limit for the Navier-Stokes equations as shown by Messiter (1970),
Goldberg and Cheng (1961), however, find the region of upstream
influence of the trailing edge is of O(R'I/Z) by the coordinate strain-
ing method and of O(R'l) by their parabolic coordinate solution. They
conclude that neither approach is likely to be correct since the
estimates differ by O(R'llz).

The results of Talke and Berger (1970) are, indeed, difficult
to reconcile with the present results. Talke and Berger (1970) have
employed the method of series truncation (Van Dyke (1964)) to ascer-
tain that the trafling edge influences an elliptic region of
0(Re'3/4). The boundary conditions in the near wake suggest an expan-

sion for the stream function which is substituted into the Naviere-

Stokes equations expressed in parabolic coordinates and truncated at
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one or two terms. The Reynolds number for each integral curve of the
resulting fourth-order ordinary differential equation must be deter-
mined by numerically matching, i.e., patching, to the Goldstein (1930)
near wake centerline velocity, either appreximately, or exactly. The
upstream influence of the trailing edge is then determined, for the
first truncation, by equating the resulting skin friction to the
Blasius skin friction to determine the point at which the curves
coincide. This procedure is not possible for the second truncation
since the minimum skin friction is always larger than the Blasius
value (or the value at the triple~deck trailing edge). Therefore, it
is assumed that the point of minimum skin friction determines the
upstream extent of the tralling edge region for the second truncation,

From their results it can be shown that the downstream extent
of the region of influence varies from R™+%43 for R = 276, to R™-92 for
R = 65,600, as determined by the streamwise locatjion at which the
numerical solutions are numerically matched to the Goldstein wake;
while the upstream influence is, to a remarkable precision, R"75.
The first truncation predicts a skin friction which, apparently,
becomes smaller than the Blasius value and the second truncation pre=~
dicts a skin friction considerably higher than the Blasius value. As
the authors suggest, a numerical solution of the third truncation
might be useful in numerically matching the skin friction if their
sequence of truncatlions is convergent. It may also be of value in
reconcliling the anomalous behavior since the larger value of the skin

friction predicted by the triple-deck analysis is now available,



The present method of solution utilizes the triple=deck
coordinate system of Stewartson (1969) to remove the influence of
Reynolds number from the trailing-edge problem. The boundary-layer
equations of the lower deck are solved by an implicit Crank-Nicholson
type difference analogue and an iteration procedure for the pressure
gradient which is related to the displacement function of the potential
upper deck by a Cauchy integral. Thus the boundary-layer equations
are used to determine the pressure from the displacement function and
the Cauchy integral of linear airfoil theory determines a new dis-
placement function from the pressure, a reverse of the boundary layer-
potential flow iteration procedure of Schneider and Denny (1971). The
present iteration method ls entirely automated and convergence is
attained when the displacement function differs from its previous
iterate by less than 10'6 at each streamwise location. This iteration
method eliminates any need for numerical differentiation. Interpola-
tion is not necessary due to the use of a single coordinate system for
both the boundary layer and potential flow calculations.

The use of the linear ized boundary condition and Cauchy
integral to compute the pressure~displacement function relationship
in the outer layer is justified to first order since the normal
velocity is O(R'I/A) and the streamline slopes remain small compared
to unity., This point has been reiterated by Messiter and Stewartson

(1972) and Denny (1972).



CHAPTER II

THE TRIPLE-DECK ANALYSIS

The triple-deck analysis, necessitated by the change in
boundary condition at the trailing edge, was applied to the finite
flat plate aligned with an incompressible freestream by Stewartson
(1969) and Messiter (1970), To the reader who is familiar with
Stewartson's paper, this section is a summary of his analysis with
minor corrections included here for completeness. The triple~deck
and other multi-structured boundary-laver analysis methods have sub-
sequently been applied to many separating flows., A complete review
of this subject is forthcoming, Stewartson (1974),

The triple-deck region intervenes between the region of
validity of the Blasius (1908) solution and the region of validity of
the Goldstein (1930) wake solution in order to remove the discontin-
uity in the vertical velocity of the wake solution as the trailing
edge 1s approached from the downstream side. The lower deck corres-
ponds to Goldstein's inner viscous wake which arises from the change
in boundary conditions at the trailing edge. The boundary-layer
equations apply in the lower deck and the upstream influence of the
wake is not permitted due to thelr parabolic nature. The main deck
corresponds to Goldstein's essentially inviscid outer wake which is

the inviscid continuation of the Blasius colution, The upper deck
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is additional to the Goldstein solution and is required to account for
the displacement effect of the wake, The flow in the upper deck is
potential and permits the upstream influence of the wake through the
elliptic nature of the governing equations, Thus the upstream influence
of the wake is felt in the parabolic lower deck through the elliptic
nature of the upper deck,

The ensuing notation is that of Stewartson (1969) with the
two exceptions that R is used for Re and L replaces its lower case
script version. Define a physical, rectangular cartesian coordinate
system, Ox*y*, centered at the trailing edge with velocity components
u* and v*; u* and x* are aligned with the freestream, U_, and y* and
v¥* are normal to the freestream and the plate which extends a distance
L upstream in the negative x*=direction. Additionally, p* is the
pressure and € is the Inverse one-eighth poﬁer of the Reynolds number.

The streamwise extent of the triple-deck, or intermediate
region between the region of the Blasius (1908) solution and the
Goldstein (1930) wake region is x* = 0(153). Various length scales
for this intermediate region may be envisioned and tried; however,
the LE3 scale has been demonstrated to lead to a consistent descrip-
tion of the flow field In the trailing-edge region. The upper deck,
of length O(LE3) in the y*-direction, protrudes above the conven-
tional boundary layer and wake to account for the displacement thick-
ness perturbation induced by the lower deck where y* = O(LES). The
lower deck is required to reduce the slip veloclity at the lower edge
of the maln deck to its value on the plate, zero, The main deck,

which is essentially inviscid and relatively passive, is O(LEA) in y*
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and must match the upper and lower decks as well as the streamwise
component of the Blasius solution upstream and the Goldstein outer
wake downstream of the trailing edge.

We now define dependent and independent variables which
emphasize the physics of the flow field in the varlous layers or decks
and proceed to set up the boundary conditions to which the expansions

must match. Define x, u, v and p by:

X¥ - €3Lx, u* = Y u, v¥ = Uv, p¥ = p + pqi P )
in all three decks and Y, y, and z by
y* = €LY, y* = €Ly, y* = €712 | (3)

in the upper, main, and lower decks, respectively,

Upstream of the trailing edge, X - - % and the expansions in
the various decks must match the streamwise component of the Blasius
solution, U, (y), where U (y) = W;(y) and ¥, satisfles the conventional

Blasius equation
o '+ Wo ¥y = 0, F (0) = ¥ (0) = 0, ¥ () =1 (%)

with y as the independent variable. The upstream boundary conditions

for the main deck, y fixed, are
u=> Ug(y) + 0(€3), v — 0(€%) and p = 0(€%), (5)

the €3 term in u arising because the full Blasius solution depends on
the square root of L + x* as well as y*, Above the entire triple-deck,

Y -3 ©, x fixed, the perturbations due to the overall displacement
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thickness of the boundary layer are 0(€%) and
1+ 0% 0(e*) 0e4) (6)
u-»ls+ y V => » P>

This boundary condition will necessitate the introduction of the upper
deck,
Proceeding along the centerline y = O the boundary conditions

are
umvm=0 Ifx<0, and v = 3ufdy = 0, if x> 0 (7)

which will necessitate the introduction of the lower deck when x < 0,
The three=layered structure is also evident in the boundary
conditions downstream - the near wake. The double~structure df the
near wake was first elucidated by Goldstein (1930) who assumed the
pressure to be constant throughout the trailing edge region and a
Taylor series expansion of Uy,(y) remains valid to the trailing edge,

f.0.,
Uo(y) = ajy + aaya + a7y7 4+ . . (8)

where

a; = 0,3321 = A. (9)

Assuming an expansion of the form

w=t (EOM ey o L (Y oy e L (10)

for the inner wake, he found f, must satisfy
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2
fo #260€ "= €17 = 0, £,(0) = £1' = 0, £]

r'l P
ofo 72" ~>18a, as /&*..)00

(11)

where

nx = yerach @M o yne @03 - 2i3e0th, (12)

Examining the structure of Equation (10) for large 71*, Goldstein found

that in the outer wake u may be expanded in the serles

X% 1/3 X% 2/3
u="U(y)+ ( L ) Uy(») + (73 Up(y) + . . . (13)
where each of lJn are related to Uo’
Up(y) = &y —2 , U, (y) = L g2 40 (14)
= — U - ovmn—
1Yy lgg * 2559 dyz

etc., where §; = 2,0448,

The downstream boundary conditions (x —» «) for the triple~

deck are: v — 0(€%) and p — O(Ga) in all three decks while
e x 1/3 ! i l‘
>3 () fo (77 + OCE7) (15)
when ?Z* 1s finite,

du
u = Ugly) + €x1/3, 2 0E) (16)



when y is finite, and
4
u->14+¢ 0€™)

when Y is finite.

13

(17)

On the plate, the main deck will require the introduction of

the upper deck to satisfy the boundary condition, Equation (6), and

similarly, the lower deck is required to satisfy Equation (7).

this, we substitute the expansions
ux,y) = Ug(y) + €u,(x,3) + €2uy(x,y) + . . .
viX,y) = €2v1(x,y) + €3v2(x,y) L
p(x,y) = €p;(x,y) + Ezpz(x,y) ...

into the Navier-Stokes equations in x and vy,

From the power €~3: opy/3y = 0,

duy v vy

— - 0

ox oy

€2;

Ju du
U —L ¢ v; —2 . dp,/dx
Oax ldy pl

Jduy du, aul aul dpy
Up==2+Vv) ™ ey — e vy — = = —
oxX dy ox oy dx

To see

(18)

(19)

20

(21)

(22)
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In order to enforce a consistent matching between the upper

and maln decks, it 1s necessary to set
Py = 0, (23)

The validity of this assumption will be demonstrated by the self-
consistency of the expansion. Otherwise, a physically unacceptable
cause external to the triple=-deck would drive the first-order perturba-
tions, Equation (21). Alternatively, Messiter (1970) obtains the same
"result by expanding the pressure and stream function in terms of
afbitrary guage functions and determines the largest terms in the
Navier~-Stokes equations when the streamwise coordinate is stretched by
1/2

an amount greater than R .

The solution to Equations (21) is
u; = Aj(x) AU /dy, vy = =Aj(x) U (y) (24)
where

Aj(x) = 0as x = = (25)
and

A = 8 (E)3 5 025 x > o

from the boundary conditions, Equations (5) and (16), As y — «,
Uo(y) => 1 and vy = -Ai(x) leading to the downward displacement effect
on the upper deck,

Stewartson also obtains a solution for Equations (22); however,
here it is only necessary to note that, since U and U}’ —3 0 as

y = ®©, u; =3 pp. Therefore, for y — =, the maln deck expansions
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have the form
u—1 - Gzpz(x) + 0(€>)

v - €€ Ax) + 0(E3) (26)

p — € p,(x) + 0(€)
and cannot satisfy the boundary conditions given by Equation (6)
necessitating the introduction of the upper deck,

The flow In the upper deck is inviscid and irrotational and

x and Y are 0(1). The appropriate expansions are:

u=1#4+ €2 Uz(x.Y) . €3 U3(x,Y) + . ..

vV = 62 vz(x’Y) + €3 V3(X,Y) + . 4 e (27)
2 3
p= €" Py(x,Y) + € P3(x,Y) + . . .

where the U, and V, are complex conjugates since the flow is potential
and satisfies Laplace's equation. Matching with the main deck as

y—>®and Y= 0
Uz(x,O) - - pz(x), Vz(x,O) - -Ai(x), Pz(x,O) = pz(x)_ (28)

The pressure~displacement function relationship in the upper
deck may be obtained using the properties of harmonic functions
(Stewartson) or, equivalently, from linear airfoil theory (Messiter)
as the skew~-recliprocal Hilbert transformation

[}
1 f°° A1 (x1) dxy

Pz(x) . - 29)
n x-xl

=00
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This equation and the assumption P = 0 must be satisfied to accomplish
the match between the potential upper deck and the essentlally inviscid
main deck,
The necessity for the lower deck becomes evident when the main
deck expansions are examined for y — O, Substituting the Taylor
series for U,(y) Equation (8) and Equations (24) into Equations (18)

and (19),
u=[Ay 4 05™)] + €[aa,x) + 0gD] # 0€%) + . . . (30)
v = <€ [Ayalx) # 0(y™)] # €[-aa) - A ' )] 4., BD

and u +» 0 as y = 0 as required by the no slip boundary condition on

the plate. To remedy this problem the lower deck, where

u =€ i;(x,2) + €2 Uy (x,2) + . .. (32)
v e g3 vy(x,2) + s Vo(x,2) 4 . . . (33)
p=€2 P (x,2) # € Brlxs2) #. . (34)

must be inserted., The conventional boundary-layer equations result
when these expansions are substituted into the Navier-Stokes equations

in x and z.
3iiy/ox ¢ aVy/oz = 0
Uy ol /ox + ¥y by /oz = -3By/ox + 3% /0 (35)

0= asllaz
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Since Py is independent of z,

Py(x,2) = By(x,0) = py(x) . (36)
The boundary conditions along z = 0 follow from Equation (7),

iy =¥, = 01f x <0, ¥; = 30y/3z = 0 if x > O, (37)

Upstream, ﬁl —> Az to match with the Blasius solution for small y as

X =) - 0, while downstream X —> «© and

i -1 (22l (qm (38)

to match with Equation (15) the Goldstein inner wake solution. As

z —3 ©, the lower deck must match with the main deck as y — 0 so
U; = Az = AAp(x) (39)

since £, (q*) => 18 A9* as M * —> < from Goldstein's (1930) solution,
The problem can now be reduced to a more universal form by
scaling the variables to remove the constant A. The fundamental

problem of the trailing edge results when the affine transformation
x = A"3hg, g - (34, ¥, = At%ux,2)
¥ = a3,z g - A'I/?’oz y £ = AL/3 g 1) (40)
py = A/2p(x), Ay () = A73/8a00)

is applied to the previous equations,
The problem is the existence of a physically acceptable

solution of the boundary-layer equations



2
U, 3V .o y2U, 23U _dr, 2%
xta P laxrtVaT a2

with boundary conditions

U=0,V=0onz=0,X<0

0, 3U/3Z = Oon Z = 0, X > O

<
!

<
’

Z~~» 0, P—>0as X ==~

Z-AX) > 0as Z -~

[ ]
[]

1 1/3

P—>0,0-% (%)

3 g;(Q)_.;;OasX—-)”

where P(X) and A(X) are related by the Hilbert integral

1 = A" (Xy) dx
-0 x-xl

Furthermore from Equation (18) and the boundary conditions,

Equations (5) and (16)

ARX) = 0 as X = = o, A(X) — 0.8920}{1/3 as X =» «

and from Equations (15) and (40) 8, satisfies the first-order

Goldstein wake equation

2
8o '+ 28,8, - g, =0, g,(0) =g '(0) =0

85(0) = 7.6715, go(7) — 9 (7 + 0.2360)% as 7 -,

18
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(42)

(43)

(44)

(45)
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To answer this query originally posed by Stewartson (1969) is the
purpose of this dissertation. The numerical computations reported in
the succeeding chapters will demonstrate that the answer to this
question is affirmative,
From the coordinate transformations Equations (3) and (40) and

the lower deck expansion Equation (32) the skin friction is

2 2
Ju* plo A plUo A . 2V -5/8
PV 5y* "Izt izl -~Hrow ) )
y*-o R R Z-O

where the first and last terms on the right-«hand side are the Blasius
value to 0(67). An integration along the plate produces the drag

cocfficient for one side of the plate

S S I . 1] ax s oD, @7
pl/2  \1/4 g7/8 o Ze0

The following numerical procedure has determined the value of the
above integral, subsequently labeled 6 by Stewartson (1974), to be
1,021,

Prior to proceeding to the numerical analysis it 1s necessary
to determine the asymptotic structure of the velocity, pressure and
displacement thickness for |X[ —>» o for use In the Hilbert integral
subprogram.

To determine the asymptotic structure of the pressure it is
only necessary to note that P(X) and A'(X) are complex conjugates from

the harmonic property of U, and V; in the upper deck. Thus

1.784

iIf X< O A (48)
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and
0,892
N P ———
P(X) 372 273 1IfF X>0 49)
3 X
since
ATX) ~ 82 yeyx s (50)
2/3
3X
and
A'X)~ O ifFX<O0 (51)

from Equation (44). The leading term in A(X) when X is large and

negative can be determined by substituting

U=2z+1.78 [x]™ Fl(p)+ ... - 52)

=5/3

ve-2.268 |X|777 @Fp 4 R 4L L (53)

into the boundary-layer equation with result:

Pl - 1877 F) - 36(7F) - Py = -1.833
' ' (54)

FI(O) - FI(O) =- 0, Fy (7Z) —>0 as 7(—-) o, X large.
The solution to Equation (54) may be represented in terms of the
confluent hypergeometric function or its integral representation as
shoun by Messiter (1970) and Stewartson (1969), Here the solution was
obtained numerically in order to obtain the Initial velocity profile
required to integrate the boundary-layer equation., The results are

the same?

e
Fy (0) = 0.6580, F; () = 0,1830 (55)
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so that wvhen X is large and negative

QU g 4 23106 0 Ay - 223265 (56)
oZ 7m0 Ix!4/3 ’ |x|

Similarly, when X is large and positive the form of A(X) must

be determined from the boundary-layer equations. On substituting the

expansions
1/3 1-n/3
1 X ' 1 X n '
U-E(Z) go(?)*g(Z) gn(?Z)*-co (57)
-1/3
1 X ' X,=n/3 .
Ve-=(3)  [28,-78,+ (7 (@-n)g, - 78p)]+... (58)

and P(X) from Equation (49) into the boundary layer equation we find

g must satisfy

101¢ LB} L 10
- - - - .2
gn + 2808 (2-n) (g:g gu gn) - 1.2263

(59
8,(0) = g '(0) = 0 for n = 4,

A third boundary condition is required to determine a unique solution
to Equation (59). Stewartson has shown that as Q'—é‘” the requirement
of exponential decay must be imposed to avoid a mismatch with the
Goldstein wake. This requirement, however, leads to an infinity of
terms assoclated with the elgenfunctions of the expansion for U given by
Equation (57). The first eigenfunction is associated with V and

corresponds ton = 3 in Equation (59),
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It is

g3 = 7 b (g, - gy ) (60)

where b; is an arbitrary constant to be found from the numerical pro-
cedure. The contribution to U from the pressure term is determined
from the numerical integration of Equation (59) for n = 4, On substi-

tuting the results
g;(O) ~ 0,039, g, () = -0,0527 (61)
into Equation (57) we find

3, o.semoblx"“3 -o0.07oxl 4. .. (62)

A(X) = 0,8920x"
U(x,0) = 1.611x1/3 & 1.611b;x72/3 4 0,052x° 1 & . . . (63)

for X large and positive. Again utilizing the harmonic property of

P(X) and A'(X), the expansions

0,892 2b 0.0816 log X 91
P(X) ~ 28220 2?3 (14 —2) - 2°g + =5+ . .. (64)
3J§ X X X X

for X large and positive and

2b
1.7840 _ . 2P1 .
1X|

] 0.0816 log X . d

2 + = L . . o (65)
X )

P(X) v

for X large and negative are readily obtained.
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The log X terms in P(X) are required by the X'l term in A(X) and
similarly any Integer power of X In either A(X) or P(X) will induce
log X terms in the other due to their harmonic property.

The constant multiplying the third term in each of Equations
(62), (64) and (65) differs from the constant given in Stewartson's
(1969) paper. The constant is determined by gaﬁ”), found here by
employing a fourth-order Runge-Kutta numerical integration algorithm
(Ralston and Wilf (1960)) to solve Equation (59) with n = 4. The
signs on the first term of Equation (64) and the second term of Equa-
tion (65) were also found to be opposite to those given by Stewartson
(1969).

The preceding equations are all that are necessary for the
numerical solution except for the definition of Al, the factor multi-
plying the Blasius skin friction at X = 0, By trial Stewartson finds
the following method of setting up the expansion of the solution about
X = 0 to be consistent. Assuming that on the plate where X = 0- the

velocity profile is differentiable, he writes
u(o-,2) = U;(2), Uj(0) = A, * O, (66)

Further assuming that in the wake where X =0¢

dap -1/3
~ Co X 67)

and

Urv-% (%) G (7z) near Z = o (68)
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he finds G, satisfies

Gh' "4 2 GGl - (Gh)2 = 27 c2®/3 (69)
for small ?l, with boundary conditions

Go(0) = G;'(0) = 0 and Gg' () = 18 A,. (70)
Also, to avoid a contradiction in the pressure expansion,

G:) - 18 ).l'rl - 0 as N =>

The solution was found by Hakkinen and Rott (1965) and rechecked

numerically here, Thus,
Gh(0) = 3(2 A;)2/3 (0.8991) (71)

and

¢, = A,*/3 [0.4089] . (72)

Stewartson then reaches the following tentative conclusions
which the ensuing numerical analysis will demonstrate to be quite
accurate.

1. The skin friction is finite as X — 0 and Al > 1,

2. U(x,0) = 0.8991 A,2/3 x13 4 0®/3). (73)

3. P(X) = Po + Py X ¢ O[x% log (-X)] (74)
when X < 0 and

4. PO = By + 0.6133 1,2 2% 4 o) a5

when X > 0,

where P, is a negative constant and Py is also a constant.
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For the convenience of the reader, the constants have been
determined by h? - extrapolation (Beckenbach (1961)) of the present
numerical data to be Ay = 1,343, Po = «0,388 and Py = -0,278,

The match with the central region where x* and y* are 0(€6L)
will not be undertaken here since yet another region where x* and y¥*
are 0(€4L) intervenes and the elucidation of its properties will have
to await further study. Its properties are not required for the
determination of the largest perturbations which occur in the present
O(€3L) region. Throughout this analysis it has been tacitly assumed
that € << 1 or R >> 1, however the data comparisons will show that the
present theory is accurate for R —» 1. This unexpected result also

somewhat negates the requirement for higher-order terms,



CHAPTER III
THE NUMERICAL PROCEDURE

The computer program used in this study evolved from a
boundary=-layer program developed by Burgzraf (1969). The essential
elements of the final program will be described here. The details and
the evolution of the program occupy towering columns of printer paper
and over three years of analysis, All computations have been carried
out on a CDC 6600 digital computer.

The main program consists of three main lteration loopé as
shown on Figure 1, Within this program, two subroutines are required,
One subroutlne, indicated by the upper large rectangle of Figure 1,
iteratively computes the boundary-layer velocity profiles of the lower
deck using an implicit Crank-Nicholson tvpe-difference analogue. The
other subroutine, indicated by the lower large rectangle of Figure 1,
computes the Hilbert transformation of the pressure which is the slope
of the displacement function, A(X). As shown, the innermost of the
three loops adjusts the pressure gradient at a given streamwise station
until the boundary-~layer subroutine produces a velocity profile with
the desired A(X). The middle loop provides the correct boundary
conditlons and advances the computation through its streamwise course
and the outer loop compares displacement functions, A(X), resulting

from successive streamwise traverses through the entire lower deck

26
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Input A'(X)
Compute P(X)

—= Input initial
velocity profile

4

.| COmpute boundary-layer
velocity profile from
> P'(X): A(X) = U-Z,

P'-P;ld +50A

Advance the

boundary cemeceeac-aapA(X) & P(X) satisfy
conditions the boundary=-laver
equations at X
'

mecemeasaneaA(X) & P(X) satisfy
the boundary=-layer
equations for all X

Compute A'(X)

new
from P(X)

via the
Hilbert transformation

A(X) = 'aAold’ 2Aney

\

Solution

A(X) & P(X) satisfy the
boundary=~layer equations
and the Hilbert transfor-
mation for all X

Fig. 1.--A Flow Chart of the Main Program
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until the solution is obtained. Discussion of the subroutines will be
deferred until thelr relationship to the main program is delineated,

All computations have been performed in the X,Z - coordinate
system of Equation (40). The streamwise interval must be symmetric
about the trailing edge X = 0 and divided into an even number of equal
increments of length AX, Intervals extending from -3 to 43, -6 to +6,
-9 to 49, and =12 to 12 with AX = 0.1, 0.05, 0,025, and 0,0125 have
been employed to insure the accuracy of the computations. The Z or
normal coordinate direction is also divided into an even number of
equal increments of length H. The thickness of the layer is limited
by the computational time required and Z, = 6, 8, and 9 have been used
with increments H = 0.1 and 0,05, A finer grid or a thicker layer
would require prohibitively long central processor time. The shortest
run (20 minutes, 21,000 central memory locations) which produces re-
liable, accurate results was found to be the case where -6 < X < 6,
0<Z< 6 with AX = 0,05 and H = 0.1, All subsequent numerical
investigzations were performed to ascertain the effects of various

changes on the above case,

Input Data
The boundary=-layer equations are parabolic and require that
the initial velocity profile and the boundary conditions along the
streamwise edges are prescribed. The downstream velocity profile
cannot be prescribed and serves as a check on the computations,
The initial velocity profile is required to initiate the
boundary-layer computations during each cycle of the outer loop and

ultimately affects the final solution. 7The initial veloclty profile
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for X large and negative has been obtailned for the various H step
sizes by numerically integrating Equation (54) using Hammings modified
predictor-corrector method (Ralston and Wilf (1960)) and substituting
the results into Equation (52). The velocity profile, magnified by
the subtraction of the linear portion, is presented in Figure 2, It
should be noted that as Z —> 9 the profile becomes vertical Indicating
that the boundary condition given by Equation (42) is not being
enforced prematurely. The initial velocity profile has been checked
by comparison with the velocity profile resulting from the computations
initiated further upstream (see Appendix A).

The final set of input data required is an estimate for the
displacement function, A(X), or the pressure, P(X). Either can be
calculated from the other by the skew-reciprocal Hilbert transforma-
tion, Equation (43). Both are required to start the three main loops
as shown on Figure 1. Presumably, any reasonable guess would suffice;
however, the closer the guess is to the final solution, the shorter is

the running time required, Realizing this, a function of the form

C 2/3
AT(X) = + C5X exp (CAX) X< O
2 2 =
C ¢+ X
2
and (76)
2/3
. Cs c,X / Co
AT(X) = X>0
2 2 4 6/3 10 5/3
Co + X Cg X Clo* X

was developed by modifying Messiter's first guess for the form of the

slope of the displacement thicknegs to agree with the asymptotic



Fig. 2.--Initial Velocity Profile at X = «6
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behavior predicted by Equations (56) and (62), Messiter's values
for the C; were: C; = ,327, Cp = 1,142, Cq = =.59, Cp = 3.00,
C5 = .624, Ce = 1,580, Cy = .297 and Cg = 1.00, where here C; = .3265,
C; = 1,011, Cq = -,4511, C, = 1,500, C5 = .6054, Cy = 1.7921,
.1308, and C

Cqy = .2974, Cg = 1,100, C o™ 1.000, Messiter (1970)

9 = 1
did not include the term containing Cq and C;g, thus effectively his
Cog = 0.

An estimate for the pressure gradient is also required as
initial data as shown on Figure 1, It is readily obtained from the
numerical differentiation of the pressure resulting from the Hilbert
transformation of Equation (76). TFigure 1 also shows that one cycle
through the middle loop generates the pressure required to satisfy the
boundary-layer equations for the A(X) given by the numerical integra-
tion of Equation (76). Thus, at the end of one cycle of the program,
one pressure curve satisfies the Hilbert transformation and the other
satisfies the boundary-layer equations. The Ci given above for
Equation (76) were determined by a comparison of the two pressure
curves, Many divergent attempts were required to develop the final
convergent numerical prccedure. They were not entirely useless since
each afforded the opportunity to compare the pressure curves and
adjust the C; using data from prior unsuccessful runs to determine
the trends In the pressure curves with respect to the Ci. Figure 3
compares the two pressure curves, the one that satisfies the Hilbert

transformation and the other that satisfies the boundary-layer

equations. The comparison shows that the pressure curves are in fair
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Fig. 3.--Initial Estimate for the Displacement Thickness
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agreement which indicates that Equation (76) provides a good starting
approximation for the final iteration procedure,

The final iteration procedure has been shown to converge to the
same solution using either Messiter's form or the revised form of
A'(X) as input data. A 22 per cent increase in computational time is
required using Messiter's form of A'(X) due tc the additional itera-

tions required for convergence, however.

The Main Program

The main program, shown Iin Figure 1, is comprised of three
nested loops which utilize the preceding input data to produce the
solution, The middle loop performs the necessary bookkeeping tasks of
selecting correspending values for the streamwise station X, the pres-
sure gradient P(X), the displacement thickness A(X), and the previous
velocity profile for the inner loop from the input data arrays.

The problem addressed by the inner loop of the main ﬁrogram
1s to solve the boundary=-layer equations of the lower deck for that
pressure gradient P'(X) which will produce the requested edge velocity,
Ugs and thereby A(X) = U, - Z, with Z, fixed. The method of solution
is to compute the velocity profile using the iterative boundary-layer
subroutine with the input P'(X), determine the difference between the
computed A(X) and the requested A(X), then use this difference to
correct P'(X) until the desired A(X) is achieved to within 1077, the
inner loop error tolerance. Symbolically, P'(X) oy = P'(X)p1q +
AA(X)/(dA/dP') where dA/dP' = dU./dP' for fixed Zg. The problem
therefore is reduced to the determination of dU,/dP'. The solution

was obtained originally by differentiating the boundary-layer equation
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with respect to P'(X) to obtain a partial differential equation for
3U/3P'., This equation was then numerically integrated across the
boundary layer in order to obtain dU,/dP'. This subroutine and the
gim!lar boundary-layer subroutine each had to be employed during each
cycle through the inner loop, After several runs and considerable
data analysis It was determined that the optimum dU./dP' is nearly 0.2
for all X. The inner loop will converge more slowly if othér values
of dU./dP* are used. This discovery permitted the removal from the
inner loop of the entire time-consuming subroutine and its attendant
bookkeeping and reduced the run time to a manageable figure. After
several iterations, depending upon the streamwise station, the program
exits from the inner loop with the P'(X) required to produce the
requested A(X) to within ,00001, and proceeds stepwise downstream via
the middle loop. At the completion of the middle loop, the P'(X)
required to produce the requested A(X) has been determined for all X,
To determine P(X) the pressure at the initial station must be found.
The first-order term is known; from Equation (64), however, the second
and fourth terms contain the unknown constants by and dj. The slope
of the displacement function A(X) may be changed by shifting the
entire pressure curve by a constant value since the Hilbert integral
of a constant is another constant for the finite limits necessitated
by computer storage. Upstream A(X) is known to O(XZ) from Equation
(56) and therefore A!'(X) is known through O(Xz). Thus, the pressure
curve can be computed using an initial pressure shifted such that
A'(X) is correct through 0(x2) at the initial point, Alternatively,

a value of by could be obtained from the values of A(X) or U(X,0) from
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the previous iteration using Equation (62) or Equation (63) and then
used to determine the initial pressure. Both methods were tried; the
former was selected since the overall convergence was considerably
improved without significantly affecting the final results. Enforcing
the correct asymptotic behavior of A' (X) effectively damps the oscil-
lations which occur during the iteration cycles, A study of the
effects of the pressure shift has been relegated to Appendix B. Thus,
the pressure that satisfles the boundary-layer equations is generated
in the middle loop.

The outer loop now computes the A'(X) corresponding to the
new P(X) from the Hilbert transformation subroutine and, since the
initial value of A(X) is known to O(Xz) from Equation (56), a new A(X)
can be obtaincd by the trapezoidal rule, Comparing the new A(X) with
the A(X) from the previous iteration determines if the program has

converged. If not, A(X) is replaced according to the formula

AX) = KA(X) 514 * (1-K)ARK)eu an

and the outer loop re-initiates the streamwise traverse of the lower
deck until the differences between succeeding A(X) iterates 1s less
than 1074,

It has been found by trial and error that K = 0.8 will produce
a convergent iteration scheme. The outer loop will also converge with
K= 0,90r K= 0,7 but K= .8 is the best of these three values. The

outer loop will not converge if K = 0,5 or K = O,
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The Hilbert Transformation

The range of the Hilbert integral extends from negative
infinity to positive infinity. The integrand is singular at the point
under consideration. The functions A'(X) and P(X) are slowly approach-
ing zero at both ends of the range and P(X) must contain a zero within
the range. Additionally, it is highly desirable that the method use
data at the same streamwise locations as the input data and the
boundary-layer subroutine and return the pressure or displacement
thickness results at the same streamwise locations. This feature
eliminates the requirement for time-consuming data fitting and inter=-
polation to adjust the output from the subroutines to be compatible
with the main program. All these requirements present a formidable
numerical problem. |

Fortunately, the asymptotic expansions for large le are
known for A(X), given by Equations (56) and (62), and P(X), given by
Equations (64) and (65). The first two terms of these expansions have
been integrated in closed form using the substitution t3 -z Xy/X and
the method of partial fractions (Equation (80), see below). Integrals
of this form may also be found in Petit Bois (1961). The limits
extend from minus infinity to the point where the numerical integra-~
tion begins or from the point where the numerical integration
terminates to positive infinity, whichever is applicable. This
effectively splits the range into three parts and reduces the doubly=
infinite range Hilbert transformation to a finite range Cauchy
integral plus closed form expressions which account for the infinite

portions of the range where the respective expanslions are applicable,
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The origin X = 0 must also be treated separa;ely to insure that the
expressions do not contain functions or function arguments that tend
to an undefined limit., The remaining finite-range Cauchy integral has
been treated analytically by subtracting the singularity from the
integrand (Davis and Rabinowitz (1967)).
We now consider the computation of
t P(Xy)dX,

A’ (X) = - % X-X ’ (78)
-0 e |

the skew=-reciprocal Inverse of Equation (43) (Titchmarsh (1937)) to
fjllustrate the method., Considering only the first terms of Equations
(64) and (65) (the second terms may be reduced to the same form plus

an elementary form by partial fractions), Equation (78) becomes

3 2/3 m X=X
~o  (-Xy) (X-X;) a 1
(79)

-
3 Yo xpPaxexy)

where K '----0.89?./1131/2 and the limits a and e are arbltrary, but large,
The center portion of the integral is evaluated for ecach outer itera-
tion using the following numerical integration procedure, It {is

evident that by considering various endpoints for the center integral,
the accuracy of the approximations for the outer portions of the range

may be assessed. For X = 0 the integrand is X15/3 dX; vwhich is readily
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3 . xl/x and t3 =

integrated. More generally, the substitutions t
X;/-X when X < 0 and 3 - -X; /X and £3 - X;/X when X > 0 will reduce
the integrands of the first and last integrals of Equation (79) to the

form dt/1 x t3, The antiderivative has the form

2 1/2
%-log -(;——“i:-!-z——i:%arctg t3 (80)
tce = t+1 2+t

which remains finite at the infinite limits.

The integrals of the asymptotic expansions of A'(X) are
evaluated in a similar manner and the range is segmented in an
identical manner to insure compatibility with the main program.

The center portion of the integral is performed by subtracting
the singularity, whether A'(X) or P(X) is in the integrand. The two
subroutines differ in the analytic expressions which account for the
infinite portions of the range,

The singularity in the integral is removed by subtraction,

thus

¢ pXyax e p(Xy)=-P(X)dX e 4ax
{ —-(—-1-)-——1-=f () -PX) Leypx) f =X, (81)
a Xy =X a X;-X a X1-X

Splitting the range about the point X,

+ e P(X1)-P(X)
+ [ T dX; + PQX) log

X- X+ Xi=X

a Xp=X

e=X
a=xX| *
(82)

X=
- +
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The first and third Integrals are nonsingular and the trapezoidal rule
has been employed for their evaluation, Assuming the integrand may be

expanded in a Taylor series about X the center integral,

X4AX  P(Xy)-P(X)
X-AX X=X

dXy = 2 AX P'(X) 4 0QAX%) (83)

which may be evaluated using any standard differencing method for P'(X).
In order to assess the accuracy of this numerical method a second
method for treating Cauchy integrals (Collatz (1961)) was used along
with three of Van Dyke's (1959) airfoil integrals. The results of the
evaluation, contained in Appendix A, demonstrate that subtracting the
singularity is the more accurate of these methods for treating Cauchy
Integrals.

When X is at either of the endpoints of the finlte numerical
range, a or e, the above numerical procedures do not apply. The method
of computing the integral at the endpoints consists of allowing the
1imits of the integrals of the asymptotic expansions to overrun the
singularity at the endpoint by AX and performing the remaining non-
singular numerical portion using the trapezoidal rule. Thus, the
endpoint singularity is contained within the range of the integral of
the asymptotic contribution. The procedure of merely ignoring the
singularity within the range of a Cauchy integral has been justified
by Mangler (1951).

The skew-reciprocal property of the Hilbert transformation
permits the simultaneous error analysis of both the P(X) and A'(X)

subroutines. One subroutine computes A'(X) from P(X) by assembling
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the appropriate expressions for the integrals of the asymptotic ex-
pansions of P(X) and the above numerical methods, Particular atten=-
tion is required to insure that each method is employed only within
its range of validity, l.e., X = a, X< 0, X =0, X>0o0rX=ce,

The other subroutine computes the pressure, P(X), from A'(X) by the
same procedure utilizing the appropriate expressions resulting from

the integrals of the asymptotic expansions of A (X). Subseqhent error
analysis and programming checks were faclilitated by the skew-reciprocal
nature of the subprograms which were combined in a short flip-flop
program. This error analysis, using Messiter's (1970) form of A'(X),
is contained in Appendix A. The error analysis of the present con-
verged numerical results is reported in the following discussion of

the results,

The Boundary=-Layer Subroutine
This 1is the most standard of the subroutines in the entire
program, yet the most crucial since it is required several times during
each cycle of the innermost loop. This subroutine solves the boundary=

layer equations of the lower deck, given by Equation (41) as

2
3,3V .o, pdU .y, .dr,2%
X oZ 3ax o dX = 572

’

by an lterative procedure and thus constitutes another loop within the
inner loop (See Fig. 1) of the main program. The boundary conditions

are given by Equation (42) as
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U0, V=0Oonz=0,X<0,
Vw0,30/0Z»00n2Z2=0,X>0, (84)

and dU/3Z = 1 as Z —» o,

The pressure gradient and the velocity profile at the previous stream-
wise station, X = AX, are required as input data to compute the
velocity profile U(Z) at X, |

The introduction of the stream function and the application
of the Crank-Nicholson differencing scheme to the boundary-layer

momentum equation results in a matrix equation of the form

§ CijUJ - Ri - . (85)

The Cij matrix is tridiagonal with elements that contain the initially
unknown Uj as shown in Appendix C. This matrix equation was solved
by employing modified Gaussian elimination with back substitution
(Richtmyer and Morton (1967)) and the continuity equation to update
the stream function during each cycle. Convergence was achieved in
10-20 cycles when the successive velocity profiles were within the
specified error tolerance, 10"%. A more efficient boundary-layer
subroutine using Newton iteration could have considerably reduced the
computing time required, since this iteration is within the inner loop
of the main program.

The boundary conditions are enforced by prescribing values for
specific elements of the matrix or vectors. For example, with the

representation of cij by its elements
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Bj Uj"’l + Uj + Aj Uj'l - Rj ’ (86)

the boundary condition 3U/3Z = 1 requires that Aj = -1 and Ry = -H at
the outer edge. The boundary condition on the wake centerline,
3U/3Z = 0, was enforced by requiring that B; = -1 and either Ry = O or

2 U
Ry = - g- (v, 2—)?1 + P'(X)] (87)

The formulas for the Aj, Bj, and Rj are contained in Appendix C,

The effects of the higher~order form of the boundary condition
given by Equation (87) and the accuracy of the subroutine in general
were assessed by the momentum-integral method. Integrating Equation

(41) across the layer,

a(ug‘3 /2% « AT(IF(Zg) - ZgP' (D) # 1 = 3ufez] =0 (88)
2 Ze

vhere U, 8 = - [ = U(U-Uz )dZ, Z, is the value of Z at the outer edge,
e o

and F satisfies the continuity equation., Equation (88) is satisfied
by the velocity profiles resulting from the boundary-layer subroutine
to better than one per cent over the majority of the streamwise extent
of the layer. The maximum momentum imbalance may reach nine per cent
ot the value of the first term of Equation (88) at the point inme-
diately aft of the trailing edge; however, it diminishes to less than
one per cent four points downstream, The‘nine per cent error in
Equation (88) amounts to an error in the fourth significant figure of

the velocity which is consistent with the numerical procedure. These



43
errors are slightly increased for the boundapy condition R} = O,
consequently Equation (87) was used for the wake boundary condition
during the final data runs,

Additionally, many known solutions of the boundary-layer
equations were employed to ascertain tﬂe accuracy of the boundarye-layer
subroutine. Rosenhead (1961) has tabulated the Blasius velocity pro-
file to six significant figures and the velocity profile for the
boundary-layer flow along a cylinder near the foreward stagnation
point to seven figures. These solutions afforded an excellent oppor=
tunity to check the numerical method. In particular, it was found that
agreement to five significant figures could be obtained with a velocity
profile error tolerance of 10'6. Diminishing the error tolerance to
10'9 did not significantly improve the results for the same mesh., It
did, however, increase the number of itgrations required for con=-
vergence from 13 to 21, All succeeding results were obtained with a
10°6 error tolerance on the velocity profile for this reason.

Further, agreement to the number of significant figures
reported with the data of Rosenhead (1961) for several Falkner-Skan
flows and convergent channel flow was obtalned. For the adverse
gradient Howarth flow, U = U, (1 = X*/L), the point of vanishing skin
friction was computed to occur at X%/L = 0,12, in agreement with the
data reported by Rosenhead (1961) of Howarth (X*/L = 0,12) and Leigh
(X*/L = 0.1198)., The mesh size was AZ = .025, AX = 0.005 and the
outer edge of the boundary layer was at Zg = 4,

A test flow of speclal relevance was the computation of

Goldstein's wake function, f,, from Equation (11). The present
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results differ from Goldstein's (1930) by less than the 0,5 per cent
at 7= 0 and less than 0,05 per cent at n- 1.4. Goldstein's results
are probably the more accurate since he employed a smaller step-size
and higher-order of accuracy integration method.

Concluding this section treating the numerical procedure, we
relterate how the limits on the entire program arise. The overall
computations are limited by the central processor time required.
Central memory storage requirements are not a limiting factor. The
bulk of the computing time is required by the inner loop because it
contains the iterative boundary-layer subroutine, The error tolerance
of the boundary-laycr subroutine is 10® to achieve the most accuracy
with the minimum number of iterations., Typically, about 10 iterations
per velocity profile are required by this subroutine. The error
tolerance of the inner loop that incorporates the boundary-layer
subroutine is 10"5 and it requires about five iterations to converge
using dU,/dP' = 0.2, The inner loop is required to converge at each
streamwise station and either 240 or 480 stations have been employed
in the main loop, The error tolerance of the outer loop is 10'4 and it
requires about 20 streamwise traverses to converge when started with
the initial A'(X) given by Equation (76) and K=0.8 in Equation (77).

The relationship between the error tolerances: 10~% on the

=3 on the inner loop and 10'4 on the

boundary-layer subroutine, 10
outer loop, must be approximately satisfied for convergence of the
outer loop to the specified tolerance. If the inner loop-error

tolerance is relaxed, the error in the computations will approach a

small value which is greater than the outer loop error tolerance,



CHAPTER 1V
THE RESULTS

The final computations have been performed with the numerical
endpoints at X = £ 6 or £ 12 and the outer edge of the lower deck
located at Zg = 9, The step slzes H = 0,05 or 0,1 with AX = 0.05 or
0.025 were employed in the various combinations permitted by the
computational time required. Certainly several additional combinations
are desirable; however, the central processor time required and cost
make these runs impractical at present. For example, diminishing H to
0.025 and AX to 0.0125 simultaneously would require over one-half hour
of CDC 6600 central processor time for cach cycle through the main
loops. The ensuing tabular results have been obtained by performing
hz-extrapolation (Beckenbach (1961)) on the relevant data.

The skin friction which increases smoothly from the Blasius
value upstream to the value kl at the tralling edge of the triple-deck
region is shown in Figure 4. The plotted values of 3U/3Z},.p are the
ratio of the actual skin friction to the Blasius skin friction from
Equation (46) and the coordinate transformations of Equations (40) and
(2). Thus au/dz 72=0 = 1 denotes the Blasius value of the skin
friction.

The numerical skin friction joins smoothly to the asymptotic

behavior predicted by Equation (56) vhen the velocity profile resulting
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from the numerical integration of Equation (54) is employed to initiate
the boundary-layer computations in the lower deck at X = -6. A con=-
firmation that the computations have been initlated an adequate dist-
ance upstream from the traliling edge is provided by the skin friction
results from the computations initiated at X = =12, The results from
the longer interval are in agreement with the plotted results to four
decimal places.

The ratio of the actual skin friction at the triple-deck
trailing edge X = 0 to the Blasius value is ll from Equation (66).
Performing hZ-extrapolation on the data yields the result Ay = 1,343,
1t may be noted that the skin friction approaches its tralling-edge

value smoothly from the left

au/az = 1,343 + 0.550X, X <O,

Z=0

For comparison, Figure 10 of Schneider and Denny (1971) shows two
constant values for the skin friction in the immediate trailing-edge
region, one labeled second order boundary layer, the other isobaric
plate. The ratio of their second-order boundaryelayer skin friction to
the isobaric plate~skin friction is approximately 2.75/2,10 = 1,31 for
their single Reynolds number of 105. At the lower Reynolds numbers of
40, 100, and 200, Dennis (1973) has found that A; = 1.33 by fitting
the skin«friction data from his numerical solutions to the Navier-
Stokes equations with the R"B/8 scaling of the triple deck.

The multiplicative constant in the second term of the drag
equation is the result of the integration of the increased skin

friction in the tralling edge reglon shown in Figure 4. The drag on
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one side of the finite flat plate is given by Equation (47) as
Cq = 1.328 R°1/2 4 2,605 R°7/8 4 | |, (89)

with the constant in the second term evaluated from the numerical
integration of the skin friction along the plate and the contribution
from the Integral of the asymptotic expansion, Equation (56), valid

from the numerical endpoint to minus infinity. Messiter (1970) obtained
the approximate values of 1.58 from his assumed A(X) and 1.21 from his
computed A(X) for this constant. His values are lower than the present
result because of the smaller favorable pressure gradient acting over
most of the plate in his computations.

The drag coefficlients predicted using Equation (89) are com=-
pared with the data of Dennis (1973), Dennis and Chang (1969) and
Dennis and Dunwoody (1966) in Table 1. The present results are about
ejght per cent high at R = 1 (€ = 1), two per cent high at R = 15
(€ = 0.713), 3.6 per cent low at R = 1,000 (€ = 0,422) and nearly
exact at R = 10,000 (€ = 0.316) as compared with the numerical solu-
tions of the Navier-Stokes equations. The accuracy of the two-term
formula for the drag was unexpected at the lower Reynolds numbers,
since the neglected third term is 0(R"1) and the term retained is
0(R'7/8). It was not entirely without precedent, however. Lagerstrom
and Cole (1955) found that at R = 2 the skin friction predicted by
boundary-layer theory plus the first correction agreed to within one
per cent with the exact solution for the example of a cylinder
expanding at a parabolic rate. However, the neglected third term in

their expansion differs from the second term by the inverse square
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root of the Reynolds number. This example prompted their comment,
also reported by Van Dyke (196&4), that ", ., . the first correction to
boundary-layer theory would predict the skin-friction (in separation-
less flow) down to much lower Reynolds numbers than generally imagined,
say R, = 10 or even 5." The data in Table 1 and the following data
are even more surprising, since the exponents in their expansion are

much further separated than the exponents of the present expansion.

TABLE 1

DRAG CO{PARISON WITH NUMERICAL DATA
FLAT PLATE DRAG

e
S

R Cq (Equation (89)) Cd1 Cd2 Cd3
1 4,022 3.79 3.64 3.708
2 2,408 2,20
4 1.465 1.36
10 0.779 0.773 0,748 0.7535
15 0.595 0.581
20 0,493 0.504 0.483 0.4862
40 0.317 0.323 0.316 0,3144
100 0.181 0.187 0,188 0.1826
200 0.120 0.123 0.1220
500 0.0711 0,0731
1000 0, 0484 . 0, 0502
2000 0, 0332 0.0341
5000 0.0203 0.0206
10000 0.0141 0.0141

1Dennis and Chang (1969)
2phennis and Dunwoody (1966)
3pennis (1973)

Jarour (1951), under the guldance of L. Prandtl, conducted
experiments in the oil tunnel for viscous flow at the Wilhelm

Institute at Gottingen in 1935 to determine the lower limit of validity
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of the Blasius drag formula, The lower llml; was found to be
approximately R = 2x104 by extrapolation of the experimental data
taken at 47 Reynolds numbers from 12 to 2335. Table 2 presents the
experimental data tabulated by Janour (1951) and the drag coefficient
predicted using Equation (89)., The mean value of the error is 1,51
per cent, the root mean square error 1s 3.48 per cent and the maximum
error is 7.52 per cent., For comparison, the mean value of the experi-
mental error is given by Janour as £+ 3 per cent, At R = ZXIOA, the
second term of Equation (89) contributes an additional 4.9 per cent
to the Blasius drag, well within the limits of Janour's extrapolation.
For R = 5x105, a commonly accepted upper limit for laminar flows, the
second term contributes an additional 1.5 per cent to the Blasius
drag.

The tabulated results are also shown on Figure 5 where the
experimental scatter is evident., The Blasius drag equation, the first
term of Equation (89), considerably underpredicts the drag for the
lower range of Reynolds numbers, whereas including the second term
corrects the drag prediction to within 0.5 per cent of the experimental
error.

The very close agreement between the present results and the
previous data may be somewhat disconcerting when the next higher-
order term of Equation (89) is considered. Imai (1957) has shown that
this term, due to the overall displacement effect of the boundary layer
on the semi-infinite plate is of O(R'l) and a term of this order also
arises from the trailing-edge region from Equation (47). Unfortunately,

the numerical and experimental data reported In Tables 1 and 2 scatter



TABLE 2

DRAG COMPARISON WITH EXPERIMENTAL DATA

51

Cd Cd
R (Experimental) (Equation (89)) % Error
11,93 0,668 0,6923 3,64
15,83 0.534 0.5741 7.52
15.83 0.564 0.5741 1.80
20,00 0,500 0,4928 -1.43
23.88 0.440 0,4394 - .12
28,02 0.369 0.3967 7.51
31.67 0.348 0,3669 5.46
29,7 0,375 0.3822 1.94
34.9 0.364 0.3451 -5.18
36,62 0,321 0.3348 4,31
40,08 0.300 0,3163 5.46
43.33 0.323 0,3013 -6.71
47.6 0.291 0.2842 -2,33
50,7 0.268 0.2733 1.98
53.4 0,268 0.2646 -1.24
60.3 0,243 0.2455 1.07
75.6 0,218 0.2139 -1,87
92,9 0,191 0, 1888 =-1,11
102.5 0,177 0.1780 .60
115.5 0.168 0,1658 -1.31
138.4 0.153 0.1489 -2,66
165.6 0,134 0.1340 .01
227.3 0.111 0.1114 .40
247.2 0.108 0.1061 =-1.70
219,1 0,1073 0.1138 6.09
234.5 0.1068 0.1094 2,48
318.1 0.0912 0,0918 «73
340, 0.0872 0, 0884 1.42
403, 0, 0806 0,0803 - .37
432, 0,0764 0,0772 1.05
483, 0.0702 0, 0725 3,28
516, 0.0678 0. 0698 3.04
640, 0.0620 0,0619 - .11
993, 0,0460 0, 0485 5.59
1050, 0. 0458 0.0471 2,85
1134, 0.0438 0.0451 3,10
724, 0, 0547 00,0578 5.72
785, 0.0528 0.0552 4,72
808, 0.0520 0,0544 4,65
1143, 0,0450 0, 0449 - ,08
1336. 0.0417 0,0412 - ,98
1542, 0,.0391 0,0382 =2,32
1680, 0.0345 0,0364 5.67
1921, 0.0326 0.0339 4,01
2133, 0.0313 0.0320 2,39
2262, 0.0305 0,0310 1.80
2335, 0.0304 0, 0305 .41
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about the present results and trends with R"! cannot be discerned,
A plausible explanation appears to be that the term of O(R'l) and
other higher fractional-order terms resulting from the trailing-edge
region tend to cancel the O(R'l) term of Imai (1957).

The increase in skin friction is caused by the favorable
pressure gradlent induced on the plate by the wake. The pressure
distribution on the plate and downstream in the wake is shown on
Figures 6 and 7. The pressure P(X) of Figure 6 is related to the

physical pressure p* by

1/2
Px) = A2 €% (p* - p ol (90)
and the streamwise coordinate X Is related to the physical coordinate

x* by

X = a3/6 €3 xx/L 1)

as in Chapter II. Messiter (1970) also employed the above scaling and
his approximate results are shown on Figure 6 for comparison., Up-
stream near X = =3 Messiter's results are in agreement with the
present results. In the range «3 < X < _75 Messiter's pressure
gradient is apparentlyvy less favorable than the present results, thus
accounting for the smaller multiplicative constant he obtained for

the second term of the drag equation. The minimum value of the
pressure 1s reached at X = 0 in both anal&ses and Messiter (1970)
found Py ~ -0,36 while here P, = -0,388, Downstream in the wake

Messiter's pressure apparently reaches a maximum of P(X) ~ 0,06 at
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X~ 2,75, The pressure computed here reaches a max imum of P(X) =
0.049 at X = 3,05 and diminishes to the asymptotic behavior pre~
dicted by Equation (64) with b, = -0,275. The constant b, also occurs
in the expansions of the pressure upstream and the centerline velocity
and displacement function downstream as indicated in Equations (65),
(63), and (62), respectively. The constant b; was determined by
fitting the numerical data from these three independent sources to
serve as a check on the accuracy of the results. The discussion of b1
will be deferred until the relevant results are presented.

Schneider and Denny (1971), who did not employ the Reynolds
nunmber scaling of Stewartson (1969) and Messiter (1970), obtained
results for the specific Reynolds number R = 105. Their pressure
results are shown in Figure 7. Along the plate and in the immediate
wake their pressure gradient and the present results appear in agree-
ment although their pressure level is lower. The similar pressure
gradients on the plate produce similar increases in the skin friction
as evidenced by the close agreement of Al and their second-~order
boundary=~layer results., In the wake the pressure results of Schnelder
and Denny (1971) reach a relatively high peak before rapidly diminish-
ing to the freestream value while the present results smoothly approach
the asymptotic f{reestream value.

The pressure distribution is generated by the displacement
function of the lower deck, shown with Messiter's approximate solu=
tions on Figure 8. Messiter (1970) assumed the form for A'(X) given
by Equation (76) with Cg = O, performed the Hilbert integral analyti-

cally, then employed an Integral sublayer method to arrive at a
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computed A(X) which was compared with the assumed A(X) to ascertaln
the adjustments required in the C;. The method is similar to the pro-
cedure employed here to improve the input data. Messiter was able to
obtain a computed A(X) that is in qualitative agreement with the
assumed A(X). Both functions are displayed on Figure 8 along with
the present results which lie between Messiter's results on the plate
and approximately follow his assumed A(X) in the wake, Asymptotically
the present results satisfy the expansion of Equation (62) for X — =
if by = -0.275.

From Equations (18) and (24), A(X) multiplies the first-order

perturbation to the streamwise velocity in the main deck

umUyy) + € A"37% A(A/4 ) aufag . .. . (92)

Considering Equation (92) as a Taylor series in Uys it is evident that
A(X) represents a shift in y or displacement of the streamlines
throughout the main deck.

In the upper deck, the pressure is related to the slope of the
displacement function A'(X), shown on Figure 9 by linear airfoil
theory, i.e., the Hilbert integral, Equation (43), Physically, Af(X)
is the negative of the veclocity normal to the blate at the lower edge
of the upper deck and is of 0(62) from Equations (27) and (28). As
shown on Figure 9, the vertical velocity ls not discontinuous at the
trailing edge as in the joining of the Blasius (1908) and Goldstein
(1930) solutions. The triple-deck analysis has smoothed out the
discontinuity in the normal velocity, which was its purpose, The maxi~

mum normal velocity occurs immediately aft of the trailing edge and

strong gradlients exist in this reglon.
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The assumed A'(X) of Messiter (1970) and the revised A'(X) for
the present input data do not approximate the solution well near the
maximum., The revised A'(X) is closer to the solution upstream of the
trailing edge, thus accounting for the increased computational time
required to achieve convergence when Messiter's form of A'(X) was
employed as initial data. The improvement in A'(X) is primarily due
to the change in the constant C, of Equation (76) which was diminished
from Messiter's value of 3.0 to 1.5,

At this point it is relevant to reconsider the skew-reciprocal
Hilbert integral subroutines and perform an error check. The sub-
routine that computes A'(X) from P(X) is required by the numerical
procedure to produce the results just discussed. The subroutine that
computes P(X) from A'(X) is not required in the main loops and there-
fore may be employed as a check on the skew=-reciprocal nature of the
preceding pressure and displacement thickness results. The A'(X) of
Figure 9 was input to this subroutine and the resulting P(X) was com=
pared with the P(X) of Figure 6. The error, based on the pressure
at the tralling edge, is about one per cent over most of the numerical
range as shown on Figure 10, For the short range calculations
-6 < X < 6, the error reaches a maximum of 4,5 per cent at the down-~
styeam extreme of the range, X = 6, Thus, the preceding P(X) and
A'(X) are properly skew-reciprocal within the error shown on Figure 10,
The extended curves of Flgure 10 pertain to the computations originat-
ing at X = «12, The error is diminished to about 0.5 per cent using
the extended interval and again reaches a maximum of five per cent at

the downstream extreme, X =~ +12, The decreasing error with increasing
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interval length is in agreement with the Hilbert transformation error
analysis, Appendix A. The skin friction data resulting from the two
computations agrees to about 10~4 indfcating that errors of the magni-
tude shown on Figure 10 in the pressure and displacement thickness
have little effect on the solution.

Another quantity of interest, which iIs also required for the
computation of the constant b; is the wake centerline velocity shown
on Figure 11. FPhysical coordinates at R = 10% have been employed to
permit comparison with the data of Schneider and Denny (1971). The
present results agree with the results of Schneider and Denny over the
downstream range 0,001 < x*/L < 0,05, Far downstream the present
results corractly approach the one-term Goldsteln (1930) results., The
results of Schneider and Denny (1971) apparently lie between the one-
term Goldstein and the full Goldstein results at x*/L = 1 correspond=-
ing to thelr second-order boundary=-layer calculations which employ the
true edge velocity as the boundary condition, rather than matching to
the main deck as in Stewartson's theory.

The desirablility of using a smaller streamwise step size is
evident when the small x*/L range is viewed. Computational time
limitations on the present numerical procedure prohibit the use of a
AX small enough to determine precisely how the present results approach
the Navier-Stokes region computed by Schneider and Denny. Both sets
of data approach the small x*/L behavior of the centerline velocity
predicted by Equation (73) but the resulté of Schneider and Denny

deviate for x*/L < 3 x 1074,
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Expanding the previous streamwise scales and returning to the
triple-deck coordinates to permit visualization of the region near
X = 0 (Figures 12 and 13) we see that the present results approach the
behavior predicted by Equation (73) as the step size is halved. The
sensitivity of the results to the step size on this scale is not
surprising since Plotkin and Fluggee-Lotz (1968) encountered the same
phenomena in their computations to obtain an improved first approxie-
mation to the solution in the trailing edge region at high Reynolds
numbers. It should also be noted that the second-order terms of the
expansions Equations (73) and (75) are very nearly equal to the first-
order terms and could easily account for the small disagreement
evident in Figures 12 and 13,

The pressure results, Figure 13, exhibit the same trends as
the centerline velocity as X — 0, Upstream the pressure results are
less sensitive to step size than downstream because the boundary layer
has not been directly notified that the skin friction has vanished.
Alternatively, the pressure is more singular as X — 0 from the wake
side than as X —3 0 from the plate side of the trailing edge. The
pressure at the trailing edge PO has been evaluated from the limit as
X -» 0 from the left for this reason.

We have now discussed the numerical dasa for the three func-
tions A(X), P(X) and U(X,0), together with the predicted asymptotic
behavior near X = O, The_asymptotic expanslons for large X of these
three functions each contain the arbitrar& constant b1 which must be
determined from the numerical procedure, The satisfaction of the

asymptotic boundary conditions is of major importance in assessing the
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accuracy of the numerical procedure., The present results all approach
the predicted asymptotic behavior for IX' ~> oo ; however, the second-
order terms serve as a more stringent test of the accuracy of the
numerical procedure. Here the asymptotlic expansions were numerically
fitted to the previous numerical data to simultaneously determine the
second-order constant b1 and provide a measure of the numerical
matching of the data and the expansions.

With the obvious change in notation, each of the expansions
Equations (62), (63), (64), and (65) were rearranged to determine the

constant by appearing in the second-order term, i.e.,

by = [31/2 |x[2/:3 (% - P7)/(0.892) - 1] |x| 72 (93)
by = [AX) # 0,070x"L - 0,892x!/3 ] x2/3/0,802 (94)
by = [U(X,0) - 0.052x"! - 1.611xY/3 ] x?/3/1.611 . (95)

The difference of Equations (64) and (65) was formed to eliminate the
higher-order constant dy from the pressure expansions. By substitue
tion of the values of P(X), A(X) and U(X,0) obtained from the numerical
procedure the values of b; required to fit each function to second=-
ovder to the predicted asymptotic behavior are found, Ideally, the
three by curves should approach and remain at one constant value as

X — «, The fact that the by curves of Figures 14, 15 and 16 do not
is, admittedly, a shortcoming of the numerical procedure. The curves
shown pertain to the preceding data. The numerical study which led to

the selection of the preceding values for the parameters of the
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interval is contalined in Appendix B. Figure 14 pertains to the data
obtained with 0 <Z <9, H= 0,1 and -6 < X< 6, AX = 0.05. Figure 15
pertains to the same interval with H = 0,05 and AX = 0.025 while
Figure 16 pertains to the extended interval =12 < X < 12 with AX =
0.05 and H = 0,1, as employed for Figure 14,

A nominal asymptotic value of -0.275 has been selected for b;
from the three sets of data. To set the frame of reference, the %10
per cent error bounds on b; amount to a one per cent error in P(X) and
a 0.5 per cent error in A(X) and U(X,0) at X = 6 from Equations (62),
(63), (64), and (65). In fact, an error of 100 per cent in bj only
amounts to a nine per cent error in P(X) at X = 6,

It should be noted that the respective bA' bU and bP curves
are in agreement betwcen three different sets of data within the range
X < 2. This is definite indication that the small changes in the
large X behavior of A(X), P(X) and U(X,0) encountered here do not
appreciably effect the solution nearer the trailing edge.

The by and by curves are within the 10 per cent error band of
the nominal by as X becomes large in all three cases indicating that
A(X) and U(X,0) agree with the predicted asymptotic behavior to
within 0.5 per cent,

The pressure results are indeed the least accurate., The bp
curve may even appear divergent as X — 6 on this scale. The curve
is not divergent since the bp of Figure 16 is smooth In the range
46 < X < 10, the steep Increase in bp occﬁtring at X = 12, This steep
increase in bp, which approaches nine per cent error in P(X), is

attributed to several numerical problems. The computation of bp
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becomes less accurate as IX' ~> © because P(X) is approaching zero
at both ends of the range and the difference must be employed to
compute bp from Equation (93). The by and by computations do not
encounter the small differences incurred in the computation of bp.
For example, at X = 6, A(X) ~ 1.6, U(X,0) ~ 3 while P(X) =~ 0.05. The
second numerical problem is the Hilbert integral which is dependent
on the functions A'(X) and P(X) over the entire interval. As |X| —>
both A'(X) and P(X) — 0 and the integral is the sum of hundreds of
larger values which must cancel. This is the classical nemesis of
numerical analystr, The slope and magnitude of the error is in agree-
ment with the resnlis of inverting the solution using the Hilbert
transformation, Figure 10. The error does not significantly affect
the results becausc the error is a small percentage of a very snall
functiqn value removed a sufficient distance from the trailing edge
region.

The constant b; corresponds to an origin shift in X which is

evident from the binomial expansion
X173 5 4203 axt3 (Lapxaxae ...
-x1/3 4 x2/8 s34, L,
SO AX = 3by. The origin shift is evident when the present velocity
profiles are compared with the first-order Goldsteln wake velocity

profiles given by Equation (45) for large X as shown on Figure 17,

The present velocity profiles are uniformly translated upstream since
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bl is negative. As X increases the magnitude of the shift properly
diminishes. The origin shift is also evident when the pressure and
displacement function are compared with the one-term asymptotic ex-
pansions as shown on Figures 6 and 8,

The condition that the veloclity profile of the lower deck must
ultimately merge with the Goldsteln wake velocity profile Is attained
by the numerical procedure, This condition cannot be enforced because
of the parabolic nature ¢. the boundary=-layer equations and serves as
another check on the results. From Equation (62) bj is the shift in
A(X) or the velocity at the outer edge of the profile ard from
Equation (63) by is the shift in U(X,0), the velocity at the lower edge
or wake centerline.

The perturbations to the linear velocity profile of the lower
deck caused by the preceding pressure gradients are shown on Figures
18, 19 and 20. The velocity perturbations show that the outer edge
was taken sufficiently large since A(X) attains its constant value
well inside the outer edge at all streamwise locations. Upstream on
the plate the perturbations are small and permit the expanded velocity
scale of Figure 18 where a slight departure of the velocity profile
from the vertical direction is evident at Z = 6. The velocity varia=-
tion at Z = 6 is greater than 10'4, the error tolerance on A(X), and
necessitated moving the numerical outer edge of the lower deck from
Z=6toZ =9 todetermine the second~order constant, b;.

The significance of the proper placement of the outcer edge of
the layer 1s that the outer boundary condition is enforced on the

profile by the numerical method., The effects of enforcing the
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boundary condition propagate for some distance down the profile and
into the layer. The propagation of the boundary condition into the
layer requires that the numerical outer edge of the layer be placed
away from the region of interest. It 1s shown in Appendix B that the
skin friction and A; are not significantly affected by changing the
depth of the layer from 2, = 6 to Z, = 9, insuring that the outer edge
boundary condition has not been enforced prematurely,

Figures 18 and 19 demonstrate that the velocity increases
smoothly to the trailing edge under the influence of the favorable
pressure gradient induced on the plate by the wake. Note that the
velocity perturbation, U - Z, is plotted on Figures 18, 19 and 20,

At the trailing edge, X = 0, the velocity profile is smooth and
differentiable as assumed in the triple-deck analysis., Downstream of
the trailing edge the effects of the vanished skin friction and rapidly
Increasing centerline velocity propagate smoothly outward into the wake
velocity profiles as shown on Figure 20, The slope of the perturba-
tion velocity profiles at Z = 0 must be -1 to satisfy the boundary
condition along the wake centerline. Ultimately, the velocity pro-
files downstream, Figure 21, merge with the Goldstein wake velocity

profiles to satisfy the conditions downstream, as shown on Figure 17,
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CHAPTER V
CONCLUSIONS

The present numerical analysis has provided additional valida-
tion for the triple-deck flow structure at the trailing edge of a flat
plate and determined the constants required to complete the asymptotic
expansions of Stewartson (1969). The results are self-consistent for
the various grid sizes and numerical ranges employed for the computa=
tion, The present results have been demonstrated consistent with the
previous numerical analyses of others and with the experimental data
of Janour (1951) for the entire laminar range of Reynolds numbers.

~ A summary of the present numerical results is presented in
Figure 22. As qualitatively predicted by Stewartson (1969) and
Messiter (1970), the pressure gradient is favorable to the trailing
edge, steeply adverse immediately aft of the trailing edge, and again
favorable downstream of the pressure overshoot, The skin friction
continuously increases from the Blasius value to AA,, its value at
the trailling edge. The displacement function A(X) also continuously
increases from its upstream value on the plate through the tralling
edge region and downstream to the Goldstein wake.

The numerical results are also tabulated in Table 3, The

third decimal place is believed to be accurate.
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TABLE 3

THE NUMERICAL RESULTS

X P(X) AKX) aU/AZ{ 5.0 u(x,0)

=5.0 -.113 . 064 1.035

-4.5 -.120 .069 1.039

~4,0 -.129 .076 1.044

-3.5 -.140 . 084 1.050

-3.0 -.152 .09 1.058

-2,5 -.167 .107 1.069

=2,0 -.186 .125 1,084

-1.5 -.211 .148 1.106

-1.0 -.245 .181 1.139

-0.5 -.296 .233 1.198

0.0 -.388 .335 1.343 0.
0.5 -. 082 .539 0. 1.024
1.0 -. 004 .710 1.367
1.5 .028 .850 1.620
2.0 . 042 967 1.825
2.5 . 047 1.068 1.999
3.0 . 049 1.156 2,150
3.5 .048 1.234 2,285
4.0 . 047 1.305 2,407
4.5 . 044 1.369 2,518
5.0 . 041 1.429 2,622

The theoretical extensions of the triple-deck analysis of
Chapter II which are necessary to include the effects of a compres=-
sible subsonic freestream, a supersonic freestream, a hody of non-zero
thickness, and angle of attack arc reported in Stewartson (1974), The
present numerical results may be generalized to account for the sub-
sonic freestream. The numerical solution for the supersonic freestream
case has been performed by P. G. Daniels and is reported in Stewartson

(1974).
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The numerical problem associated with a body of non-zero
thickness, discussed by Riley and Stewartson (1969), entails the
accurate determination of the separation point and has not been solved,

The effects of non-zero angle of attack or the fundamental
problem of the triple deck for a lifting flat plate has been posed by
Brown and Stewartson (1970). The numerical problem is similar to the
present problem but complicated by the asymmetry of the floﬁ. The
numerical solution has not been obtained since the angle of attack
generates different pressures and displacement functions on the top
and bottom surfaces of the plate which present another formidable
problem. It should be noted that the present numerical procedure is
constrained by the time required to perform the computations. 'This
constraint is primarily due to the boundary-layer subprogram. It 1is
recommended that subsequent numerical procedures employ considerably
faster boundary-layer computation methods to solve the above problem,

The unique numerical method developed here 1s the methad of
solving the boundary-layer equations iteratively for the pressure
gradient. This numerical method is stable and does not require
smoothing of the data to achieve convergence between the inviscid flow

and the boundary layer.



APPENDIX A
ERROR ANALYSES OF THE NUMERICAL PROCEDURE

Two error analyses relevant to the numerical procedure are
presented in this Appendix, The first checks the initial velocity
profile of Figure 2. The second was used to develop the Hilbert

transformation subroutines,

The Upstream Velocity Profile

The upstream velocity profile may be obtained by several
methods, Originally, the boundary=layer equatioqs wvere integrated
along the plate from an arbitrary -X location where a linear velocity
profile was assumed to exist with the pressure gradient given by
Equation (48) until the asymptotic value of the displacement thickness
given by Equation (56) was obtained. This method was later found to
have produced a velocity profile, labeled 1 on Figure 23, with a 2.5
per cent larger skin friction than predicted by Equation (56), The
second method corrects this difficulty by numerically integrating
Equation (54) using Hammings modified predictor-corrector method
(Ralston and Wilf (1960)) and substituting the results into Equation
(52) to obtain the correct asymptotic velocity profile for X large
and negative, The numerical solution of Equatfon (54) is presented in

Table 4, The initial velocity profiles for X = -6 obtained from these
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two methods are shown on Figure 23. The third profile serves as a
final check, It is a result from the final program started at X = =12
with an initial velocity profile from Equation (54) and converged to

the solution.

TABLE 4
THE NUMERICAL SOLUTION OF
Py - 1897 By’ - 36 (7F] - Fy) = -1.8330
Z ' (U-7)X e
A Py F = =22 F
7 3(2}()1/3 1.7840 1
0 0 0 . 6580
, 05 . 0008 , 0306 .5673
.10 .0030 .0568 4813
.15 . 0064 .0789 4031
.20 ,0108 .0973 3361
.25 .0161 L1125 - 2749
.30 .0220 L1249 .2249
.35 . 0285 .1351 .1834
A .0355 L1434 . 1492
.45 .0428 .1501 .1213
.50 . 0505 . 1556 . 0988
.55 . 0584 .1601 . 0805
.60 . 0665 .1637 .0659
.65 0747 .1667 . 0540
.70 . 0831 .1691 . 0445
.75 . 0916 L1712 .0368
.80 .1002 .1728 . 0305
.85 .1089 L1742 . 0255
.90 L1177 .1754 L0214
.95 . 1265 L1764 . 0180
1.00 .1353 L1772 . 0152
1.05 . 1442 L1779 0129
1.10 .1531 .1785 .0110
1.15 .1620 .1790 . 0095
1,20 L1710 L1795 ., 0082
1.25 . 1800 .1799 . 0071
1.30 . 1890 .1802 . 0061
1.35 . 1980 . 1805 . 0054
1.40 .2070 . 1807 . 0047
1.45 .2161 .1809 , 0041

1.50 .2251 .1811 . 0036
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The velocity proflle resulting from the integration of the
boundary-layer equations originating from a linear velocity profile,
curve 1 of Figure 23, is shallow, Indicating that the layer was not
given sufficient distance to develop or the Z - « boundary condition
was enforced prematurely at Z, = 6. The asymptotic velocity profile
resulting from the integration of Equation (54), curve 2 of Figure 23,
is ih agreement with the solution from the computations initiated at
X = =12, curve 3 of Figure 23, the skin friction differing by less
than 0.3 per cent and the velocities across the layer differing by a
lesser amount, The differences have been greatly magnified by the
subtraction of the linear portion of the velocity profile to permit
visualization. It should also be noted that as Z -5 9 the profile
becomes vertical indicating that the boundary cordition given by
Equation (84) is not being enforced prematurely,

A clear indication that the initial velocity profile has been
located a sufficient distance upstream is given by the skin friction
results shown on Figure 24, When the velocity profile labeled 1 of
Figure 23 is used to begin the computations, the skin friction curve
begins at the larger, Incorrect value but recovers to join the correct
skin friction curve further downstream. The increased skin friction
from X = -6 to X = -3 due to the shallow initial velocity proflile
results in a three per cent higher multiplicative drag constant, thus
necessitating the use of the corrected veloclity profile labeled 2,

Another confirmatfon that the depth of the layer is sufficlient
to correctly determine the skin friction is provided by the value of

Aj. Performing hz-extrapolation (Beckenbach (1961)) on the data
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resulting from either of the initial velocity profiles ylelds the same

result, A; = 1,343,

The Hilbert Integral

The numerical method used to compute the central portion of the
Hilbert integral, subtracting the singularity, has been checked by
comparison with a second method and by comparison with the solutions
to Van Dyke's (1959) airfoil integrals. The two Hilbert transformation
subroutines were checked by employing the skew-reciprocal property of
the transformation,

The second method for the numerical evaluation of Cauchy inte-
grals is reported in Collatz (1966) and attributed to Weber. The
method consists of splitting the range of integrqtion about the
singularity and translating the singularity to the origin in each of
the resulting integrals. Thus, employing this method, the center

integral of Equation (79) is

e X-a e -x
P
! (Xy) dxy _ J P(X-s) ds _ ) P(X4s) gg (96)
a X-X; o s ° s

where s = X-X; in the first integral and s = X;-X in the second
integral on the right hand side., When the integrands are combined,
three cases that depend upon the position of the singularity within

the original interval result and

X=a X=-a
J,e, P(Xy) axy I P(X#s)=P(X-s) 4. . W) P(X+is) 4s
a x-xl o s e=-X s

97)
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Here j = 41 if IX-aI < le-xl, j = 0 {f ‘X-al - Ie-xl and j = -1 when

'x-al > |e-x . In each of the three cases the singularity has been

translated to the origin. The remaining portions of the integrals
are nonsingular and may be integrated by the trapezoidal rule, The
singularity is treated by assuming a Taylor series as it was for the
subtraction of the singularity method.

An error analysis was performed utilizing three of Van Dyke's
(1959) airfoil integrals. The solutions are given in closed form and
the two methods were compared with each other and the solution. For
the three cases considered smaller errors were incurred using the
subtraction of the singularity technique than with Weber's method,
It was therefore eliminated from further consideration. Figuré 25
presents the error incurred during the computatién of the Cauchy
integral of the function X% since it was determined that cubics fit
wide ranges of Messiter's (1970) data very closely, The error
approaches three per cent as the singularity approaches the endpoint
for AX = 0,1, For the smaller step sizes, AX = 0,05 and 0.01, the
error is less than 0.7 per cent for all peints., The error for
AX = 0,05 is small and this step size was selected to perform many
of the ensuing computations. The smaller step size was reserved for
final checks on the entire program,

The skew-reciprocal property of the Hilbert transformation
permits the simultaneous error analysis of both the P(X) and A'(X)
subroutines. One svbroutine computes A'(X) from P(X) by assembling
the appropriate expressions for the integrals of the asymptotic ex-

pansions of P(X) and the above numerical methods. Particular attention
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i{s required to insure that each method is employed only within its
range of validity, f.e., X = a, X< 0, X =0, X> 0 or X =e, The
other subroutine computes the pressure, P(X), from A!'(X) by the same
procedure utilizing the appropriate expressions resulting from the
integrals of the asymptotic expansions of A'(X). Subsequent error
analysis and programming checks were facilitated by the skew-reciprocal
nature of the subprograms which were combined in a short flip-flop
program, The input 1is an assumed A'(X); the output is the error
accumulated in computing the pressure from A'(X) and then computing
A' (X) plus the two-way error from the pressure, Messiter's (1970} form
for A'(X), Equation (76) with Cg = 0, was used to check the sub-
routines since the converged form was not yet avallable. The relevant
error is the error in computing A(X) since it is A(X) that drives the
inner loop to produce P'(X). This feature of the inner loop elimin-~
ates the requirement for further numerical differentiations and
simultaneously requires a numerical integration,

Figure 26 presents the error incurred in performing the transe
formation and inversion of A'(X) and the subsequent trapezoidal rule
integrations employed here and in the main program to obtain A(X).

The error based on the local value of the function reaches a maximum
of about seven per cent when the limits of the numerical integration
are located at X = £ 3, Extending the limits to £ 6 diminished the
maximum error to about five per cent thus demonstrating the necessity
for extending the limits on the main program to X = £ 6 or larger.

It is noted that the error does not decrease with AX and remains

relatively constant with AX decreasing. This must be attributed to



-3

Per Cent
Error A

in
A(X)

-5
-6

-7

AX = 0.10
3 AX = 0.05
OX = 0,005
Ax = 0.10
- OX = 0,05
1 ] J | ] | 1 i
-5 <4 =3 -2 -1 1 2 4

Fig.26.~«Hilbert Transformation Error Analysis

£6



94
the addition of the integrals of the asymptotic forms since Figure 25
demonstrates that the numerical scheme employed in the central section
produces errors that diminish with AX.

The error curves of Figure 26 represent an extreme upper bound
for the main program because the outer loop only requires the single
transformation of P(X) into A'(X) and the results are smoother func-
tions of X than were those employed here. Error checks of this type
were also performed using the results and are reported In the discus-

sion of the results, Chapter 1V,



APPENDIX B
THE ASYMPTOTIC BEHAVIOR OF THE NUMERICAL RESULTS

The purpose of this Appendix is to present the numerical study
which led to the selection of the boundary conditions and parameters
of the numerical interval employed during the computation of the final
data. The computations reported in this Appendix were performed on
the interval =6 < X < 6 with AX = 0,05 and H = 0,1. The location of
the outer edge was a variable. 1In order to decrease the computational
time required and the cost, all ensuing computations were initlated
with the solution, i.e., the A'(X) and P'(X) from a previous computa-
tion. The effects on the solutjon wrought by the vartous changes in
the numerical procedure were measured by the relative agreement of the
bl curves. The constant b; measures how precisely the numerical solu«
tion approaches the asymptotic predictions for the pressure, displace-
ment thickness and centerline velocity. The coefficient b; of the
second=order term of asymptotic expansions Equations (62), (63), (64),
and (65) is computed using Equations (93), (94) and (95). Seven
different cases are reported, Figures 27 through 33, for comparison
with the final results on Figure l4,

The bA’ bP, and bU values for the first case are presented on
Figure 27. The shallow initial profile of Figure 23 initiated the

computations and the outer edge of the layer was located at Ze = 6.
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The by values resulting from the asymptotic expansion of U(X,0) appear
to be approaching the nominal value. The bp values resulting from
the asymptotic expansion of P(X) approach the nominal value then
rapidly increase due to numerical error. The b, values resulting from
the asymptotic expansion of A(X) reach a maximum value about 10 per
cent above the nominal value of bj.

The first change in the main program subsequent to achieving
the convergent numerical procedure was generated by the skin friction
of Figure 24 which is noticeably larger than the predicted asvmptotic
vélue when the shallow initial velocity profile is employed to start
the computations. Improved computations of Case z were initlated
using the velocity profile shown in Figure 23 with Z, = 6. The
centerline velocity and pressure results were slightly improved and
the displacement thickness results,'bA, were significantly improved,
as shown on Figure 28, The effect of the incorrect outer portion of
the initial profile had propagated throughout the entire streamwise
course of the lower deck while the lower portions of the velocity pro-
files were affected a much shorter distance.

To insure that the outer edge=boundary condition was not being
enforced prematurely, the outer edge of the layer was removed to
Le = 8, The results of Case 3 indicate that Z, = 6 is too shallow,
for both the pressure and displacement thickness results came into
closer agreement with the centerline velocity results which remained
relatively unchanged, as shown on Figure 2@.

However, the rapid increase in the pressure results toward

the downstream end of the numerical interval remained. The pressure
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shift at the upstream end of the interval to obtain the correct value
of A'(X) could have been the cause, The shift of the entire pressure
curve by a constant AP produces a logarithmic term in A'(X) through

the Cauchy integral, Equation (78). Thus, if

e
1 AP
AA'(X) = - = [ —=—dX
11 a x-xl 1

then

AA'(X) = - AE 14 IK_"_Q
11 X-e

over the finite numerical range of integration. The numerical proce-
dure shifts the entire P(X) curve resulting from the inner loop until
A' (X) agrees with the predicted asymptotic behavior Equation (56).
This shift could induce the rapid increase in the bp curves of the
previous Figures 27, 28, and 29 through the above logarithmic term.
The results of Case 4 demonstrate that the above hypothesis
is false. The pressure shift was deleted and a value of b; was com-
puted by averaging the values of b, and by from the previous cycle of
the iteration procedure. The pressure expansion for X —» = e
Equation (65) with the cvclically updated value of by was used to
obtain the initial value of the pressure, P(a). The numerical pro-
cedure converged more slowly to the same results as Case 3 as a com=
parison of Figures 29 and 30 will show., The effect of shifting the
pressure curve to obtain the asymptotic value of A'(X) is to damp
the oscillations which occur during the cycles of the iteration pro-

cedure and thus increase the rate of convergence,
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The computations to this point have not Included the second-
order terms of the asymptotic expansions of P(X) and A(X), which
depend upon bl' in the integrals of the asymptotic contributions to
the Hilbert transformation, Equation (79)., Case 4 demonstrated that
the iteration procedure will converge without the pressure shift and
employed a method to update the value of b; during each iteration cycle.
Case 5 illustrates the effects of including all the second-order terms
in the asymptotic contributions to the Hilbert transformation utilizing
the b; obtained by the method of Case 4, The outer edge of the layer
was removed to Z, = 9 and A(X) was computed at Z = 8 to further insure
that the effects of the outer edge boundary condition were minimal.
The inclusion of the second~order terms in the Hilbert transformation
effectively reversed the previous results about the nominal value as
shown on Figure 31. The pressure results of Case 5 rapidly decrease
from the nominal value of b;.

Case 6, Figure 32, is the useful result of a programming error,
The sign of b; was inadvertently reversed before being input to the
Hilbert transformation subroutine. Thus, the second-order terms of
the asymptotic contributions are subtracted from the resulting inte=
gral, The results again indicate a rapid Increase in bP and a greater
variation from the nominal value of bj than the previous similar
results,

Taken together, Cases 5 and 6 demonstrate that the numerical
error in the Hilbert transformation is iﬁ the same sense as the seconde
order terms and that the inclusion of these terms is not an adjuvant

procedure,
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The final case was computed to ascertaln the effects of re-
moving the higher-order wake-centerline boundary condition, Equation
(87), and employing in its stead Ry = 0. The previous study by the
momentum=integral method, Equation (88), had indicated that the center=-
line velocity would be slightly reduced and perhaps agreement with the
pressure results of Case 5 could be attained. The results of the com-
putatiol. shown on Figure 33, are disastrous. The three sets of
values of bj diverge from each other as X increases.

An inspection of the preceding seven cases reveals that the
values of b; obtained from the centerline velocity and displacement
thickness data remain near the nomirnal value of =0,275, The errors
shown on the preceding Figures 27 through 32 are second-order and
amount to less than one per cent mismatch between the asymptotic
expansions and the numerical data near the end of the interval. The
pressure data have a much greater range about the nominal value and
mismatches of five to ten per cent occur in the small values of the
pressure at X = 6,

The effects of the mismatches on the plate upstream may be
measured by the changes in kl and the constant appearing in the drag
equation. The variation in kl was less than 0.1 per cent for Cases
1 through 6 and 1.2 per cent for Case 7. The drag equation constant
is somewhat more sensitive to the changes because it is the integral
of the skin friction over the entire plate. Variatlons approaching
1.5 per cent were found except for Case 1 which was initliated with
the incorrect value of the skin friction., The data clearly shows

that small changes a sufficlent dlstance downstream induce even smaller
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changes in the flow upstream. This is also evident from the three
b1 curves which respectively approach the same value as X decreases.
The study of the second-order terms in the expansions of P(X),
A(X) and U(X,0) as X = « undertaken in this Appendix indicates that:
1. The second-order terms should not be included in the
Hilbert integral,
2, The pressure shift should be retained,
3. The higher-order wake centerline boundary condition
is necessary,
4, The outer edge of the layer should be extended as far
as computational time required permits,
5. The initial velocity profile must be accurate, and
6. The downstream boundary conditions should be approached
as precisely as possible,
The numerical procedure used to compute the final data was designed

to meet the above criteria,



APPENDIX C
THE BOUNDARY~-LAYER DIFFERENCE EQUATIONS

The boundary=-layer subprogram solves Eqdation 1)

U , AV _
ax Tz~ "¢

for the velocity profile U(Z) by using a Crank-Nicholson type implicit

finite difference procedure. Introduce the stream function F such that

JF/3X = = V, 3F/3Z = U

and rewrite Equation (41) so that

2
32y 3U  3F 3U
—— w Y S O 202N
372 B 39X ~ 3X oz (98)

where 8 = -dP/dX,

Define ﬁj as the velocity at the previous streamwise station,

X-AX, and
UJ - Uj - 0,5 AUJ
A
where AUj - Uj - Uj

and similafly define the Fj. The subscript j denotes the Z-direction

distance at Z = (j-1) H.
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On substituting the preceding definitions Into Equation (98)

and using centered difference formulas we find that

or alternatively

U_']‘l'l - ZUj + Uj-l AUJ"I - ZAUj + Auj-l

2 212

+p =

wy + ) @ - B (”jﬂ - Ujep BUjap - AUy Fy - F
2/\X 2H 4 AX

The matrix elements of the boundary-layer subroutine are
obtained by collecting the coefficients of Uj#l’ Uj, and Uj-l in the

above equation, By defining
g, = [2 + ¥ Wy » ﬁj)/zmc:]'1
A
Aj -=0, %0,
Bj - - 01 - 02

and

g, [u? + Uy - GJ + W2 ﬁj Uy + Gj)/ZAX]

+ 0.5 [Aj(uj-l - ﬁj_l) + By(Uyy - GJ¢I)J



110

we obtaln the difference equation
Bj Uj+1 + Uj + Aj Uj-l - Rj .

This tridiagonal matrix equation is solved by using Gausslan
elimination to eliminate the Aj diagonal and back substitution to
determine the velocity profile (Richtmyer and Morton (1967)). If the
difference between successive velocity profiles is less than the error
tolerance, the iteration procedure has converged. If not, the velocity
profile is integrated by the trapezoidal rule to obtain an updated
stream function and the iteration procedure is repeated until the
error tolerance Is satisfied. Although not especially fast this pro-
cedure has been found to be stable and accurate for relatively large
step size for a variety of boundary=-layer problems.

The boundary conditions are enforced by prescribing values
for specific elements of the matrix, the velocity and the RJ. The
boundary condition on the wake centerline has been obtained by cone-

sidering a Taylor series of the velocity
2 /.2 2
and the momentum equation
3212 U dy,
oy A
9271

for Z = 0, In difference form,

Uy - Uy = 0.5 02 [3 +(uy - B))/ax]
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which requires that
Bl - -]
and

Ry = -0.5 K [B + Uy (U, - U,)/6X] .

Upstream on the plate, the skin friction is calculated by the

same method from the formula

a_lzl -.g?-.q-o.sus
S PR

since U; = 0,

The boundary-layer subprogram has been used to compute the
Goldstein inner wake with Z, = 9 and H = ,10, AX » .05 or H = .05,
AX = ,025 for comparison with the results in Chapter IV, The pressurc
gradient for the Goldstein wake computation is zero and the main pro-
gram consisted of a single loop which advanced the computation downe
stream, A linear velocity profile was used to start the computation
at the trailing edge. The centerline velocity results for the two
grid sizes are compared with the first term of Goldstein's expansion
for the centerline velocity on Figure 34, The numerical results are
shifted downstream from Goldstein's results because of the finite
step size of the numerical computations. The shift in the centerline
velocity decreases as the step size decreases, The computed
velocities are less than 0.1 per cent smaller than Goldstein's results
for X > 5. Increasing the centerline velocity reported in the results,
Chapter IV, by this amount would decrease the ;alue of by and bring

the bA and by curves of Figures 14, 15 and 16 into closer agreement,
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