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A finite difference method for solving the Navier-Stokes equations 
for an incompressible fluid has been developed. This method uses the 
primitive variables, i.e. the velocities and the pressure, and is equally 
applicable to problems in two and three space dimensions. Essen
tially it constitutes an extension to time dependent problems of the 
artificial compressibility method introduced in [ l ] for steady flow 
problems. 

The equations to be solved can be written in the dimensionless form 

(1) dtUi + RujdjUi = — dip + Aui + Ei, A s X, du 

(2) djUj = 0 

where Ui are the velocity components, Ei the external forces, p is the 
pressure, and R the Reynolds number, di denotes differentiation with 
respect to the space variable #», and dt differentiation with respect to 
the time /. The summation convention is used in (1) and (2). The 
equations are to be solved in a domain £>. Problems where the veloci
ties or their derivatives are prescribed a t the boundary or where some 
boundary conditions are replaced by periodicity conditions have been 
investigated. For simplicity, we shall describe the case where the 
velocities are given a t the boundary and shall assume that a cartesian 
coordinate system is used. An important feature of the method is the 
use of equation (2) rather than a derived equation (see e.g. [2]) for 
determining the pressure. This makes it possible to satisfy the equa
tion of continuity a t the boundary and determine the pressure in a 
natural way. 

Let Du = 0 be a difference approximation to d/Uj = 0. Du takes a dif
ferent form in the interior of 3D where first order centered differences 
are used, and at the boundary where one-sided differences up to 
second order are used to insure second order accuracy. I t is assumed 
that a t the time t = nAt, velocity and pressure fields u" and pn, where 
un^u(nAt) and pn=(nAt), are given, satisfying Dun = 0. The task at 
hand is to compute un+1, pn+1 from equation (1), so that Dun+1 = 0. 

Auxiliary fields u*ux are first computed through 

1 This work was partially supported by the U. S. Atomic Energy Commission, 
Contract No. AT(30-1)-1480. 
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aux n 

Ui = Ui + AtFiU 

where FiU approximates 
— RujdjUi + Aui + Ei, A = 2-f ^i-

Ftw may depend on w*ux, w", and intermediate fields, say u*t u**, etc. 
In general, an implicit alternating direction scheme is used to find 
the fields waux, u*, etc. One of several versions of that method is the 
following (see Samarski [3 ]) : Let Axiy i = 1, 2, 3, be the space variable 
increments, let Ui(Q,rt8) denote Ui(qAxi, rAx2} sAxz), and let Ei(q,r,s) 
denote Ei(qAxi, rAx^ sAxz). uf1* is then computed through 

* n At n * * 
Ul(Qtr,8) = ^ l (« , r , s ) — R — ^ l (a , r ,* ) (^ l (« - f l,r,«) — ^ l ( g - 1.»,«)) 

2A#X 

At * * * \ 

Aa£ 
** * A2 * ** ** 

2A#2 

A£ ** ** ** 
(3) H " (^l(a,r+l,s) + ^l(g,r-l,8) — 2#i(<z,r,a)), 

Ax\ 

aux * * D ** / a u x a u x \ 

2Ax3 

A* 

A4 
+ A/£i(a,r,8) 

—•' . aux aux aux . 
A ,^5 

with similar expressions for ^|ux , u%ux. 
So far the pressure term in (1) and equation (2) have not been 

taken into account. An iteration procedure is now introduced to find 
u"+1 inside 3D and pn+l in 3D and on its boundary by setting 

x n+1,1 n 

(4a) /> = £ , 
(4b) p — p = — XZ>̂  , 
. . n + l , w + l aux m 

(4c) «t- = «»• — Atdp (m ^ 1) 

where X is a parameter, the quantities u"+1'm and pn+l>m are successive 
approximations to u"+1 and £n+1 , and G^p is a function of pn+^-m+1 and 
^n+i,m which tends to a difference form of d{p

n+1 as | £»+i.»+i—£»+i.»| 
tends to zero. The form of Gfp is crucial for the accuracy and rapid 
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convergence of the method and will be defined below in equations 
(5a) and (5b). 

When for some / and some small predetermined constant e 

we define 

I n+l ,J+l n+l ,J i 

max \ p — p 
3) 

n+1 n+l,£fl n+1 n+l,J+l 
Ui = Ui , p = p 

If the velocity component Ui is prescribed a t the boundary, u*+1'm+1 

and u*ux in (4b) and (4c) are replaced by the given value of u{. The 
iterations (4b) and (4c) insure that equation (1) is satisfied inside the 
domain 3D and equation (2) is satisfied in £> and at the boundary. 

The iteration (4) is carried out as follows: Let p(q,r,a) denote 
p(qAxi, rAx2, sAxz). 

n+l,m+l n+l,m+l n+l,m+l n+l,m+l 
P(a,r,s) j wK«±l,r,s), 2̂(ff,r±l,s), ^Z(q,r,s±l) 

are to be evaluated simultaneously; PaXl,m+1 using equation (4b); 
wîî±ï!i) using the formulas 

/C \ n + l , m + l a«3c A t / n+l ,w 1 n+ l ,m+l n+l,m \ 
( 5 a ) ^ l ( g + l , r , s ) = ^ l ( a + l , r , 8 ) — — I P(q+2,r,s) ~ (P(q,r,s) + P(q,r,s)) I , 

2 A # i \ 2 / 

• - . v n + l , m + l aux 

A/ / l , n + l , m + l n+l,rav n+1,m \ 
( 5 b ) ^ l ( g - l , r , 5 ) = ^ l ( g - l , r , 5 ) — — I — (P(q,r,s) + P(fl.r.t)) ~ P ( q - 2 , r , s ) ) , 

2A#i \ 2 / 

with similar expressions for u2, u%. Natural modifications of these ex
pressions are introduced near the boundary, where some of the Ui 
are prescribed and where Du employs noncentered differences. From 
(4b), (5a), (5b) and the analogous expressions for u2 and Uz, we obtain 
a system of seven equations in the seven unknowns 

n+l,m+l n+l,m+l n+l,m+l n+l,*n+l 
UKq±l,r,8), U2(q,r±l,8) , 3̂(g,r,«±l) and P(q,r,8) 

which can be solved explicitly. (There is no need to evaluate the 
un+i,m+i u n t j j af ter t h e pn+i,m h a v e converged, since the «J+1 'w+1 can 
be eliminated from the seven equations.) 

The resulting iteration procedure converges for all \ > 0 under nat
ural restrictions on the domain £), and a best value of X, say Xopt, can 
be determined. For this iteration scheme it can be expected that 
e = 0(At) is sufficient to insure the overall accuracy of the scheme to 
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O (A/), O^tST. This results in a reduction of the amount of computa
tional labor. I t is assumed that A£ = 0(Ax2). 

Tha t the scheme is indeed accurate to 0(At) has been verified on 
certain simple test problems for which an analytical solution can be 
obtained. In one such problem, used as test problem by Pearson [4] 
for a vorticity-stream function method, 3) is a two dimensional square 
0^Xi^Tf 0^X2^7T. R=l, £ i = E2 = 0, and the exact solution is 

Ul = — cos xi sin X2e~2t, U2 = sin Xi cos X2e~2t, 

p = — J (cos 2x! + cos 2xt) e~u 

where appropriate boundary conditions and initial data are used. 
Accurate results have been obtained at the price of a modest amount 
of computing effort. For Atfi=Ax2 = 71-/19= Ax, A*/Ax2 = 2, the 
maximum relative error in U\, U2 over £> after one step is less than 
0.08%; and after sixteen steps, less than 0.02%, using X=Xopt 
=A#2/(A/ sin 2A#), e=Axz; the largest / needed is 6. 

The method is presently being applied to the problem of wave 
number selection and finite amplitude stability in a convective layer 
(the Benard problem, see e.g. [5]) and to a numerical study of energy 
cascading between large and small eddies in a model of turbulence 
(the Green-Taylor problem [ó]). The results of these studies and 
further details on the numerical method will be presented in a forth
coming paper and will point out crucial differences between the 
behavior of solutions of the Navier-Stokes equations in two and three 
space dimensions. 
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