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The Numerical Solution of Weakly Singular
Volterra Integral Equations By Collocation

on Graded Meshes
By Hermann Brunner

Abstract. Since the solution of a second-kind Volterra integral equation with weakly singular
kernel has, in general, unbounded derivatives at the left endpoint of the interval of integration,
its numerical solution by polynomial spline collocation on uniform meshes will lead to poor
convergence rates. In this paper we investigate the convergence rates with respect to graded
meshes, and we discuss the problem of how to select the quadrature formulas to obtain the
fully discretized collocation equation.

1. Introduction. In this paper we present an analysis of certain numerical methods
for solving the (nonlinear) Volterra integral equation

(1.1) y(t) = g(t)+ f (t-sYa ■ k{t,s,y(s))ds,       t e /:= [0, T], T < oo,
•'o

where 0 < a < 1, and where g sind k denote given smooth functions. In practical
applications one very frequently encounters the linear counterpart of (1.1),

(1.2) y(t) = g(t) + f (t-s)'a-K(t,s)y(s)ds,       te/(0<a<l);
•'o

in the subsequent analysis we shall, for ease of exposition, usually utilize the linear
version of (1.1) to display the principal ideas.

The numerical methods to be analyzed will be collocation methods in the poly-
nomial spline space,

(1.3) S^-}\(ZN):= {u:u\a¡=:unGnm_x,0^n^N-l},

associated with a given partition (or: mesh) IT^, of the interval /,

IV 0 = f<"> < *<"> < ■•'  <t{NN)=T
(the index indicating the dependence of the mesh points on N will, for ease of
notation, subsequently be suppressed). Here, -nm_x denotes, for given m > 1, the
space of (real) polynomials of degree not exceeding m — 1, and we have set a0:=
[i0, tx], a„:= (tn, t„ + x] (1 < n < N - 1); the set ZN:= {t„: 1 < n < N - 1} (i.e.,
the interior mesh points) will be referred to as the knots of these polynomial splines.
In addition, we define
(1.4) «:= max{«„:0 < n < N- 1},       «' := min(«„: 0 < « < N - 1),
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418 HERMANN BRUNNER

where hn:= tn + x — tn\ the quantity « is often called the diameter of the mesh 11^.
(Note that, according to the above remark on our notation, both « and «' will
depend on TV.)

In order to describe these collocation methods we rewrite (1.1), for t e aA, in
"one-step form",

(1.5) y(t) = F„(y; t) +/'(/- s)"" ■ k{t, s, y(s)) ds,

where

(1.6) F„(y; /):- g(t) + "i  f+' (/ - s)" ' Ht, s, y(s)) ds
/-o '',

(0 < « < N - 1).
For given parameters {c} with 0 < c, < • • •  < cm < 1 we introduce the sets

(1.7) X„:= {tmJ:~tH + Cjhm\l^j^m}       (0 < « < N - 1),

and we define
Ai-l

*(#):=   U *„;
« = 0

the set X(N) c / will be referred to as the set of collocation points, while the c.'s will
be called collocation parameters. A numerical approximation to the exact solution y
of (1.1) (or (1.2)) is an element of Sj^}\{ZN) satisfying the given integral equation on
X(N); i.e., by (1.5), this approximation u is computed recursively from

(1.8) + h),- ■ fJ (cj - v)-a ■ k{tnj, t„ + vh,„ u„(tn + vh„)) dv

(1 <7 < m),
where

«-1
(1.9) Fn(u;tnj):= g(tnj) + £ /'/+1 (tnJ - s)'" ■ k(tnj, s, U¡{s)) ds

, = o J<,

(0<n < N- 1).
It follows by a standard contraction mapping argument that, for any continuous

k{t, s, y) with bounded partial derivative kv{t, s, y), and for any mesh 11^ whose
mesh diameter « tends to zero as N tends to infinity, (1.8) will define a unique
approximation u e S^}\{Z) for all sufficiently large N; once the values {u„{tnj):
1 < J < m } have been found we have

m

(1.10) u„{tn + vhn) = £ Lj(o)u„{tnJ),       t„ + vh„eO„(0^n<N- 1),
7-1

where L denotes theyth Lagrange fundamental polynomial for the m collocation
parameters { c] ) ; i.e.

m

(1.11) Lj(v):=   Tl(»-ck)/(cj-ck)       (l<;<m).
A: = l
**7
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WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS 419

We note in passing that the particular choice: cx - 0 and cm = 1, implies that the
approximating element u will be continuous on the entire interval /; that is, u is then
an element of the smoother polynomial spline space

Sj»\x(ZN):= Si-}{(ZN)nC(l).
In the following, we shall be interested in studying the attainable order of

convergence of u on /, as TV -> oo. It is well-known that, were the exact solution y of
(1.1) (or (1.2)) in Cm{I), then we would obtain, for a uniform mesh (where
h„ = h = TN-1),

(1.12) \\y-u\\oo = 0(N-m).
Unfortunately, smooth g and k (or K) in (1.1) (or in (1.2)) lead, for 0 < a < 1, to an
exact solution y which behaves like y{t) = &{tl~a) near t = 0; it has thus un-
bounded derivatives at t = 0 (compare [16], [12], [14], [3]). As a consequence, the
collocation approximation u e S^~}\{ZN) given by (1.8), with the underlying mesh
being the uniform one, satisfies only

(1.13) \\y-u\\x = cV{N^-"y),
and this order is best possible for any m > 1. (Compare also Section 3 below.)

In view of results from classical approximation theory (see, e.g., [22, pp. 409-425])
this disappointing result is no surprise. However, it has been known for some time
that by using polynomial spline functions of degree m - 1 on certain nonuniform
meshes tailored to the behavior of the function f(t) = tl~a (so-called graded meshes;
cf. Section 4 below) one can restore the convergence behavior shown in (1.12)
(compare [17], [2], [6], [26], and [21, pp. 268-296]; related results on the use of
graded meshes in numerical quadrature for integrals containing weakly singular
functions in their integrands may be found, e.g., in [19] and in [13]).

This idea has recently been employed to devise high-order methods for the
numerical solution of Fredholm integral equations of the second kind with weakly
singular kernels: see [7] and [20] for studies of product integration methods on
graded meshes; [9] and [10] for Galerkin methods; [23] and [25] for collocation
methods (compare also [24] for a comprehensive survey). A survey of collocation
methods for Fredholm and Volterra integral equations of the second kind with
weakly singular kernels, as well as additional references, may also be found in [4].

As far as Volterra integral equations of the forms (1.1) and (1.2) are concerned, [5]
presents a study of product integration techniques (extending the functional-analytic
techniques used in, e.g., [7], [9], [20]). In order to construct high-order methods on
uniform meshes it is necessary to abandon polynomial spline spaces in favor of
special nonpolynomial spline spaces reflecting the behavior of the exact solution of
(1.1) or (1.2) near / = 0. This approach has been investigated in [18] (for a = 1/2)
and in [3].

In the present paper we carry out an analysis of the convergence properties of
collocation approximations in Sff}{{ZN) to the solution of the Volterra integral
equations (1.1), (1.2), both for quasi-uniform sequences of meshes and for graded
meshes. Moreover, we extend this analysis to the fully discretized version of the
collocation equation (1.8) in which the integrals have been approximated by ap-
propriate quadrature processes (note that the above-mentioned analyses for Fred-
holm integral equations are all based on the assumption that the integrals be
evaluated exactly).
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420 HERMANN BRUNNER

2. The Attainable Order of Convergence. In this section we state the results on the
attainable order of convergence of the collocation approximation u e S^'}\(ZN)
with respect to the two types of mesh sequences mentioned above, assuming that the
integrals occurring in (1.8) and (1.9) are known exactly. The fully discretized
collocation equation will be investigated in Section 5. We shall formulate these
results for the linear integral equation (1.2) so as not to be burdened with too many
technical assumptions; when giving the proofs (in Sections 3 and 4) we shall indicate
how these results can be extended to the nonlinear case (1.1).

A sequence of meshes for the interval / is called quasi-uniform if there exists a
finite constant y such that, for all N e N,

(2.1) «/«' < y
holds (recall the notation introduced in (1.4)). It is easily seen that such a mesh
sequence has the property

(2.2) «„ < « < y ■ TN-1,       0 < « ^ /V - 1 (iVeN);

hence, « = ^(/V-1) for any compact interval /. This holds, of course, trivially for
uniform meshes, where we have y = 1 and hn= TN'1 for all «.

Theorem 2.1. Let the functions g and K in (1.2) satisfy g e C"'(I) and K e C\S),
with m ^ 1, and assume that neither function vanishes identically. If u e S^}\{ZN) is
the collocation approximation defined by (1.8), and if y denotes the exact solution of
(1.2), then

(2.3) \\y-u\L = &(N-{1-a))

for any quasi-uniform mesh sequence. The exponent 1 — a in (2.3) is best possible for
all m ^ 1 and for all collocation parameters (cy) with 0 < cx < ■ ■ ■  < cm < 1.

Consider now graded meshes of the form

(2.4) t„:=[^)r-T,       0</i</V-1(tV>2),

where the grading exponent r e R will always be assumed to satisfy r > 1. (We again
suppress the index showing the dependence of tn on N.) For any such mesh we have
0 < «0 = «'<«! < • • •  < «/v-i = h, and, in analogy to (2.2),

(2.5) «„<« </•■ TN'1,       0< « </V- 1  (A/gN).

Thus the mesh diameters of a sequence of graded meshes of the form (2.4) behave
like h = G(N~X) on compact intervals.

Theorem 2.2. Let the functions g and K in (1.2) satisfy the conditions stated in
Theorem 2.1. If u e S^]\{ZN) is the collocation approximation defined by (1.8), and if
y denotes the exact solution of (1.2), then

(2.6) |b - «|L = 0(N-m),
provided we employ the sequence of graded meshes (2.4) corresponding the the grading
exponent

(2.7) r=m/(l-a).

This holds for all collocation parameters {cy} with 0 < c, < ■ • •  < c„, < 1.
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Note that the choice (2.7) for the grading exponent leads to optimal (global)
convergence, in the sense that the exponent m in (2.6) cannot be replaced by m + 1.
This agrees, of course, with the well-known result in approximation theory which
states that (9( N ~m)-convergence is best possible when approximating a function
/ G C\I) in S£-Ji(Zw) or in S^_X(ZN).

3. Proof of Theorem 2.1: Convergence on Quasi-Uniform Meshes. For g g Cm(I)
and AT G C'(S) the (unique) solution of (1.2) is in C[0, T] n C"(0, T\, more
precisely, it has the form

00

(3.1) y{t) = g{t)+ L*k(t)-tka-m),     tel,
k = l

where \pk g Cm(I) (k ^ 1), and where the series converges absolutely and uniformly
on 7" (compare [3]; see also [16] and [14]). If a is rational, a = p/q (with p sind q
coprime), then (3.1) may be written as

(3.2) y(t)-v0(t)+Zv,{t)-t«-'\       tel,
í=i

with vs g Cm{I) (0 < s < q - 1). (See also [12] for the case a = 1/2.) For the sake
of simplicity of notation (and, not least, in view of practical applications where one
usually encounters the values a = 1/2, a = 1/3, and a = 2/3) we shall give the
proofs of Theorem 2.1 and Theorem 2.2 for the case of rational a; the generalization
of the ideas involved in the subsequent arguments to irrational a is straightforward.

On the initial interval a0 = [r0, tx] (where t0 = 0) the exact solution (3.2) is not
continuously differentiable (unless y(t) = 0; this case has been excluded by assum-
ing g(t) * 0 and K(t, s) * 0). However, since vs g Cm(I), we may write

m

vÂ'o + vh0) = I cfóV"1 + hZR0,{o),       V G [0,1],
/=1

where we have set

(3.3a) cfi':-«í'-«(í0)AS-V(/-l)!,
and

(3.3b) /?„»:= vl"'\Us) ■ vm/m\       {t0 < t0s <t0 + vh0).
Thus, by (3.2) (setting (i0 + t;«0)s(1"a) = hf-a) ■ [1 + (t;i(1"a) - 1)]), we obtain

m

(3.4)   y{t0 + vh0)= Z,c0lv'-1 + h10-'-C0{u) + hZ-Ro{v),       «e[0,l],

with
q-\

r    ■-    V  hs^l-a) ■ As)
Lot -~    ¿-i "0 L0t '

5 = 0
(3.5)

?-l m

c0{u):= E«r1)<1^)-(^,1"a)-i)- E4/V"1,
J=l /=1

and

(3.6) R0{u):=   Lhf-a)-R0Áv)-v^-"K
5 = 0
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422 HERMANN BRUNNER

For 1 < « «s N - 1 we have, since y- g C"'[tx, T] (tx > 0),
m

(3.7) y{t„ + vhn)=Zcnlv'-l + h:-Rn{v),       t„ + ühneo„,
i=i

with

(3.8) cn/:= /'-»(/J-AÍ-VÍ/-!)!,
and

(3.9) R„{v):= ym)(tn + e„vhn) ■ vm/m\       (0 < 0„ < 1).

Suppose now that the restriction of the approximation u g S{„-}\(Zn) to the
subinterval an is given by

m

UÂtn +  Vh„)=   E«n/_1-
/=1

Thus, the error e := y - u (with en := y - un denoting its restriction to a„) assumes
the form

E ß0lv'-1 + hl0-«C0(v) + h"0'R0(v)    if« = 0;

(3.10)    e„{t„ + uhH) i=i

I. ß„,v'-1 + h?R„{o)   ifl<«</V-l,
/=i

where we have defined ßnl'-= cn¡ - anl (1 < / < m; 0 < « < N - 1).
Subtracting the collocation equation (1.8) (with k(t, s, y) = K(t, s)y) from the

integral equation (1.2) (with t = t„X we obtain

e„{tnJ) = h\~a • f' {Cj - v)~a ■ KnJ{t„ + vhn)e„(tn + vhj dv

(3.11) + "¿V"JP í^p - «)     • *„,(<■ + «*,)«,(*, + «*,) <fc

(1 <y'< m,0 « n < TV - 1).

Here, we have set KnJ{-):= K(tnj, ■). The expressions for the errors e¡ given in
(3.10) can now be used in (3.11) to derive a recurrence relation for the components
of the vectors ß„ := (ßnX,... ,ßnm)T G R"1 (0 < « < N - 1); it reads

LßJcr-^i'icj-vy-Kj^ + vhJv'-1
/=!

dv

•'o■^/"•/n'I^V    ""J    K^+vh^v'-'dv + q^

(1 <y < w;0 < « < TV - 1),
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where the remainder terms qnj are defined by

qnJ :- -KRn{cj) + h\" ■ jfj (cj - v)~a ■ Knj{tn + vhn)(KRn{v)) dv

(3.13)        + "eV" • ¡l [-\^- v) ' ■ Knj(h + vh,)(hTR,(v)) dv

+ «cTa-/1 P/TH     • KHj{t0 + vh0){h1Q-aC0{v) + hSR0{ü)} do.

; = 1

n I tnj - t0

'o   \     "o
For the initial interval a0 we obtain, in particular,

/=i
ifo

(3.14) =A0-«-( -q.^-Ar-'-Äoicy)

+ Al0-r (c, - o)- ■ KOj(t0 + vh0)(C0(v) + AJ+-1 • *„(«)) <fc
■'o

(1 <;< m).
We shall now show that, for quasi-uniform mesh sequences, all vectors ßn have
/,-norms satisfying

(3.15) HAJd = 0(/V-(1-o))        (0<« < N- 1; /V-» oo, with A/A < y 7/).
This result will then be used in (3.10) to establish the assertion (2.3) of Theorem 2.1.

We begin by observing that, since the kernel K(t, s) is bounded on S and since we
have h„ = c^/V"1) for 0 < « < N - 1 (recall (2.2)), the matrices Vm - h\/a ■ C„„,
with

(316) F»":=(ci_1)' and Q-:=(jT'(«!/-«'r-M,-+,*-)p'"1<fc

(1 <;',/< w),
occurring in (3.12) and (3.14) possess uniformly bounded inverses for all sufficiently
large TV (note that Vm is a Vandermonde matrix corresponding to the collocation
parameters {c¡} satisfying 0 < c, < • • • < cm < 1). Hence (3.12) and (3.14) define a
unique sequence of vectors ßn for all sufficiently large values of N, and there exists a
finite constant C0' such that

(3.17) |(^-«!!-a-C„„)"1|i<C0',       0«««/V-l.

In order to show that the sequence {||j8„||,} is governed by a generalized Gronwall
inequality, we require the following result.

Lemma 3.1. Consider a quasi-uniform sequence of meshes for I. Then, for 0 < I <
« — 1 (« < TV - 1), and for all {Cj} with 0 < c, < • • •  < cm < 1, we Aaue,

(3.18)    JÍ1 (^-^ - u) "v'-'dv < Y°(11^J)a -(/i - /)""       {Kj,l<m).

Proof of Lemma 3.1. For ; = « - 1, we have

/.' ('+ c'kT, - ")""'"**Í'(1 -,r*= 1/(1 -*> * ̂ r^-
since y > 1.
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424 HERMANN BRUNNER

Suppose, then, that i < « — 2. Since c¡ g [0,1], we obtain

n / tnj - h       Y" , , .       ni t.. -
■Mi<i r

1 -a
tn-t,Y~a  \tn-ti

h, v      dv

1   K -1,
1 - a

l-a

Application of the Mean-Value Theorem yields

1
i\ i-« ■iV i-:\K±

(with 0 < Bni < 1), and we thus find

(3.19) /„(«)< (í&fÍí I _        i '»    '<
i\-«

So far, we have not specified the type of mesh sequence containing the points {t„}
Suppose now that the mesh sequence is quasi-uniform. Hence, by (2.1),

'„ - ', „   (n- ¡)h'
ä y"1 •(« - /).

Moreover, since i < n — 2,

\hCLh\ + K-A''

>i-\h-^MY = i-{i + hi+i/hiyx

> 1 -(1 + h'/h)'1 > 1 -(1 + I/y)-1 = (1 + y)"1.
Using these results in (3.19) we obtain, for 0 < a < 1,

/„,.(«) < y«(l + y)" •(« - /)- < ya(11_+jr •(« - t)~á.

Lemma 3.2. Let the assumptions of Lemma 3.1 hold. Then:

"_1 r\    I t    ■ —  t¡.i-«.   Í1     -HI_1
(=0

(3.20)     £*!"*•/   nr1-"      «to < ^-/(l - a),       1'<«<7V.

Proof of Lemma 3.2. Using the initial argument of the previous proof, we find
H-l i- pI'jh

•'ni = 0

- V
1 n— i

i = 0
n-1

1 - a £*)-
/-o
n-l

'„-',\1   "

i / r„ - f,

l-a

t1- ■ E {(*■ -1,)1- -{t„ - tl+l)1-} = «;-/(! - «)
i=0

Tl-"/{l - a)    for«</v".

D
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Note that (3.20) will also be valid for graded meshes; this fact will be used in
Section 4.

We now return to (3.12): for 0 </'<«- 1, define the matrices C,„ by

C„,:= ^ ^-^ - vy ■ Knj(tl + vh^v'-Uv^j       (1 <>,/<«),

and introduce the vectors q„'-= (q„x,. ■ ■ ,qnm)T, with components defined in (3.13).
Thus, (3.12) can be rewritten as

(3.21) ß„ = {Vm- h\rCnnyl • | £ h)- • Cniß, + q„]

provided N is sufficiently large. If K0 := max{\K(t, s)|:(í,j)eS) then, by Lemma
3.1, we find
(3.22) HCjIj < C(a) •(«-/)"",       0 < / < #i - 1,
where C(a) := mKQ ■ ya(l + y)a/(l - a). This can be used, together with (3.17), to
obtain

(3.23) U/U < QA1- • t(n-i)"'-m\i + C¿-\\qH\\1       (0 < « < N - 1),
/=o

with C0:= C0' • C(a). This represents a generalized discrete Gronwall inequality
(compare [15], [8], [1]), and it follows that

(3-24) \\ßn\\x = (J(y,),       0</i<tf-l,
since C0' (given in (3.17)) is a finite constant, and since TVA < yT.

It is clear from (3.13) that the order of ||^„|| ! will essentially be governed by that of
the terms AJ"#,(-), with R¡{v) defined in (3.9) and (3.6); for i > 1 these terms
involve the wth derivative of the solution y (if /' = 0 then, by (3.6) and (3.3b),
h%R0(v) = &(N-my). It follows from (3.2) and from the Leibniz product rule that
this derivative has the form

/">(/) = v\r\t) + £   £('J)i^1~aMjk!-»i",-*)(0-<'<1"")"*.
(3.25) .-ia-oV*'\       k      I

t > 0.
Thus, upon setting

Y^-(T)(*(1;a))-*!.       Msv:=max{\v^{t)\:tel},

we are led to

(3.26) h?-\Ri{o)\*hr-{M0m+ £   £ |y^)|-Mi,_,(r, + ô,l;A,r(1"a,-A   .
I i=lk=o I

This, in turn, reveals that the order of h^R^v) will depend on the orders of the
products A "' ■ tfa-a)-k. To be precise, we state

Lemma 3.3. Consider any quasi-uniform sequence of meshes for I, and assume that
1 < k < m. Then, for s > 1,

0(N-m),        ifs{l-a)-k>0;(3 27) Am • fJ(1—)_* =
\0(N-^-a)),     ifs(l-a)-k<0.
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426 HERMANN BRUNNER

Proof of Lemma 3.3. Assume first that s(l — a) - k > 0. The first part of (3.27)
then follows trivially since f*«1-«)-* < Ts{l~a)'k and, by (2.2), A, = G(N~l) for
1 < / < TV - 1.

Now let i(l - a) - k < 0. In this case we have, for i > 1,

t¡ >tx = h0>h' > h/y > y-lTN~\

and hence, by (2.2),

nm . ts(l-a)-k ^  (yT)mN~m • {y'lT) î(1_")-* . Jy--(i(l-«)-*)

= (yr)"' .(y-1T')i(1~a)^A ■ lf-<m + s(l-a)-k)

< (yr)"' •(y-1r)i<1"a)"'t • A-'1"«»,        1 < / < TV- 1,

since m + s(l - a) - Ä: > j(1 - a) > 1 - a > 0 for all A: with 1 < k < w, s > 1,
and a g (0,1).    D

Consider again (3.26): for a g (0,1) there is at least one pair (s, k), with
1 < k < m, s > 1, for which s(l - a) - k < 0 (take (s, k) = (1,1)). Consequently,
(3.26) yields

(3.28) h?\R,(D)\-0(N-*-">),       v<= [0,1] (1 < i < tV - 1),
where the exponent cannot be replaced by some ß > 1 - a.

If we now use the results (3.26), (3.27), (3.20) in (3.13) we verify readily that

\qHj\ = 0(N-^'a)),       1 <; < m (0 < n < N - 1),

and hence

(3.29) II^Jl = 0(7V-(1-a)),       0<«<7V-1.

To bring the proof of Theorem 2.1 to its conclusion we return to (3.10): since (3.24)
and (3.29) imply \\ßn\\x = 0(N-(l'a)) for all « we find

M'. + b*,)| < llAJIi + ^(A-^1-)) = (P( A-«1-»),
*„ + vh„ e CT„. 0 < « < A/ - 1 (as V -> oo, AA < yT). This is equivalent to
(2.3).    D

We conclude this section with two remarks.
(i) As has been mentioned above, the proof is easily extended to the case of

irrational a: this follows from the fact that the infinite series in (3.1) converges
absolutely and uniformly on I, and by Lemma 3.3 which holds for all s > 1.

(ii) If the given integral equation is nonlinear, i.e. (1.1), then we can use a result
due to Lubich [14] which states that if g(t) is of the form g(t) = G(t, tx~a) near
/ = 0, and if G and the kernel k are real analytic functions in a neighborhood of the
origin (excluding the trivial cases g = 0, k = 0), then the exact solution of (1.1) near
/ = 0 is given by

(3.30) y{t)=Y{t,t1-"),

where Y is a real analytic function in a neighborhood of (0,0). It is then easily seen
that by expressing Y as a power series, the solution y near t = 0 can be written in a
form analogous to (3.1). In the corresponding error analysis the role of Knj{tj + vh¡)
will then be taken by the partial derivative dk(tnj, t¡ + vh¡, y)/dy, evaluated at
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some suitable value of y (stemming from the application of the Mean-Value
Theorem in the linearization of the error equation); in order that the analogue of
(3.17) hold, dk/dy has to be bounded.

4. Proof of Theorem 2.2: Convergence on Graded Meshes. The proof of Theorem
2.2 proceeds in complete analogy to the one of Theorem 2.1 given in the previous
section, except that now we shall obtain a different estimate for \\q„\\x, sind hence for
HA,«! (cf. (3.29) and (3.24)).

Let us begin by stating two simple properties of graded meshes of the form (2.4)
with r > 1 ; namely,
(4.1a) tn = nr ■ tx,       1 < « < N,

with
tx = h( 77V"(4.1b)

and
(4.2) A/A' = tV-(1 -(1 - N'l)r).

(This last result shows, incidentally, that a sequence of graded meshes with r > 1 is
not quasi-uniform, since A/A' -» oo as N -» oo.)

For graded meshes we obtain the following analogue of Lemma 3.1:

Lemma 4.1. Consider any graded mesh of the form (2.4) and with grading exponent
r > 1. Then, for 0 < / < « — 1 < A/ — 1 and for all collocation parameters {c-}
satisfying 0 < cx < • • ■  < cm < 1,

i / t„ i - h
(4.3,   f    * — v v'-xdv^ 2"

1 -a •(« - i)~"       (1 < j, /< m).

Proof of Lemma 4.1. The first half of the proof of Lemma 3.1 carries over without
any change: there, we have shown that, for /' < n — 2,

tnj - ?.
— V v'-ldv <

t„ - t. i - e„
-i\-«

with 0 < 8ni < 1. For a graded mesh (2.4) with r > 1 we obtain

since 0 < A 0 <

1-4,

and this yields

Hence,

t„ - U     h„_x + ■■■ + h, ^   («-/)• A,—E— =-1-«*-E-= n - t,A, A,- A,
• • •  < A^^j (= A). Moreover, since ¡' < « — 2, we have

-i
> 1 > 1 -

A, + A,

= l-(l+A, + 1/A;)"1>l-T^T=l/2,

1 - ö„

A„(«)< 2Q
1 - a

< 2a < 2Q/(1 - a).

•(«-/') ",       0 < i < n - 1. D
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Since the mesh diameter A of a graded mesh satisfies A = 0{N~X) (recall (2.5)) we
may use again the contraction mapping argument of Section 3 (cf. (3.16) and (3.17))
to show that, for all sufficiently large N, (3.12) defines a unique sequence of vectors
{/?„:= (ßnX,...,ßnm)T: 0 < « < N - 1}, for which the generalized discrete Gronwall
inequality (3.23) holds. Note that here we have made use of Lemma 3.2 which is
valid both for quasi-uniform and for graded mesh sequences.

As an immediate consequence, the /,,-norms of these vectors ßn satisfy again (3.24).
However, the estimate for h^R^v) (which will eventually determine the order of
Hßjlj) turns out to be rather different than that for quasi-uniform mesh sequences
given in (3.28). This is due to the following results.

Lemma 4.2. Consider a graded mesh of the form (2.4), and assume that the grading
exponent r is given by

(4.4) r = m/(l-a).

Then, for 1 < k < v < m and for s > 1,
(4.5) hvrtf-a)-k <c- N",       1</<7V-1,
wherec:= r" • 2"(r_1) • 7"-*+*a-«>.

Proof of Lemma 4.2. Since r > 1 we find, using (4.1) and the Mean-Value
Theorem,

h, = tl+1 - ', = ((/ + l)r - ir) ■ h = i' -((I + i"1)' - 1) ■ TN'r

= r ■ ir~x   (l + 0,. • r1)^1 • 77V-',    withO < 0, < 1,

and hence A, < r ■ 2r~x ■ T ■ irX ■ N~r. This yields, again employing (4.1),

A;- tf-a)-k < {r-2r~x ■ T)" ■ /»<"-«. jv-»r-(ir- TN-r)s(l~a)~k

_       t   :v(r— 1) + rs(l — a) — rk  m   \t -vr — rs{\ — a) + rk

_       .   :r(v-k) + rs[l -a)-v _  jy - r(p- k)~ r.y(l -a)

with the constant c as defined in Lemma 4.2.
For r = m/(l — a) this reduces to

/   .-   \r(v-k)
a;- tf-a)-k < c ■ — .,■""-». N'mS,

where the exponent of i satisfies ms — v ^ ms — m = m(s — 1) > 0, since s > 1. It
thus follows that, for all /' < N, and with 1 < k < v < m,

hv . ts(\-a)-k ^ c . Nms-v . jy-m, = £ . jy-, D

If we now use the result of Lemma 4.2, with v = m, in (3.26), we find with no
further difficulties the estimate

(4.6) h?-\R,{v)\=0{N-m),       d€=[0,1] (Ki<#-1),
where the exponent «i is best possible. By (3.13) this then leads to

(4-7) Iklli = 0{N-m),
since, by (4.1b), A 0 = TN~r; hence A},-0 = Tx~a ■ N-r(X-a)= T1'" ■ N~m. By (3.23)
and (3.24) we have thus shown that

(4.8) p J   = &(N-m),       0 < « < N - 1  [N -> oo, Nh < rT),
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provided the grading exponent r is as in (4.4). Using once more the expression (3.10)
for the error function e„(/„ + vhn), together with the fact that hx0~a = 0(N~m) for
the above grading exponent, we obtain assertion (2.6) of Theorem 2.2.   D

The above proof is easily modified to deal with the case where, instead of (4.4), we
have
(4.9) r = ju/(l - a),        1 < ¡x < m.
We now find, for 1 < k < v < m,

I   j   \ r(v-k)
hy ■ ;J(1~a>~'£ < c .    — . ¡rs(l-a)-v .   \r-rs(l-a)

< c • F'-'N^',       1 < i < N.
If p.s - v > 0, then h" ■ tfl-ai-k = 0(N~"). However, since ju. < m, we shall also
have ¡is - v < 0 for some values of (s, v) (e.g., for {s, v) = (1, m)), in which case the
above estimate will no longer be valid. Instead, writing /x = m - (m - ¿i), and
observing that ms - v > 0 and m - ¡i > 0, we obtain

far . ji(l-a)-/t < c . y(m-(m-/i))j->' . yy-(m-(m-fi))i

< C • NmS~" • /"(m~M)J . jy-«"+(m-|J)!

^ c . jy-O-ím-íO)^ l<i</V   (j>l).

For the value of »> relevant in our analysis, v = m, this becomes

(4.10) Af-i^1—1-^ c- N'11',       s>l.
Hence, if the grading exponent r in (2.4) is given by (4.9), then there results the
estimate ||^„||x = 0{N^) (note that now Aj,— = Tx-° ■ N^) and, by (3.24), \\ßn\\x
= 6(A/-'1) (0 < « < N - 1). By (3.10) we then readily establish the following result.

Theorem 4.1. Let the functions g and K in (1.2) satisfy the smoothness hypotheses
stated in Theorem 2.1, and let u G S^~}\(ZN) denote the collocation approximation
defined by (1.8), with collocation parameters {Cj} satisfying 0 < cx < • • • < cm < 1.
7Vie«, for the sequence of graded meshes (2.4) corresponding to the grading exponent
r = jli/(1 — a) (1 < p < m), the collocation error behaves like

(4.11) lb - «II» - 0(/v-*).
In particular, the choice ju = 1 (i.e., r = 1/(1 - a)) will yield collocation ap-

proximations which, on I, converge linearly to the solution y of (1.2), independent of
how one selects m.

The proofs of the above results are again easily extended to linear integral
equations (1.2) with irrational a, and to nonlinear integral equations (1.1). We refer
to the remarks made at the end of Section 3.

5. Discretization of the Collocation Equation. Until now it has been assumed that
the integrals

«C \h~r~ i ' k^nj'u+vh"M,(i'+vh'^dv'
0 < i < R - 1,

[' (cj- v)'a ■ k{tnj,t„ + vh„,u„(tn + vhn))dv,       i = «
•'o

(1 <y<w)

(5.1)   •</>[«,]:=
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(5.3)    *</>[«,]:-

occurring in the collocation equation (1.8) are known exactly; i.e., that the colloca-
tion approximation u g S¡¿}\{ZN) is obtained from what we shall refer to as the
exact collocation equation

,. ,* "„('„,) = g(tnj) + h1'" ■ *<>'[«„] + £ AÎ- • $</>[«,]
\->-¿) 1 = 0

(1 <7 < m;0 < n < TV- 1).
In practical applications this will rarely be possible, making a further discretization
step necessary which will involve numerical quadrature. Suppose, then, that the
integrals in (5.1) are approximated by

t^ri)^)-k{tnj,ti + d,hi,ui{h + d,h,)),
i=i

0 < f < R - 1,
Co
E w,-,(a) • k(tnj, t„ + dj,h„, un{t„ + dj,hñ)),       i = «

(1 <7'<m);
for the case where c, = 0 we set ^[«J^ 0 (= O^'[«„]). It will be assumed that
the quadrature abscissas in (5.3) are characterized by the parameters

(5.4a) 0<</,< ••■  <¿„1<1,

and
(5.4b) 0 < dji < • • • < dJßo < c7       (1 <> < w),

with ju.0 > 1, ju, > 1 (and, usually, jti0 < m, ux < w). (Note that due to the choice
(5.4b) the quadrature formulas $^'[m„] will only involve kernel values k(t, s, ■)
lying in the domain of k; in general, it may not be possible to extend k(t, s, ■)
smoothly to points (/, s) with s > t.) Moreover, we shall assume that the quadrature
weights in (5.3) are given by

(5.5a)    Mji"'°(«):- /M^-^-o)     ■*/(»)*       (1 < / < Hi', 1<7 < m),

and by

(5.5b)     Wjl{a):=  fJ (Cj - v)-° ■ X^v) dv       (1 < / < ,i0;l <j < m),

where

M«)==   Û(v-dk)/{d,-dk)    and   \y/(o):-   Û (v - dJk)/(djt - djk)
k=l k-\
k*I k*l

represent, respectively, the Lagrange fundamental polynomials for the points given
in (5.4). In other words, we consider the discretization of the exact collocation
equation (5.2) by quadrature formulas based on product integration (compare also
[19] and the references listed there).

The fully discretized collocation equation is obtained from (5.2) by replacing the
exact integrals (5.1) by the corresponding approximations (5.3). In general, one will
now generate an approximation m g S^~}\(ZN) which will be different from the one
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defined by the exact collocation (5.2); i.e., û will be given by

û„(0 = g(tnj) + hVa ■ *#>[-„] + E h)- • *</>[fi,]
(5.6) ,=o

(1 <y < m; 0 < n < TV - 1),

where, in analogy to (1.10), we write

m

(5.7) ù„{t„ + vh„) = £ Lj{v) ■ ù„{t„j),       t„ + vh„ g an.
7-1

Setting ê:= y - ti, e'.= y - u, and e:= u - u, it follows from ê = (y - u) +
(u — û) that

(5.8) IHI»<|H|« +||e||oo.

Global convergence results for ù will thus be obtained by estimating the order of the
perturbation e due to the full discretization of (5.2), and by using the results on the
behavior of e derived in the previous sections. For simplicity, we shall state the
results again for the linear equation (1.2); according to the remark at the end of
Section 3, their extension to nonlinear equations is straightforward.

Theorem 5.1. Let g and K in (1.2) be m times continuously differentiable on their
respective domains. Assume that u, ù e Sj^}\{ZN) denote the solution of the exact
collocation equation (5.2) and that of its fully discretized version (5.6), where the
quadrature formulas (5.3), satisfying (5.4) and (5.5), have been used. Then the
perturbation e := u - ù behaves like

(5.9) Hell«, = 0(/V-*),
where ju. :== min(jw0 + 1 — a, ju,), and this holds for quasi-uniform sequences of meshes
as well as for graded mesh sequences (2.4) vvííA r 3* 1.

Proof. Let

(5.10) £</»[",]:= *</>[«,]-^/l«,].
Hence, subtracting (5.6) from (5.2) and setting k(t, s, y) = K(t, s) • y, we obtain

■,M-*i-"-*tfw+i;V*-*-</)[«i]
(5.11) '-°

n

+ t, h)''■ E^lu,]       (1 <7<m;0<R<7V-l),
i = 0

where en(t) denotes the restriction of e(t) to the subinterval a„. Since e„e trm_xwe
may write

m

(5.12) e„(t„ + vh„) = £ L,{v) ■ e„{t„ + c,h„),       t„ + vh„ g a„,
/=!
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with L/(v) representing the /th Lagrange fundamental polynomial associated with
the m collocation parameters. The terms vj¡p[e¡] in (5.11) are thus of the form

(   m   I  /»i
£   E<,0(«)-*.A + rfA) ■£/(<*.) KU + cA),      i<«,

*</>k] = /=i\i=i
E    E *,■,(«) • Knj(tn + dJshn) ■ L,{dJS)   ■ en{t„ + c,h„), t = «

/=! \ j = l

(1 <;'<w).
Let ô„,(a) (0 ^ /' < n < N — 1) denote the square matrix of order m whose
elements are

/ ft

(5.13)   *<;''>(«):
£ ^"'"(a) • Knj(t, + dsh,) ■ L,{ds),       0 < i < n - 1,

Co
E wyJ(«) • ̂ (z, + dJshn)L,{djs),       i = «

(1 </',/< m),

s-l

and define the vectors

'.,:-(*m]....,£¿r)[iil])r,
1i:= («<(»/+ CiA,),...,£,(/, + cmA,))r.

With this notation, Eq. (5.11) can be expressed in the form
n-l

,c^      (/m-/l«"a-ö„„(«))-TJ„=  £A!--ßni(a)T,I.+ Zhxra-rn,
(5.14) ,-_o , = o

(0<«< N - 1),
where 7m is the identity matrix of order m. Consider the matrix multiplying r/n: since
the elements of Qnn(ot) sire bounded (this follows from the boundedness of the
kernel K(t, j)andfrom that of the quadrature weights (5.5b)), and since hn = &(N~X)
(« < TV - 1) both for quasi-uniform and for graded mesh sequences (recall (2.2) and
(2.5)), there exists a finite constant Q'0 such that, for all sufficiently large N,

(5.15) |(/m - Aln- • Qn„{ct))-\ < Ô0>       0<«</V-l.
In order to show that the /rnorms of the vectors r\n are governed, in analogy to
(3.23), by a generalized discrete Gronwall inequality we require the following

Lemma 5.1. The quadrature weights wj¡"-n(a) (;' < «) defined by (5.5a) satisfy

(5.16) \wjln<i){a)\^w{a)-{n-i)-a       (1 <j < m;l < / < Mi)>

where the constant w(a) is given by

w(a):= 1 - a
2«

A,   for quasi-uniform meshes,

1 A !   /or graded meshes (2.4);

Aere, A, := maxlEfi^X^u)!: t; G [0,1]} denotes the Lebesgue constant associated
with the quadrature parameters [dx,...,d   }.
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The proof of this assertion is an immediate consequence of Lemma 3.1 (for
quasi-uniform mesh sequences) and of Lemma 4.1 (for graded meshes).   D

The above lemma allows us to derive bounds for the norms ||ô,„(a)lli: using (5.13)
we find

lß-i(«)lli - ™«{ £ kif"'°(«)|: 1 < / < m|j=i
< Q(a) •(« - /)"",       0 < i < n - 1 (« < N - 1),

with the constant Q(a) depending on the bound for K(t, s) and on the Lebesgue
constant A,. Applying the above results in (5.14) we obtain

,c „,     Ikll. < ßo ■ a1- • "Ei« - 0"" -Ikili + 00 • E A1,- -lldli
(5.17) ,=o i=o

(0< «<7V- 1),
with £?o:= oo ' Q(a)- This is the desired generalized discrete Gronwall inequality;
in analogy to (3.24), the order of the quantities \\i]„\\x will be given by the order of
thetermsEr_0A}---||rJ1.

Lemma 5.2. Let the assumptions of Theorem 5.1 hold. Then we have
n

(5.18) ¿Zhlr-\\rJx = 0(N-»),       0 < n < N - 1,
i=0

with /x:= min(jtt0 + 1 — a, jUj), independent of whether we consider quasi-uniform or
graded mesh sequences.

Proof of Lemma 5.2. Recall that the components of rni are the quadrature errors
introduced in (5.10). According to the hypotheses imposed on the quadrature
formulas (5.3) these quadrature errors are bounded; specifically, we have

-1   / lnj - hYi«f • f   I
(5.19)       |£</T«,.]|< '

(cj-vyadv   if( = «    (l<;'<w),
n

with y0 and yx denoting suitable constants. To show this, let / < «,

<t>„j(t, + vh,):= Knj(ti + vhi)ui{ti + vh,),

and denote by <p„J(t¡ + vh¡) the interpolating polynomial (of degree ju1) for <¡>nJ with
respect to the points {i, + í/sA,: 1 < í < fix}. Since 4>nj has continuous derivatives of
order m on a,, the interpolation error has the form

4>nj{t, + vh,) - 1fnJ(t, + vh,) = <$■>(£,.) • Aft • Ó (v - rfJ/Mx!,
5=1

with |; g Oj, and for all jttj < m. An analogous expression holds when i = n, with fix
replaced by ju0. According to (5.5), E¡¡p[u¡] is equal to the weighted integral of the
above interpolation error, with weight functions as in (5.5); from this, (5.19) follows
immediately.
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We thus obtain, setting first i < « - 1 and using t„¡ - t¡ > tn — t¡,

m \   l t    — t \~a
lkJ,= ElC'klls-»■**!"•.( (kf1-") *

if /' = « we find

It now follows that

mjjYoW

¿Al--lk,lli = A1--lknJ1+ "¿V
i=0 i=0

< y(«)  A"o+1- + A- £ {{tn - t,)1- -(/. - t^if-*}
,=o

< y{a){h>i° + x~a + AftiJ —} < y{a) ■ h* ■ {«Mo+i-«-<» + 71-«. fcft-c},

with y(a) := max(m • v0/(l - a), «i • y,/(l - a)), and with /x defined as in Lemma
5.2. Since the factor multiplying hß is uniformly bounded, we have established (5.18).
D

We now return to the Gronwall inequality (5.17): since the mesh diameter A
satisfies A = 0(N~X) for both types of mesh sequences considered here, (5.17)
implies ||r)J|j = 0{N'>L), on the basis of the above result. On the other hand, (5.12)
leads to

k('„ + «AJI < IlL/IL • Iklli < A • IItjJ,,       t„ + vh„ g o-„ (0 < « < N - 1),
and the result of Theorem 5.1 follows, since the Lebesgue constant A corresponding
to the (fixed number) m of collocation parameters {Cj} is bounded.   D

We are now in a position to derive our results on the attainable order of
convergence of the approximation ù G S^~}\(ZN) defined by the fully discretized
collocation equation (5.6); since quasi-uniform mesh sequences are of no interest in
practical applications (recall Theorem 2.1), we shall state only the result for graded
meshes. The proof of the following theorem is, of course, a direct consequence of
(5.8), Theorem 2.2, and Theorem 5.1.

Theorem 5.2. Let g and K in (1.2) be m times continuously differentiable on their
respective domains I and S, and let ù G S^~}\{ZN) denote the solution of the fully
discretized collocation equation (5.6). Moreover, assume that the quadrature approxi-
mations (5.3) used in (5.6) correspond to

Ju0 = /x1 = m,   d, = ch   dß=CjC,       (1 <./', /<m).

77ie« for the graded mesh (2.4) with grading exponent r = m/(l — a) we have

(5.20) |b - û|L = &(N-m).
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It is clear that the above result can be generalized to cover the cases where the
quadrature parameters (5.4) are not related to the collocation parameters {c;}, and
where the grading exponent is given the value r = ju/(l - a), 1 < ju < m (compare
Theorem 4.1). By (5.8), Theorem 5.1, and Theorem 4.1, the corresponding results are
obvious, and we therefore refrain from stating them explicitly.

6. An Example. Consider the fully discretized collocation equation (5.6) where the
quadratures 9¡¡p[u¡] are characterized by ¡u0 = ¡u, = m, d, = c„ djt = c c,{l <_/, / <
m). Setting

%■■= «,(*,+ csh,)       (1 <s<rj),

and using (5.7), the quadrature approximations in (5.6) assume the form

(6.1)    *</>[-,]«

/  "'
£ *,<"•'>(«) • k(tnj, t, + c,h„ Y„)    if 0 < i < n - 1,

ml m \

£ Wj,{a) ■ k\t„j, t„ + CjC/h,,, £ Ls(cjCi) ■ Y„s      if i = »,
1=1 \ s=i I

with tnJ:= tn + Cjhn (l</^w). In the expressions (5.5) for the quadrature
weights we now have X,{v) = L¡{v), sind hence the above weights become

(6.2a) h^"(«) = /o1(^^-í,)    -L,{v)dv,

sind

c "'

WjM = fJ(cj - "Y" • Il (« - ejek)/(cj(e, - ck)) dv       (1 ^j, I < m).
J0 k = l

k*l

This last expression can be simplified by an obvious substitution; we find

(6.2b) wj,(a) = cj- - f (1 - v)~a ■ L,(v) dv.

Thus, according to (5.6) and (6.1), the fully discretized collocation equation,

(6.3) YnJ = Fn{ù;tnj)+hln-a-¥^[ù„\       (1 <;</»),

with

n-l

(6.4) F„(û; tnJ):= g{tHj) + £ A}- • £</>[«,]       (0 < n < N - 1),
i=0

consititutes, for each «, a system of m nonlinear algebraic equations for
[YnX,...,Ynm}\ once these values have been determined, the approximation ù on a„
is given by

m

(6.5) û„(r„ + vh„) = £ Lj{v) • YnJ.
7-1
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For «1 = 2 (i.e., «eS¡ X)(ZN)), the quadrature weights (6.2) are:

cj--((2-a)c2-l) c)-"-{l-{2-a)cl)
W^a)      (1 - «)(2 - a)(c2 - cx) '        W'2{a)      (1 - «)(2 - a)(c2 - cx) '

<,0(«) = 71-v^~v-V(1 - a){2 - a){c2 - cx)

t  ■- t\x~a   I t    - t
'(2 - a)c2 -

— t      \x   '
"^1       •|(2-«)(c2

^"")(0t) - (1 - «)(2 - «)(ca - ci)

\—h—-(2-a)Cx)

í^p.(í^-(2-«)(ci-l))}

(;'= 1,2;0 < i < « - 1).
The corresponding fully discretized collocation equation reads

YnJ = F„{ù;tnj)

+ h\— -{wjX(a) ■ k{tnj, t„ + CjCih„, Lx{cjCi)Ynl + L2{Cjcx)Yn2)

+ wj2(a) ■ k(t„j, t„ + CjC2h„, Lx(CjC2)YnX + L2{cjC2)Yn2)}

(7 = 1,2),
with

F„{ù; tnj) = g(tnj) + £ h)-a •{<•"(«) • k{tnJ, t, + cxh„ Y,x)
/=o

+ w}2"-'\a)-k(tnj,ti + c2hi,Yi2)}

(0< « < N - 1).
For the graded mesh r„ = (n/N)r • T{0 < « < N), we obtain

[(5(A-2), ifr= 2/(1 - a),

lb - fill, = I 0{N-X), if r= 1/(1 -a),
((5(A-a—'),     if a- = 1 (uniform mesh).

Acknowledgment. The author gratefully acknowledges the generous hospitality
extended to him by CWI (formerly Mathematisch Centrum) at Amsterdam during a
recent visit where part of this work was carried out.

Institut de Mathématiques
Université de Fribourg
CH-1700 Fribourg, Switzerland

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



WEAKLY SINGULAR VOLTERRA INTEGRAL EQUATIONS 437

1. P. R. Beesack, "More generalised discrete Gronwall inequalities," Preprint, 1983.
2. C. DE Boor, "Good approximation by splines with variable knots," in Spline Functions and

Approximation Theory (A. Meir and A. Sharma, eds.), Birkhäuser-Verlag, Basel, 1973, pp. 57-72.
3. H. Brunner, "Nonpolynomial spline collocation for Volterra equations with weakly singular

kernels," SIAMJ. Numer. Anal., v. 20, 1983, pp. 1106-1119.
4. H. Brunner, "The numerical solution of integral equations with weakly singular kernels," in

Numerical Analysis, Dundee 1983 (D. F. Griffiths, ed.), Lecture Notes in Math., Vol. 1066, Springer-Verlag,
Berlin, 1984, pp. 50-71.

5. H. Brunner & I. G. Graham, "Product integration for weakly singular Volterra integral
equations." (To appear.)

6. H. G. Burchard, "On the degree of convergence of piecewise polynomial approximation on
optimal meshes. II," Trans. Amer. Math. Soc. v. 234, 1977, pp. 531-559.

7. G. A. Chandler, Superconvergence of Numerical Methods to Second Kind Integral Equations, Ph. D.
Thesis. Australian National University, Canberra, 1979.

8. J. Dixon & S. McKee, Singular Gronwall Inequalities. Numerical Analysis Report NA/83/44,
Hertford College, University of Oxford, 1983.

9. I. G. Graham, The Numerical Solution of Fredholm Integral Equations of the Second Kind. Ph. D.
Thesis, University of New South Wales, Kensington, 1980.

10. I. G. Graham, "Galerkin methods for second kind integral equations with singularities". Math.
Comp., v. 39, 1982, pp. 519-533.

11. I. G. Graham, Estimates for the Modulus of Smoothness, Research Report No. 22, Dept. of
Mathematics, University of Melbourne, 1982.

12. F. DE HOOG & R. Weiss, "On the solution of a Volterra integral equation with a weakly singular
kernel," SIAMJ. Math. Anal., v. 4, 1973, pp. 561-573.

13. R. B. Kearfott, "A sine approximation for the indefinite integral," Math. Comp., v. 41, 1983, pp.
559-572.

14. Ch. Lubich, "Runge-Kutta theory for Volterra and Abel integral equations of the second kind,"
Math. Comp., v. 41,1983, pp. 87-102.

15. S. McKee, "Generalised discrete Gronwall lemmas," Z. Angew. Math. Mech., v. 62, 1982, pp.
429-434.

16. R. K. Miller and A. Feldstein, "Smoothness of solutions of Volterra integral equations with
weakly singular kernels." SI AM J. Math. Anal., v. 2, 1971, pp. 242-258.

17. J. R. Rice, "On the degree of convergence of nonlinear spline approximation," in Approximation
with Special Emphasis on Spline Functions (I. J. Schoenberg. ed.). Academic Press, New York, 1969, pp.
349-365.

18. H. J. J. TE Riele, "Collocation methods for weakly singular second-kind Volterra integral equations
with non-smooth solution," IMA J. Numer. Anal., v. 2, 1982, pp. 437-449.

19. C. Schneider, "Produktintegration mit nicht-äquidistanten Stützstellen," Numer. Math., v. 35,
1980, pp. 35-43.

20. C. Schneider, "Product integration for weakly singular integral equations," Math. Comp., v. 36,
1981, pp. 207-213.

21. L. L. Schumaker, Spline Functions: Basic Theory, Wiley. New York, 1981.
22. A. F. Timan, Theory of Approximation of Functions of a Real Variable. Pergamon Press, Oxford.

1963.
23. P. R. Uba, "The method of piecewise-linear collocation on a nonuniform grid for the solution of

integral equations with a singularity,"Uchen. Zap. Tartu. Gos. Univ., v. 580, 1981, pp. 52-57. (Russian)
24. G. Vainikko, A. Pedas & P. Uba, Methods for Solving Weakly Singular Integral Equations, Tartu.

Gos. Univ., Tartu, 1984. (Russian)
25. G. Vainikko & P. Uba, "A piecewise polynomial approximation to the solution of an integral

equation with weakly singular kernel," J. Austral. Math. Soc. Ser. B., v. 22, 1981, pp. 431-438.
26. R. DeVore & K. Scherer, "Variable knot, variable degree spline approximation to x1'." in

Quantitative Approximation (R. DeVore and K. Scherer, eds), Academic Press, New York, 1980, pp.
121-131.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


