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Abstract Computed tomography (CT)-derived ventilation

imaging utilizes deformable image registration (DIR) to

recover respiratory-induced tissue volume changes from

inhale/exhale 4DCT phases. While current strategies for

validating CT ventilation rely on analyzing its correlation

with existing functional imaging modalities, the numerical

stability of the CT ventilation calculation has not been char-

acterized.

Purpose The purpose of this study is to examine how small

changes in the DIR displacement field can affect the calcu-

lation of transformation-based CT ventilation.

Methods First, we derive a mathematical theorem, which

states that the change in ventilation metric induced by a

perturbation to single displacement vector is bounded by

the perturbation magnitude. Second, we introduce a novel

Jacobian constrained optimization method for computing

user-defined CT ventilation images.

Results Using the Jacobian constrained method, we demon-

strate that for the same inhale/exhale CT pair, it is possible to

compute two DIR transformations that have similar spatial

accuracies, but generate ventilation images with significantly

different physical characteristics. In particular, we compute a

CT ventilation image that perfectly correlates with a single-

photon emission CT perfusion scan.
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Conclusion The analysis and experiments indicate that

while transformation-based CT ventilation is a promising

modality, small changes in the DIR displacement field can

result in large relative changes in the ventilation image. As

such, approaches for improving the reproducibility of CT

ventilation are still needed.
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Introduction

Deformable image registration (DIR) methods compute a

spatial transformation that describes the apparent motion

depicted by a pair of images [1]. Medical imaging applica-

tions, such as radiation dose accumulation [2,3] and intensity

variation analysis [4], rely on DIR algorithms to link corre-

sponding voxel locations. Other applications, such as brain

morphometric analysis [5,6] and cardiac strain rate imaging

[7,8], utilize DIR-measured structural changes to quantify

the effects of disease and injury.

Computed tomography (CT)-derived ventilation imaging

is based on employing DIR to infer local tissue volume

changes, induced by respiratory motion, from inhale/exhale

lung CT image pairs [9,10]. Moreover, CT ventilation is an

ideal analysis tool for investigating the effects of radiotherapy

on pulmonary function (see [11,12] for example), since CT

ventilation can be computed directly from routine simulation

(treatment planning) 4DCT.

There are two strategies for computing CT ventilation.

Intensity-based ventilation employs the formulation intro-

duced in [13] to estimate local volume changes from the

Hounsfield units (HU) of DIR-linked voxel locations [9,10,

14]. Transformation-based ventilation, which is the focus of
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this study, is derived from multivariate calculus and utilizes

the Jacobian of the DIR spatial transformation [10,15]. The

Jacobian factor of a spatial transformation is defined as the

determinant of the transformation’s first derivative (Jacobian)

and represents the magnification factor for volumes under

the transformation [16]. For simplicity, the Jacobian factor is

often referred to as simply the Jacobian.

The goal in developing and understanding CT ventilation

is ultimately to employ it in the clinical setting. As such,

validation is an important and active area of research. Pre-

vious validation strategies have focused almost exclusively

on demonstrating a correlation with an established func-

tional imaging modality. For example, comparison studies

based on SPECT ventilation [10], SPECT perfusion [17],

positron emission tomography (PET) imaging [18], and He3

hyperpolarized MRI [19] have all successfully demonstrated

varying degrees of spatial correlation with CT ventilation.

A related problem, considering the modality’s reliance on

DIR, is assessing the spatial accuracy of the DIR algorithm

used to compute CT ventilation [20]. Not surprisingly, previ-

ous studies have demonstrated that CT ventilation is in fact

sensitive to DIR algorithm [21,22] and to issues affecting

DIR algorithm performance, such as 4DCT phase-binning

artifacts [23].

DIR validation is itself an active area of research [24]. Spa-

tial accuracy assessment of DIR solutions based on large sets

of expert-determined landmark point pairs has been shown

to be a statistically robust and straightforward framework

[20,25]. The approach has been utilized within many studies

to validate novel DIR algorithm performance (see [26–30] for

example). Though there is no universal standard that defines

an acceptable DIR spatial accuracy for all situations, in the

context of inhale/exhale CT image pairs, DIR algorithms

are expected to produce spatial accuracies on the order of

the voxel dimensions [31]. Therefore, the pertinent issue for

CT ventilation is the degree to which the ventilation image

can vary with respect to different DIR solutions within this

accuracy range. Or put another way, we seek an answer to

the following question: will two DIR solutions for the same

CT inhale/exhale image pair generate similar CT ventilation

images if both DIR solutions have subvoxel spatial accuracy?

The purpose of this study is to (1) examine the numerical

instability inherent to transformation-based CT ventilation

and (2) demonstrate how two (or several) DIR transforma-

tions with similar spatial accuracies can generate correspond-

ing ventilation images with significantly different physical

characteristics. To do this, we first mathematically analyze

how perturbing a single displacement vector affects the ven-

tilation calculation. The analysis indicates that, for a single

voxel, the maximum possible magnitude change in venti-

lation metric that can be induced by perturbing a single

displacement vector is on the order of the perturbation mag-

nitude. Thus, changing a single displacement by one voxel

can result in a magnitude Jacobian change of 1.0. In order

to demonstrate the repercussions of this result, we intro-

duce a novel post-DIR processing method for computing a

spatial transformation with “user-defined” Jacobian values.

Given an initial DIR spatial transformation, this numeri-

cal tool allows us to compute a similar transformation that

has Jacobian values equal to a pre-specified target Jaco-

bian image. Using this tool, we demonstrate that for the

same inhale/exhale CT pair, it is possible to compute two

(or several) ventilation images that have significantly differ-

ent physical characteristics, despite being generated from

DIR solutions with similar spatial accuracies. DIR spa-

tial accuracy is measured using expert-determined landmark

point pairs and imaging data made publically available on

the www.dir-lab.com website [20]. The rest of the paper

is organized as follows: “Transformation-based CT ventila-

tion” section describes transformation-based CT ventilation

and how it is computed numerically. In “Perturbation anal-

ysis of the ventilation metric” section, the mathematical

bound describing how perturbing a single displacement vec-

tor effects the ventilation metric is derived. “Computing

spatial transformations with user-defined Jacobian values”

section introduces our novel post-DIR processing method for

computing spatial transformations with user-defined Jaco-

bian values. Finally, the numerical experiments are presented

in “Numerical experiments” section and discussed in “Dis-

cussion” section.

Transformation-based CT ventilation

DIR determines a spatial transformation, φ(x) : R
3 → R

3,

that maps the image content from a reference image onto a

target image. The transformation is often defined in terms of

a displacement field:

φ(x) = x + d(x), (1)

where d(x) =
[

d(1)(x), d(2)(x), d(3)(x)
]

. CT ventilation

is premised on the ability to infer voxel volume changes

induced by the spatial mapping φ. Multivariate calculus (the

“Change of Variables” Theorem) dictates that the determi-

nant of the Jacobian, often referred to as the Jacobian factor,

represents the magnification factor for volumes under the

transformation φ:

Vol(�̂) =
∫

�̄

|det (J (x; d))| dx, (2)

J (x; d) =

⎡

⎢
⎢
⎢
⎣

1 + ∂d(1)(x)
∂x1

∂d(1)(x)
∂x2

∂d(1)(x)
∂x3

∂d(2)(x)
∂x1

1 + ∂d(2)(x)
∂x2

∂d(2)(x)
∂x3

∂d(3)(x)
∂x1

∂d(3)(x)
∂x2

1 + ∂d(3)(x)
∂x3

⎤

⎥
⎥
⎥
⎦

, (3)
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where �̄ is the initial reference domain and �̂ is the image

�̄ of under the transformation φ. Equation (2) assumes φ is

differentiable and one-to-one [16]. Modern DIR algorithms

compute diffeomorphic spatial transformations that satisfy

these assumptions and further require the determinant of the

Jacobian to be strictly positive [32,33].

For computing CT ventilation, �̄ is taken to be a cube of

unit volume centered on the voxel location xk and, rather than

compute the integral in Eq. (2), the volume of the deformed

voxel is approximated (assuming φ is diffeomorphic) as

vol(�̂) ≈ det (J (xk; d)) · Vol(�̄)
︸ ︷︷ ︸

=1

= det (J (xk; d)) (4)

Equation (4) is exact when the Jacobian is constant, or equiv-

alently, when the transformation φ is affine on �̄. An estimate

for specific volume change, V (xk), can be defined from

Eq. (4) as:

V (xk) = det (J (xk; d)) − 1 ≈ Vol(�̂) − Vol(�̄). (5)

Equation (5) is a commonly employed ventilation metric

with the demonstrated potential to quantify lung function

[15,23]. A transformation-based CT ventilation image is

computed from a DIR displacement field by evaluating

Eq. (5) for all lung voxels. In general, this process requires

first computing numerical approximations to the first-order

displacement field derivatives that define the Jacobian. For

example, the forward difference approximation (under the

unit voxel assumption) is defined as:

∂d(i)(xk)

∂x j

≈ d(i)(xk + e j ) − d(i)(xk), (6)

where e j is the standard basis vector. The corresponding for-

ward difference ventilation metric is defined as:

Ṽ (xk) = det
(

J̃ (xk; d
)

− 1, (7)

J̃ (xk; d) =

⎡

⎢
⎢
⎣

1 + d(1)(xk + e1) − d(1)(xk) d(1)(xk + e2) − d(1)(xk) d(1)(xk + e3) − d(1)(xk)

d(2)(xk + e1) − d(2)(xk) 1 + d(2)(xk + e2) − d(2)(xk) d(2)(xk + e3) − d(2)(xk)

d(3)(xk + e1) − d(3)(xk) d(3)(xk + e2) − d(3)(xk) 1 + d(3)(xk + e3) − d(3)(xk)

⎤

⎥
⎥
⎦

. (8)

Perturbation analysis of the ventilation metric

Reproducibility is a key metric for assessing the clinical util-

ity of an imaging modality. Given that transformation-based

CT ventilation is derived from DIR, ideally, similar DIR

transformations should generate similar ventilation images.

Fig. 1 Undeformed voxel (green) is mapped by the displacement vec-

tors to create the deformed voxel (purple). Equation (10) describes

how the ventilation metric varies when d(xk) is perturbed by a vector

with magnitude ‖h‖. The perturbation implies that the mapped position

y = xk + d(xk) − h lies within the red ball of radius of ‖h‖ centered

on the unperturbed position, denoted B‖h‖(y)

Thus, investigating how small changes in the DIR displace-

ment field affect the ventilation metric in Eq. (7) (or one

derived by another finite differencing scheme) is key to

understanding the numerical stability, and consequently, the

reproducibility of CT ventilation. In general, a numerical

analysis with respect to the entire displacement field is dif-

ficult due to the nonlinearity of the determinant calculation.

However, with respect to a single voxel xk , the sensitivity of

the ventilation metric can be described in terms of a pertur-

bation, h, to the displacement vector d(xk).

Figure 1 illustrates the undeformed voxel, the deformed

voxel, and the corresponding displacement vectors needed to

compute both the forward difference Jacobian approximation
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and the ventilation metric Ṽ (xk). Applying a perturbation

h ∈ R
3 to d(xk) implies that the mapped position, y =

xk +d(xk)−h, lies within a ball of radius ‖h‖ centered on the

unperturbed position xk +d(xk). The value of the ventilation

metric, Vh, corresponding to the perturbed displacement is

computed by replacing d(xk) with d(xk) − h in Eq. (8):

Vh = det

⎛

⎝ J̃ (xk, d) +

⎡

⎣

h(1) h(1) h(1)

h(2) h(2) h(2)

h(3) h(3) h(3)

⎤

⎦

⎞

⎠ − 1. (9)

The difference between the perturbed and unperturbed ven-

tilation metric values is bounded (see “Appendix” for deriva-

tion):

∣
∣
∣Vh − Ṽ (xk)

∣
∣
∣ ≤

3
√

3

2
‖h‖ · maxi

3
∏

j=1
j �=i

(

1 +
∥
∥
∥∇d( j)(xk)

∥
∥
∥

)

,

(10)

where

∇d̃( j)(xk) =

⎡

⎣

d( j)(xk + e1) − d( j)(xk)

d( j)(xk + e2) − d( j)(xk)

d( j)(xk + e3) − d( j)(xk)

⎤

⎦ . (11)

In other words, the result in Eq. (10) describes the potential

change in the Eq. (7) ventilation metric, evaluated at a voxel

xk , caused by slightly changing the value of the displace-

ment vector d(xk). Though the analysis is limited to a single

voxel, Eq. (10) implies that the sensitivity of the ventilation

metric with respect to a single perturbation depends on the

smoothness of the displacement field, i.e., large magnitude

displacement field gradients amplify the effect of the per-

turbation. For a transformation with displacement gradients

close to zero, such as a rigid shift, the change in ventilation

metric is bounded by the perturbation magnitude. However,

respiratory-induced lung motion is known to be nonlinear

and non-uniform. These properties can result in larger magni-

tude displacement field gradients, and consequently, a higher

potential perturbation impact on the ventilation metric. A

magnitude change on the order of ‖h‖ is therefore a con-

servative estimate for lung CT DIR, given that the gradient

magnitudes of the displacement field are likely to be greater

than one [34].

Computing spatial transformations

with user-defined Jacobian values

Equation (10) is a bound on the maximum change a single

displacement vector perturbation can induce on the ventila-

tion metric. It essentially describes the maximum ventilation

change possible with respect to a single perturbation. How-

ever, Eq. (10) suggests that changing a displacement value

by 1.0 (voxels) can result in a ventilation metric change of

1.0. Considering that the Jacobian is the magnification factor

of a volume under a spatial transformation, the difference

between a Jacobian factor of 1.0 and 2.0 is the difference

between zero volume change and a 100% volume increase

(a Jacobian factor of 2.0 doubles the reference volume). This

characteristic suggests that transformation-based CT venti-

lation is numerically unstable in that small changes to the

displacement field can potentially result in large relative

changes in the ventilation image. In order to test this hypoth-

esis, we employ a novel numerical optimization method for

computing a DIR spatial transformation that generates a user-

defined Jacobian image. The method is described in Sections

3.1 and 3.2. In “Computing spatial transformations with user-

defined Jacobian values” section, we use the method to (1)

manufacture several different DIR transformations for the

same inhale/exhale CT image pair and (2) demonstrate that

DIR transformations with similar spatial accuracies are not

guaranteed to produce similar CT ventilation images.

Optimization formulation

Since the Jacobian provides a concise mathematical descrip-

tion for volume change under a spatial transformation, it

stands to reason that this quantity can be controlled within a

DIR framework. For example, constraining the Jacobian to be

strictly positive would guarantee a diffeomorphic DIR solu-

tion [32,33,35]. Similarly, upper bounds designed to force

all lung voxel volumes to decrease could be used to model

inhale-to-exhale lung motion as a strict contraction.

Considering the nature of anatomical motion, modern DIR

methods are designed to produce diffeomorphic transfor-

mations that prohibit physically unrealistic tissue folding

[32,33]. Requiring the Jacobian factor to be strictly positive

for every voxel within the image domain (or connected region

on interest), �, enforces this constraint. Thus, the concept

of generating a transformation that yields volume changes

defined by a given positive function, f (x) : R
3 → R

+, is

simply a generalization of the diffeomorphic constraint:

det (J (x; d)) = f (x),∀x ∈ �. (12)

Intensity-based deformable image registration represents

an ill-posed, nonlinear, nonconvex numerical optimization

problem [1]. Thus, explicitly incorporating the equality con-

straints represented by Eq. (12) into a DIR formulation, as

done in [36] for inequality constraints, increases the high

computational complexity associated with DIR of volumet-

ric images [37]. Instead, we propose a post-DIR processing

approach that assumes the existence of a priori fidelity data,
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provided by a separate DIR method, to remove the need for

optimizing an image similarity metric.

Specifically, for each voxel location

xk ∈ �, k = 1, 2, . . . N , N = |�| , (13)

we introduce the discretized variables, d
j

k , representing

the three components of the unknown displacement vectors

d(xk):

d(xk) =
[

d
(1)
k d

(2)
k d

(3)
k

]T

. (14)

Given a set of fidelity data yi , representing a priori dis-

placement estimates for voxel locations specified by the index

set I :

yi ≈ d(xi ), ∀i ∈ I, |I | = M, (15)

the goal is to determine a smooth displacement field that

satisfies the Jacobian equality constraints and ideally is in

agreement with the fidelity data. However, there is one Jaco-

bian constraint for each of the N voxels in �, and no

assumptions placed on the number of displacement estimates,

M . Thus, the problem is ill-posed in that the total number of

equations provided by the fidelity data and the constraints,

3M + N , is not guaranteed to be greater than the total num-

ber of unknowns in the displacement field, 3N [38]. Thus,

we introduce Laplacian regularization in order to impose a

degree of smoothness (determined by a parameter α) on the

solution displacement field and formulate a well-posed opti-

mization problem [39]:

min
d

∑

i∈I

‖d(xi ) − yi‖2 + α

3
∑

j=1

∥
∥
∥Ad̃ j

∥
∥
∥,

such that det
(

J̃ (xk; d)

)

= f (xk), ∀xk ∈ �. (16)

The matrix A represents the Laplacian operator:

�d( j)(x) = ∂2d( j)

∂x2
1

+ ∂2d( j)

∂x2
2

+ ∂2d( j)

∂x2
3

, (17)

discretized by centered finite differences (7-point stencil)

under a zero-normal derivative boundary condition. The vec-

tors d̃ j =
[

d
( j)
1 d

( j)
2 · · · d

( j)

N

]T

organize the discretized

displacement variables for each spatial dimension lexi-

cographically and in correspondence with the Laplacian

discretization.

The optimization problem defined by Eq. (16) is com-

prised of a linear least squares objective function with

nonlinear equality constraints. Without the Jacobian con-

straints, Eq. (16) is simply an overdetermined linear least

squares formulation for computing a smooth displacement

field from fidelity data:

min
d

∑

i∈I

‖d(xi ) − yi‖2 + α

3
∑

j=1

∥
∥
∥Ad̃ j

∥
∥
∥

2
. (18)

While Eq. (18) has a unique solution, proving the existence

or uniqueness of a solution for an equality constrained non-

linear, nonconvex optimization problem, such as Eq. (16),

is not trivial [40]. For the purposes of this study, we oper-

ate under the assumption that a solution exists and mention

that these issues will be further explored in future work. A

numerical solution to problem (16) is computed using the

well-known augmented Lagrangian method (see [40,41] for

full derivation and convergence analysis).

Constructing Jacobian constraint functions

The solution to Eq. (16) is a DIR spatial transformation whose

Jacobian values are equal to those specified by f . In order to

apply this method, one must first explicitly define f (x): the

Jacobian factor value for each voxel within the region of inter-

est. However, the existence of a priori fidelity data implies

that the unique unconstrained solution, dunc, can be computed

by solving the least squares problem in Eq. (18). Under this

framework, a function f possessing desired physical prop-

erties, such as smoothness, volume preservation, or spatial

structure can be defined as a function of the unconstrained

Jacobian values, J (x; dunc). For instance, a smoother vari-

ant of the unconstrained Jacobian image can be obtained by

applying a Gaussian convolution filter with variance σ :

f (x) = Gσ ∗ det
(

J (x; dunc)
)

. (19)

More general Jacobian constraints of the form:

LB ≤ det (J (x; d)) ≤ UB, ∀x ∈ �, (20)

result in a diffeomorphic contraction transformation (every

voxel either shrinks, or maintains volume under the transfor-

mation) when LB ≥ 0 and UB = 1. Similarly, UB > LB ≥ 1

results in an expansion. A general bound constraint function

can be defined as:

f (x) = Gσ ∗ f̂ (x; dunc, LB, UB), (21)

where

f̂ (x; d(unc), LB, UB)

=

⎧

⎨

⎩

det
(

J (x; dunc)
)

, if LB ≤ det
(

J (x; dunc)
)

≤ UB

LB, if det
(

J (x; dunc)
)

< LB

UB, if det
(

J (x; dunc)
)

> UB

⎫

⎬

⎭
.

(22)
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Table 1 Properties of the inhale/exhale CT image pair (Case 6 from www.dir-lab.com) used for the constrained Jacobian experiments are given in

the first column

Image properties Spatial transformation Average mm

error (Std.)

Max mm

error

Average Jacobian

value (std.)

Size (voxels): 512 ×
512 × 128

No DIR 11.10 (6.98) 27.59

Voxel dimensions

(MM): 0.97 × 0.97

× 2.5

Unconstrained DIR 0.99 (0.99) 5.37 0.79 (0.11)

Number of

landmarks: 419

Contraction constraint:

LB=0.5, UB=1.00

1.08 (1.02) 5.00 0.79 (0.08)

Contraction constraint:

LB=0.5, UB=0.75

1.66 (1.16) 5.71 0.73 (0.03)

Forced spatial

correlation with

SPECT Perfusion

1.47 (1.16) 5.46 0.79 (0.03)

The spatial accuracy results for the unconstrained DIR solution and each of three constrained DIR examples are given in the remaining columns.

For all experiments, the average millimeter (MM) error stays below the axial slice spacing

As mentioned in the Introduction, a common approach for

validating CT ventilation is to determine the amount of spatial

correlation between the ventilation image and an established

functional imaging modality (i.e., SPECT ventilation, Hyper-

polarized He3 MRI). A constraint function enforcing a linear

spatial correlation between the Jacobian/ventilation image

and a functional image g(x) requires defining the coefficients

of a linear intensity mapping. This can be accomplished by

first calculating the line of best (least squares) fit with respect

to the unconstrained Jacobian values:

min
a,b

∑

xk∈�

[

ag(x) + b − det
(

J (x; dunc)
)]2

, (23)

where the optimal fit coefficients a∗, b∗ are the solution to

problem (23). The constraint function closest (in terms of

least squares) to the unconstrained Jacobian that enforces a

strict linear spatial correlation with g(x) is defined as:

f (x) = a∗g(x) + b∗. (24)

In “Numerical experiments” section, the constraint func-

tions defined by Eqs. (19), (21) and (24) are used to compute

several DIR transformations for the same inhale/exhale CT

image pair. While the spatial accuracies of the transforma-

tions are similar, we show that the corresponding ventilation

images exhibit significantly different physical characteris-

tics.

Numerical experiments

The constrained Jacobian method (Eq. (16)) was used to

assess the numerical stability of transformation-based CT

ventilation imaging with respect to DIR spatial accuracy. We

examine two constraint sets: (1) strict contraction constraints

and (2) enforced linear spatial correlation with a SPECT per-

fusion image. The inhale/exhale thoracic CT image pair listed

as “Case 6” on the www.dir-lab.com image repository was

used for all experiments. Spatial accuracy, with respect to

expert-determined landmark point pairs (also available on the

dir-lab website), was quantified as the Euclidian distance in

millimeters between the landmark positions and the positions

mapped by the DIR. The image and landmark characteristics

are summarized in Table 1 and detailed in [42].

An unconstrained DIR solution for the test case was

computed using the MILO algorithm [26]. The algorithm

achieved an average millimeter (standard deviation) error

of 0.99 (0.99). The unconstrained Jacobian image was then

used to compute two bound constraint functions according to

Eq. (22) with parameters detailed in Table 1. The constrained

Jacobian optimization method Eq. (16) was then used to com-

pute (with the unconstrained MILO DIR solution serving as

the fidelity data) spatial transformations satisfying the two

sets of contraction bounds (shown in Fig. 2). The spatial

accuracies of the resulting DIR transformations are listed in

Table 1, and the histogram of Jacobian values for each exper-

iment is given in Fig. 2. The results demonstrate that while

the average Jacobian value did not vary greatly across the dif-

ferent DIR transformations ([0.73 0.79]), the distribution of

the Jacobian values varied with standard deviations between

0.03 and 0.11. This variation resulted in different ventila-

tion estimates. In particular, the two upper bound constraints,

UB=0.75 and UB=1.00, represent a 25% difference in the

minimum volume change and ventilation metric for each

voxel. The histogram plots given in Fig. 2 illustrate this dif-

ference. However, the average mm errors of the two DIR
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Fig. 2 Coronal slice 293 from the four CT ventilation Jacobian images

corresponding to the experiments described in Table 1 are shown in the

left column. The intensity values indicate the Jacobian measured vol-

ume change for each voxel. In the right column, a histogram plot of

all Jacobian values for each image ventilation image is shown, with

the unconstrained histogram superimposed for reference. The results

indicate that for the same inhale/exhale CT image pair, it is possible

to compute transformation-based CT images with significantly differ-

ent physical characteristics, despite the fact that the corresponding DIR

solutions maintain subvoxel average mm accuracy
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Fig. 3 A plot of the unconstrained DIR Jacobian values (x-axis) versus

the spatially corresponding SPECT Perfusion values (y-axis) is given in

blue. The correlation between the two datasets is−0.29. The constrained

Jacobian values are also plotted (red). The spatial correlation between

the constrained values and the SPECT values is −1.00. Despite these

seemingly significant differences, the average mm spatial error of the

corresponding DIR solutions is 0.99 and 1.47 mm, respectively, both

of which are well below the axial slice spacing of the CT image pairs

(2.5 mm)

solutions (1.08 and 1.66 respectively) both remain well below

the axial slice spacing of 2.5mm.

In a previous study, we demonstrated the correlation

between 4DCT-derived ventilation defects and defects within

SPECT pulmonary perfusion images caused by malignant

airway stenosis [17]. The www.dir-lab.com test Case 6 used

in this study was included in the imaging dataset used for

study [17]. After performing an affine registration to align

the SPECT perfusion image with the unconstrained CT ven-

tilation image (defined on the T00 maximum inhale phase),

we then calculated the spatial correlation between the uncon-

strained Jacobian values and the SPECT perfusion values to

be −0.29. A plot of spatially corresponding unconstrained

Jacobian values versus SPECT perfusion values is given

in Fig. 3. The linear transformation defined by Eq. (24)

was then applied to the SPECT perfusion values to gener-

ate a Jacobian constraint function. The constrained Jacobian

optimization method (with the unconstrained MILO DIR

solution serving as the fidelity data) was used to compute

a DIR transformation satisfying the constraint. The correla-

tion between spatially corresponding constrained Jacobian

values and SPECT perfusion values (plotted in Fig. 3) is

−1.00, while the average mm error of the corresponding DIR

transformation was 1.47 (1.16). Thus, it is possible to manu-

facture a DIR solution with subvoxel average mm error that

perfectly correlates with a SPECT perfusion image.

Discussion

CT-derived ventilation imaging is an emerging medical

image analysis tool with demonstrated utility in disease diag-

nosis [43] and in quantifying radiotherapy dose response

[11,12]. Previous studies seeking to validate CT-derived

ventilation imaging examine the correlation between ven-

tilation values and the intensities of a functional imaging

modality, such as SPECT ventilation [10], SPECT perfu-

sion [17,44], hyperpolarized He3 MRI [19], or PET [18].

However, CT-derived ventilation is dependent on DIR com-

putation. Consequently, sensitivity to DIR algorithm [22,45],

as well as to image characteristics that can influence DIR,

such as 4DCT phase binning [23] and patient breathing vari-

ations [46,47], are known issues that affect CT ventilation

reproducibility [46]. The results and analysis in this paper

only consider the uncertainty introduced by DIR, whereas

the uncertainties in 4DCT image acquisition are certainly

important but left outside the scope of this work.

Our novel methodology for computing spatial transfor-

mations with constrained Jacobian values provides a tool for

assessing the sensitivity of transformation-based ventilation

imaging with respect to DIR spatial accuracy. In accordance

with the theoretical perturbation bound given by Eq. (10),

the numerical results indicate that the constrained Jacobian

method can produce manufactured ventilation images with

significantly different physical properties while maintaining

a DIR spatial accuracy below the CT axial slice spacing.

The strict contraction constraints provide an example

where DIR spatial accuracy is not overly sensitive to large

changes in the Jacobian. Specifically, a strict contraction

defined by Eq. (22) with LB=0.5 and UB=1.00 was com-

puted from the unconstrained DIR solution at the cost of

only a 0.10 change in the average mm error. In fact, the max-

imum magnitude error (over all landmarks) decreased using

the strict contraction constraint. A more drastic constraint

with LB=0.5 and UB=0.75 resulted in a larger decrease

in spatial accuracy. This phenomenon is intuitive and in

agreement with the analysis of the perturbation bound (10):

The magnitude difference in spatial accuracy between two

displacement fields is on the order of the magnitude differ-

ence between the corresponding Jacobian images. However,

as illustrated by the Jacobian value histograms in Fig. 2,

a displacement perturbation magnitude of 1.0 voxels only

marginally affects spatial accuracy, whereas a Jacobian value

change of +1.0 represents at minimum a 100% change for

contracting voxels (J (x) ≤ 1.00). As a consequence of this

relationship, the distribution of Jacobian values can vary

widely between DIR transformations with spatial accura-

cies that are on the order of the voxel spacing. Moreover, in

practice, DIR spatial accuracies between competing meth-

ods could potentially be worse, which would in turn further

increase the magnitude of the potential variation. Thus, as

previous studies have reported, transformation-based venti-

lation imaging is difficult to reproduce [47] and voxel volume

change measurements can significantly vary between differ-

ent DIR algorithms [21]. In all three experiments (Table 1),
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the resulting spatial accuracy of the constrained DIR main-

tained an average mm error well below the axial slice spacing

of 2.5 mm. Moreover, the maximum mm error remained close

to constant across all experiments. These results imply that

transformation-based ventilation imaging is not stable with

respect to the DIR, i.e., small changes to the DIR transfor-

mation can potentially result in large changes in the Jacobian

image. For all experiments, the average mm error ranged

from 0.99 (0.99) to 1.66 (1.16) but yielded drastically differ-

ent Jacobian images, as shown by the histograms in Fig. 2.

The constrained Jacobian methodology also provides an

alternative approach to traditional multi-modality

comparison-based ventilation validation studies. Since cor-

relation between the ventilation image and a target functional

image can be manufactured, as demonstrated by the SPECT

perfusion example shown in Figs. 2, 3, determining the

degree to which DIR-based ventilation is related to the func-

tional image reduces to examining the spatial accuracy of the

resulting constrained DIR transformation. For example, if the

magnitude DIR change required to force a desired correlation

between the unconstrained ventilation image and the func-

tional image is greater than a predetermined threshold, the

likelihood is that CT ventilation does not relate well with the

given functional image. Similarly, a small magnitude change

would imply that correlation is likely. Ultimately, a concise

probabilistic definition of the “true” DIR solution is needed

to accurately describe the uncertainty in the CT ventilation

calculation. For instance, one could define a statistical model

describing the likelihood of all ventilation images generated

from spatial transformations within a given neighborhood of

a DIR solution (with respect to a specified norm and function

space). A similar idea based on a Bayesian statistical frame-

work has been proposed for assessing DIR spatial accuracy

with landmark point pairs [48].

The ability to manufacture user-defined (transformation-

based) CT ventilation images has not been addressed within

previous application or validation studies and should be

taken into consideration when interpreting past results. How-

ever, ventilation imaging computed from HU is difficult to

constrain since the measured volume changes depend on vari-

ations in HU values between the corresponding inhale/exhale

voxels determined by the DIR. Describing the mismatch

between the target volume change and HU volume change

is essentially an image similarity metric. The resulting

mathematical formulation for computing an HU-constrained

transformation would look similar to an intensity-based DIR

formulation and would require overcoming the same compu-

tational difficulties, such as nonlinearities, discontinuities,

and large problem size, in order to compute a solution.

Ideally, the transformation-based and HU-based ventilation

images should be equivalent since they represent two ways

of measuring the same quantity. Though certainly possible,

a DIR formulation enforcing this constraint would represent

a formidable computational challenge.

The goal in developing CT ventilation is to provide

an alternative to existing nuclear medicine- or MR-based

functional imaging modalities. As such, previous clinical

validation studies have focused on assessing the correlation

between CT ventilation and various other established modal-

ities. While this validation strategy is useful for assessing

physiological fidelity on a qualitative level, these modalities

typically quantify the distribution of inhaled gas tracers and

therefore provide no direct measurements of regional volume

changes. As such, a mechanism for precisely quantifying the

physiological accuracy of CT ventilation is currently lack-

ing. In the absence of a ground truth dataset, it is reasonable

to instead assess the quality of the employed DIR solution, a

process for which ground truth validation (based on expert-

determined landmark point pairs) does exist. Ideally, the most

spatially accurate DIR solution should generate the most

physiologically accurate CT ventilation image. However, as

the analysis and results from “Perturbation analysis of the

ventilation metric and Numerical experiments” sections indi-

cate, there can be large variability between the ventilation

images generated by similarly accurate DIR solutions. This

implies that high DIR spatial accuracy is a necessary condi-

tion for accurate CT ventilation, but it is not sufficient. Thus,

incorporating additional information or constraints into the

CT ventilation model could reduce the amount of variability.

For instance, one could require the DIR solution to respect

a pulmonary biomechanical model. In essence, this type of

approach reduces the size of the DIR solution set, which

intuitively would have the effect of reducing CT ventilation

variability. Moreover, a second layer of validation could be

designed if, in addition to regional volume change estimates,

the biomechanical model produced clinically quantifiable

outputs such as estimated spirometry or pulmonary function

test data. Quantitative clinical validation of CT ventilation

will be an area of our future research.

Conclusion

This work investigates the numerical stability of transforma-

tion-based CT ventilation. We mathematically prove that the

maximum change in ventilation metric that can be induced by

a perturbation to a single displacement vector is on the order

of perturbation magnitude. Considering the disproportionate

scaling between DIR displacement magnitudes and Jacobian

magnitudes, this result suggests that transformation-based

CT ventilation is numerically unstable, i.e., small changes

to the displacement field can potentially result in large rel-

ative changes in the ventilation image. In order to test this

hypothesis, we also presented a numerical method for com-
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puting a DIR transformation that generates a user-defined CT

ventilation image. This method was employed to create four

different DIR solutions for the same inhale/exhale CT image

pair. Even though all four DIR solutions demonstrated sub-

voxel average spatial accuracy, the functional information

depicted by the four corresponding CT ventilation images

varied substantially. In particular, we generated a spatially

accurate DIR solution such that its Jacobian values corre-

late perfectly with a SPECT perfusion nuclear image. Future

work in this area includes (1) leveraging the constrained

Jacobian methodology to develop a Bayesian framework for

quantifying the uncertainty in CT-derived ventilation imag-

ing, (2) incorporating intensity-based volume changes into

the constrained Jacobian formulation, and (3) developing

approaches for the quantitative clinical validation of CT ven-

tilation.
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Appendix

For a single voxel xk , the magnitude change in ventilation

metric (Eq. (7)) induced by a perturbation, h ∈ R
3, to the

displacement vector d(xk) is bounded according to Eq. (10).

The bound is derived by first rewriting the perturbed venti-

lation metric in Eq. (9) as:

Vh = det
(

J̃ (xk; d) + hzT
)

− 1, (25)

where hzT is the outer product of the perturbation vector and

z = [1, 1, 1]T . Applying the Matrix Determinant Lemma to

Eq. (25) gives:

Vh = det
(

J̃ (xk; d)

) (

1 + zT J̃ (xk; d)−1h
)

− 1,

= det
(

J̃ (xk; d)

)

+ zT Ah − 1, (26)

where

A = det
(

J̃ (xk; d)

)

J̃ (xk; d)−1, (27)

is the Adjugate of the matrix J̃ (xk; d). Thus,

Vh − Ṽ (xk) = det
(

J̃ (xk; d)

)

+ zT Ah − 1
︸ ︷︷ ︸

Vh

−
[

det
(

J̃ (xk; d)

)

− 1
]

︸ ︷︷ ︸

Ṽ (xk )

= zT Ah, (28)

and

∣
∣
∣Vh − Ṽ (xk)

∣
∣
∣ =

∣
∣
∣z

T Ah

∣
∣
∣ ≤ ‖z‖ ‖A‖ ‖h‖ , (29)

where ‖| · ‖ is the l2-norm. The 2nd compound matrix

of J̃ T (xk; d), denoted C2

(

J̃ T (xk; d)

)

, is the matrix

whose elements are the determinants of all 2 × 2 minors

of J̃ T (xk; d). Furthermore, the adjugate matrix can be

expressed as:

A = DC2

(

J̃ T (xk; d)

)

DT , with D =

⎡

⎣

1 0 0

0 −1 0

0 0 1

⎤

⎦ ,

(30)

and therefore bounded

A ≤ ‖D‖
∥
∥
∥C2

(

J̃ T (xk; d)

)∥
∥
∥

∥
∥
∥DT

∥
∥
∥

=
∥
∥
∥C2

(

J̃ T (xk; d)

)∥
∥
∥ . (31)

Thus, according to Theorem 2.8 in [49]:

‖A‖ ≤
∥
∥
∥C2

(

J̃ T (xk; d)

)∥
∥
∥

<

(
3

2

)

max
i

3
∏

j=1
j �=i

∥
∥
∥Row j

(

J̃ (xk, d)

)∥
∥
∥, (32)

with Rowi

(

J̃ (xk; d)

)

equal to the ith row of the Jacobian

matrix. Combining Eq. (32) with (29) yields:

∣
∣
∣Vh − Ṽ (xk)

∣
∣
∣ ≤

3
√

3

2
‖h‖ · max

i

3
∏

j=1
j �=i

∥
∥
∥e j + ∇d( j)(xk)

∥
∥
∥,

(33)
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where e j is the standard basis vector. Finally, applying the

triangle inequality to the norm in the product gives:

∣
∣
∣Vh − Ṽ (xk)

∣
∣
∣ ≤

3
√

3

2
‖h‖ · max

i

3
∏

j=1
j �=i

(

1 +
∥
∥
∥∇d( j)(xk)

∥
∥
∥

)

.

(34)

Though this result is specific to a forward difference

scheme, similar results can also be obtained for backward

and centered difference schemes.
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