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Sixty-six primary school children were selected, of which 21 scored low on a standardized
math achievement test, 23 were normal, and 22 high achievers. In a numerical Stroop
experiment, children were asked to make numerical and physical size comparisons on digit
pairs. The effects of congruity and numerical distance were determined. All children exhibited
congruity and distance effects in the numerical comparison. In the physical comparison,
children of all performance groups showed Stroop effects when the numerical distance
between the digits was large but failed to show them when the distance was small. Numerical
distance effects depended on the congruity condition, with a typical effect of distance in the
congruent, and a reversed distance effect in the incongruent condition. Our results are
hard to reconcile with theories that suggest that deficits in the automaticity of numerical
processing can be related to differential math achievement levels. Immaturity in the precision of
mappings between numbers and their numerical magnitudes might be better suited to
explain the Stroop effects in children. However, as the results for the high achievers
demonstrate, in addition to numerical processing capacity per se, domain-general functions
might play a crucial role in Stroop performance, too.

Keywords: Numerical Stroop paradigm; Mathematical disabilities; Automatized numerical
magnitude processing; Size congruity effect; Numerical distance effect; Reverse distance effect.

INTRODUCTION

In the numerical Stroop paradigm, participants are asked to make comparative judg-
ments about pairs of numbers that vary with respect to two independent stimulus dimensions
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—i.e., the numerical magnitude and the physical size of the digits, of which one is task rel-
evant and the other is not. The often-replicated finding that in Stroop contexts the congru-
ence of relevant and irrelevant stimulus features affects participants’ task performance is
generally taken to be evidence of an automatic processing of the respective task-irrelevant
stimulus dimension (Stroop, 1935). In this vein, the so-called numerical Stroop effect or
size congruity effect in the numerical Stroop task refers to shorter reaction times for con-
gruent trials —i.e., trials where numerical and physical information is consistent, com-
pared to incongruent trials.

While research on numerical Stroop effects initially focused on the impact of physical
size information on numerical comparisons (Besner & Coltheart, 1979), Henik and
Tzelgov (1982) were among the first to investigate the influence of numerical information
on subjects’ performance in the physical comparison task. In their study, participants com-
pared the physical size of digits while ignoring their numerical magnitudes. The finding
that subjects’ performance varied systematically with congruity between the two dimen-
sions in the physical comparison task led the authors to conclude that in competent adults,
numerical magnitude information is accessed and processed automatically, whether it is of
relevance for task execution or not. A later study by the authors showed that this effect is
also present when no direct comparison between items is possible and subjects have to
revert to memorized standards (Tzelgov, Meyer, & Henik, 1992).

On the neurocognitive level, results from neuroimaging studies suggest that in judg-
ments of continuous quantities such as numerical and physical magnitude, distributed but
potentially overlapping neuronal structures in the parietal cortex are activated (Cohen
Kadosh, Cohen Kadosh, Linden, et al., 2007; Kaufmann et al., 2005; Pinel, Piazza, LeBi-
han, & Dehaene 2004). According to Walsh’s ATOM-model (A Theory of Magnitude,
2003), the posterior parietal cortex might be related to a number of different cognitive
functions such as the processing of time, quantity, and space, which all have in common
that they draw on magnitude representations in a more general sense. This cross-domain
representational overlap might be one reason for the interaction of numerical and physical
size information that can be observed in numerical Stroop tasks. However, apart from an
interaction at the level of perceptual and conceptual stimulus evaluation, three recent stud-
ies demonstrate that the resolution of conflict between the two dimensions of numerical
and physical size might not be limited to the early processing stages (Cohen Kadosh,
Cohen Kadosh, Linden, et al., 2007; Szücs & Soltész, 2007, 2008). Using the high tempo-
ral resolution of EEG parameters, these studies showed that effects of congruity might
actually be observable as late as during the stage of response execution.

In addition to studies on the numerical Stroop effect in general, two more special-
ized lines of research have emerged during the past few years, both yielding somewhat
inconclusive outcomes. The first line of research addresses the question of the point in
individual development when children start to show effects of congruity in numerical and
physical size comparison tasks. Two of those studies showed that while even beginning
first graders show congruity effects in the numerical comparison task, in physical size
comparisons the effects of congruity between relevant and irrelevant stimulus dimension
are not observable until later in children’s math development (Girelli, Lucangeli, &
Butterworth, 2000; Rubinsten, Henik, Berger, & Shahar-Shalev, 2002). The results of
these studies suggest that during the first few years of schooling, the automatization of
numerical magnitude processing develops gradually and should become fully manifest in
the form of congruity effects in the physical comparison task when children reach Grade
3. However, this conclusion was challenged by a study on fourth graders that did not find
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THE NUMERICAL STROOP EFFECT IN CHILDREN 463

a congruity effect in the physical size comparison task for that age group (Landerl, Bevan,
& Butterworth, 2004). To further complicate the issue, two recent studies that used neuro-
physiological measures to investigate effects of congruence in numerical Stroop tasks
demonstrate that even when children’s behavioral Stroop effects resemble mature perfor-
mance patterns, on the level of cerebral activation, the differences between children and
adults might be substantial (Kaufmann et al., 2006; Szücs, Soltész, Jármi, & Csépe, 2007).
Apart from the ability to process numerical meaning automatically, differences in execu-
tive functioning appear to be another factor that determines specific patterns of behavioral
Stroop effects in different populations. Overall, it can be concluded that while the auto-
matic activation of numerical information might have precursors that are present as early
as 3 years of age (Rousselle & Noël, 2008), the developmental pathway that ultimately
leads to adult-like processing patterns in numerical Stroop tasks appears to be influenced
by more than one underlying cognitive function, that each has its own specific develop-
mental course, which might not be completed much earlier than age 10.

A second line of research concerns the question of possible deficits in the automatic
processing of numerical information in individuals suffering from neuropsychological
impairments such as attentional deficits (e.g., Kaufmann & Nuerk, 2006) or deficits in the
domain of mathematics (e.g., Rubinsten & Henik, 2005). In the first experimental study
that investigated the numerical Stroop effect in adults with developmental math disabili-
ties (MD), Rubinsten and Henik demonstrated a considerably reduced size congruity
effect in two physical comparison tasks in the MD group compared to normal achievers,
while no differences were found between the groups for the numerical comparison task.
Furthermore, the congruity effect found for the physical comparison tasks consisted of the
interference component only (i.e., the relative disadvantage of incongruent compared to
neutral stimuli), while the facilitatory component—i.e., the advantage of congruent com-
pared to neutral trials [MacLeod, 1991], was missing. In a more recent study, Cohen
Kadosh, Cohen Kadosh, Schumann, et al. (2007) further corroborated these results. The
authors were able to mimic these specific patterns of performance—i.e., overall reduced
congruity effects in the physical comparison task with no advantage for congruent over
neutral stimuli—by disrupting right intraparietal regions in originally well-performing
adults using transcranial magnetic stimulation.

Combining these two lines of research—i.e., the developmental and the neuropsy-
chological perspective on the numerical Stroop effect—a small number of studies
addressed the question of how children with mathematical disabilities perform in the
numerical and physical Stroop tasks compared to their normally developing peers. Koontz
and Berch (1996) showed that while 10-year-old, normally developing children exhibited
effects of interference of numerical information in a physical identity judgment task con-
sisting of stimuli in the subitizing range, children with MD did not show such an impact of
the task-irrelevant numerical information. However, these findings are contradicted by
results reported by two other studies that investigated Stroop performance in learning dis-
abled children. Comparing groups of children with and without mathematical disabilities,
Landerl et al. (2004) reported that while in the numerical comparison task a congruity
effect was observed in all of the fourth graders involved in their study, in the physical
comparison task, size congruity effects were not found in either group. In contrast to these
results, Rousselle and Noël (2007) demonstrated an influence of numerical information in
size comparisons in groups of normal and of learning disabled second graders in an exper-
imental setting where the display of physical size information lagged behind the numerical
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464 A. HEINE ET AL.

information. However, the considerable differences between experimental approaches
make it difficult to compare the results of these three studies.

Overall, the somewhat inconsistent results of the available developmental and
neuropsychological studies into the numerical Stroop effect call for further research into per-
formance patterns of children with and without deficits in the mathematical domain. The
question whether different math achievement levels in children are related to differences in
the automatization of numerical magnitude processing is yet to be answered conclusively.
This issue becomes even more relevant in view of the results of recent neurophysiological
studies into the numerical Stroop effect. Szücs and Soltész (2007; see also Szücs et al., 2007)
point out that caution is needed in interpreting size congruity effects in children as a measure
of automatic processing of numerical magnitude information because immature processes of
response organization and execution in this population might also be of relevance.

What further complicates the discussion on the relationship between children’s math
achievement levels and their performance under numerical Stroop conditions is that Tang,
Critchley, Glaser, Dolan, and Butterworth (2006), in line with Szücs and colleagues, sug-
gest that in numerical Stroop tasks not so much the size congruity effect but rather the
numerical distance effect might actually “prove to be a more sensitive measure” (p. 2060)
for assessing automatized magnitude processing. Originally, the numerical distance effect
refers to the fact that performance measures in numerical comparison tasks vary systemat-
ically with the numerical distance between the numbers to be compared (Moyer & Landauer,
1967); i.e., the smaller the distance between two numbers, the harder it is to decide which
is smaller or larger. These effects of numerical distance are generally interpreted as evi-
dence for an ordered numerical magnitude representation in the sense of a mental number
line (Dehaene & Cohen, 1995). The higher representational overlap between close num-
bers can be assumed to result in a higher level of difficulty for numerical comparisons.

In contrast to the typical distance effect, in the context of the physical comparison of
the numerical Stroop paradigm a number of studies found a reversed numerical distance
effect (Girelli et al., 2000; Henik & Tzelgov, 1982; Szücs & Soltész, 2007; Szücs et al.,
2007; Tang et al., 2006; Tzelgov et al., 1992). It was shown that in the incongruent condi-
tion of the physical comparison, i.e., when numerical magnitude is the task-irrelevant
dimension, larger numerical distances result in larger reaction times compared to pairs of
numbers where the numerical distance is small. These findings seem to be caused by a
stronger interference of numerical information for larger numerical distances compared to
smaller ones (Szücs et al., 2007). Following Henik and Tzelgov (1982) and Tzelgov et al.
(1992), Tang and colleagues (2006) emphasize the importance of looking for a reversed
distance effect in Stroop tasks by pointing out that finding such an effect “would indicate
that exact numerical values had been computed despite task irrelevance” (p. 2052). For the
question of whether differential levels of performance in the domain of mathematics are
related to differences in the development of automatic numerical magnitude processing,
this means that apart from effects of congruity per se, the finding of a reversed numerical
distance effect in children diagnosed with MD would be positive evidence for automatized
magnitude processing in this group of children.

By exploring the interaction of size congruity and numerical distance effects under
Stroop conditions in three groups of primary school children with different math achieve-
ment levels—i.e. low, normal, and high achievers—the present study aims to provide fur-
ther insights into the development of automatized numerical processing in these
populations. In line with studies that suggest that focusing on the interaction of both
effects might be a promising approach instead of solely looking for size congruity effects
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(Szücs & Soltész, 2007; Szücs et al., 2007; Tang et al., 2006), we implemented a Stroop
task that allows for separate in-depths analyses of the respective influences of congruity
and numerical distance on children’s Stroop performance.

In view of the findings of studies that implemented more than one numerical distance
(e.g., Girelli et al., 2000, Henik & Tzelgov, 1982), we expect that the occurrence of size con-
gruity effects in the physical comparison task depends on the numerical distance between the
two digits to be compared; i.e., the congruity effect can be assumed to be generally more
pronounced when the distance between the two digits is large. An occurrence of both con-
gruity effects and effects of numerical distance that in turn are dependent on congruity con-
ditions would be indicative of automaticity in the processing of numerical magnitude
information in our groups of children. However, not only automaticity of processing but also
differential executive control levels might have an influence on Stroop processing. An
impact of the latter can be assumed to come into effect mainly when disadvantageous influ-
ences of task irrelevant information have to be inhibited, i.e., in the incongruent trials.

METHOD

Participants

Sixty-six second and third graders out of a pool of 1,242 children from six public
primary schools in Berlin took part in the present study. Participants were selected on the
basis of their achievement levels in several diagnostic tests. Only children whose parents
had given their written informed consent participated in the study.

In a first step, all children from the original pool were administered the Heidel-
berger Rechentest 1-4 (HRT 1-4; Haffner, Baro, Parzer, & Resch, 2005). The HRT 1-4 is
a standardized math achievement test for Grades 1 to 4 and comprises two subscales, such
as an arithmetic scale that includes timed tests of arithmetic skills, e.g., addition, subtrac-
tion, multiplication, and division, and a second scale that consists of tests of children’s
visuospatial abilities, such as 2D length estimation, estimation of set size.

After the initial testing with the HRT 1-4, a group of 382 children entered the second
diagnostic phase. Children’s general cognitive performance levels were determined using a
standardized intelligence test for primary school children (Kognitiver Fähigkeitstest [KFT
1-3]; Heller & Geisler, 1983). An assessment for possible attentional problems was carried
out using a standardized diagnostic tool (Children’s Color Trails Test [CCTT]; Llorente,
Williams, Satz, & D’Elia, 2003) and a short questionnaire for teachers (cf. Conners, 1973).
Additionally, low achievers’ performance in reading and spelling was measured by stan-
dardized tests, i.e., the SLS 1-4 (Salzburger Lese-Screening für die klassenstufen 1-4; May-
ringer & Wimmer, 2003) and the spelling subtest of the SLRT (Salzburger Leseund
Rechtschreibtest; Landerl, Wimmer, & Moser, 1997). After exclusion of children with IQs
more than 1 SD below the standard mean, children with either reading and/or spelling prob-
lems (i.e., scores 1.65 SDs below the standard mean for the SLS and SLRT) and children
suspected to suffer from attentional deficits according to CCTT results and/or teachers’
assessments, a group of 66 children was selected for the present study on the basis of their
scores on the arithmetic subscale of the math achievement test. Of the children that were
chosen to take part in the experimental study, 21 scored low (≤ 1.65 SD below the standard
mean) on the arithmetic subscale of the HRT 1-4 (low achievers [LA]), 23 children reached
normal scores (normal achievers, NA), and 22 children completed the subtests with excep-
tionally high scores (≥ 2 SD above the standard mean; high achievers [HA]).
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466 A. HEINE ET AL.

Finally, in order to test for differences in domain-general processing speed (Catts,
Gillespie, Leonard, Kail, & Miller, 2002), children had to perform three rapid automatized
naming tasks (RAN) that required them to rapidly name either objects—i.e., one-syllable
and three-syllable animals—or single digits. Naming times and errors were recorded.

Materials and Procedure

Pairs of one-digit numbers were presented to the children on a computer screen with
one digit displayed on the left and the other on the right side of the screen (distance: 3 cm).
The digits of each pair varied with respect to two dimensions, i.e., numerical size and
physical size. Children were instructed to select the numerically larger digit in one task
(numerical comparison) and the physically larger digit in the other (size comparison). The
order of presentation of the two subtasks was counterbalanced for each group of children
in order to avoid task-order effects.

The stimulus sets were composed of the numbers 1 to 9, with number 5 excluded.
The numerically different digit pairs were separated by the numerical distances of either 1
or 5. Each digit was allowed to occur in the same position (left/right) only twice, which
resulted in 16 different digit pairs (i.e., 1-2; 2-1; 3-4; 4-3; 6-7; 7-6; 8-9; 9-8; 1-6; 6-1; 2-7;
7-2; 3-8; 8-3; 4-9; and 9-4). The physical size of the digits varied between either 1.2 cm
(font: 48 pt) or 0.6 cm (font: 24 pt) for the physically different digit pairs. Combining each
digit pair with each of the two size conditions—i.e., small digit on the left, large digit on
the right and vice versa—yielded 16 congruent (the numerical larger digit was also physi-
cally larger) and 16 incongruent stimuli (the numerical larger digit was the physically
smaller one) for both comparison tasks. In the numerical comparison, neutral stimuli con-
sisted of the 16 digit pairs that were displayed in the same physical size (0.9 cm, font: 36
pt). In the size comparison, tied pairs were included (i.e., 1-1; 2-2; 3-3; 4-4; 6-6; 7-7; 8-8;
and 9-9) and combined with the two size conditions, which added up to 16 neutral digit
pairs. Each subtask was thus composed of 48 different stimuli. Each stimulus was
displayed two times, which resulted in 96 trials per task.

Digit pairs were presented pseudorandomized in order to avoid habituation effects
in the children’s responses. That meant that for each task (a) the same digit did not occur
in the same position in consecutive trials, (b) the correct response side was changed at
least every other trial, (c) no more than two stimuli of the same congruity condition
appeared consecutively, and (d) the numerical splits between the displayed digits were the
same in no more than two consecutive trials.

Children were seated in front of a 17” monitor (resolution: 1024 x 768, distance
from the screen: 60 cm). Responses were given using a button box with only two buttons.
Children were instructed to press the button on the same side where the numerically larger
digit appeared in the numerical comparison or on the side where the physically larger digit
appeared in the size comparison. Children were asked to respond as fast as possible with-
out sacrificing accuracy.

Each digit pair was preceded by a fixation cross in the middle of the screen for 300
ms and a blank screen for 500 ms. After each trial, a blank screen was displayed for 2000
ms before the next fixation cross was shown.

Children were familiarized with the tasks during a practice period before each part of the
experiment. In these practice trials, children were asked to comment on their responses to make
sure they understood the tasks correctly. After 10 practice trials, the main experiments started.
Response times and button clicks were recorded automatically for each trial.
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Data Analysis

In a first step, Tukey’s (1977) fence method was used to remove outliers. The lower
Tukey fence is the first quartile minus 1.5 times the interquartile range, while the upper
Tukey fence is the third quartile plus 1.5 times the interquartile range, i.e., Q1-1.5 (Q3−Q1)
and Q3+1.5 (Q3−Q1). Values outside this range were considered to be outliers. For the
Stroop data, trials with RTs that exceeded Tukey’s criterion were excluded from the anal-
yses. After the elimination of outliers, an average of 99.4% and 99.8% of the trials entered
the analyses for the numerical comparison and for the size comparison, respectively.

For each participant, average reaction times (RT) were calculated on the basis of
correct trials only. Mean RTs and error rates were determined for each participant per
task (numerical comparison, size comparison), congruity (congruent, neutral, incongru-
ent), and numerical distance (1 and 5). In a first step, mean error rates and RTs were sub-
jected to repeated-measures analysis of covariance (ANCOVAs) with task, congruity,
and numerical distance as within-subjects factors, and group (LA, NA, HA) as between-
subjects factors. Intelligence was entered as a covariate after mean centering the KFT
scores (Delaney & Maxwell, 1981). A number of follow-up analyses were carried out in
order to allow for further insights into the specific impacts of the factors of task, congru-
ity, and distance on our performance parameters. Across all levels of analysis,
Bonferroni-corrected post hoc tests were used to test for differences between groups and
factor levels. Greenhouse-Geisser corrections were applied to the degrees of freedom
where necessary.

RESULTS

Diagnostic Data

Table 1 provides a detailed overview of the diagnostic data. Most importantly, the
groups of low, normal, and high achievers differed with respect to their results on the math
achievement test; i.e., the mean composite scores for the arithmetic subscale of the HRT
1-4 differed significantly between the groups, F(2, 63) = 479.93, p < .001. Post hoc tests
yielded highly significant pairwise comparisons (ps < .001).

Furthermore, the groups of children obtained significantly different scores on the
intelligence test, F(2, 63) = 5.86, p = .005. Bonferroni-corrected post hoc tests revealed
this effect to be due to significant differences between NA and HA (p = .003), while both
other comparisons were not significant (ps > .230). A higher mean IQ score for the group
of high achievers could not be avoided because exceptional scores in the math achieve-
ment test were invariably related with higher scores in the intelligence test in our group of
382 children.

Apart from the observed IQ variations, the groups also differed with respect to
working memory functions that were assessed using a standardized test battery (Working
Memory Test Battery for Children [WMTB-C]; Pickering & Gathercole, 2001). The sub-
tests of the WMTB-C load on three different subscales: i.e., phonological loop functions,
F(2, 63) = 10.64, p < .001; visuospatial sketchpad functions, F(2, 63) = 8.63, p < .001; and
executive functions, F(2, 63) = 3.61, p = .033. Post hoc comparisons showed that while
the groups of NA and LA did not differ significantly with respect to any of the three
WMTB-C subscales (ps > .101), the performance differences between HA and both other
groups were significant (ps < .050) with the exception of the visuospatial sketchpad scores
of HA and NA, which did not differ significantly (p > .099).
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468 A. HEINE ET AL.

A repeated-measures analysis of variance (ANOVA) on naming times with RAN
condition as within- subjects factor and group as between-subjects factor revealed signifi-
cant main effects of condition, F(2, 126) = 283.62, p < .001, and group, F(2, 63) = 4.17, p
= .020, but no significant Task × Group interaction, F(4, 126) = 2.59, p = .088. While the
post hoc analyses yielded no significant naming time differences between NA and LA
across all three RAN conditions (p > .999), HA were significantly faster than both other
groups in both object naming tasks (ps > .43), whereas their naming times were not differ-
ent from those of the two other groups in the digit-naming condition (ps > .999).

Analyses of Overall Experimental Task Performance

In a first step, repeated-measures ANCOVAs with task (numerical comparison, size
comparison), condition (congruent, incongruent), and numerical distance (small, large) as
within-subject factors, group as between-subject factor, and intelligence as covariate were
conducted on error rates and reaction times. Table 2 lists mean overall reaction times and
error rates for the different levels of the factors task, condition, and distance.

For the errors rates, the ANCOVA yielded highly significant main effects of task,
F(1, 62) = 71.67, p < .001, congruity, F(1, 62) = 78.26, p < .001, and distance, F(1, 62) =
35.54, p < .001, but no main effect of group, F(2, 62) = 0.38, p = .687. Of the two-way
interactions, Task × Congruity, F(1, 62) = 96.15, p < .001, Task × Distance, F(1, 62) =
53.11, p < .001, and Congruity × Distance, F(1, 62) = 35.86, p < .001, were significant.
However, no two-way interaction with the factor group reached significance (ps > .305).
The three-way interactions of Task × Congruity × Distance, F(1, 62) = 50.14, p < .001,

Table 1 Subject Details and Mean Performance for the Diagnostic Tests.

Achievement Group

LA NA HA

n 21 23 22
Gender (m / f) 9 / 12 10 / 13 14 / 8
Grade (2nd / 3rd) 11 / 10 12 / 11 10 / 12
Age (years) 8.0 (0.9) 8.1 (0.8) 8.0 (0.9)
Intelligence* 55.3 (9.1) 51.5 (9.0) 59.8 (5.8)
Mathematics*

Arithmetic operations 32.00 (4.47) 51.57 (4.82) 75.09 (4.39)
Visuospatial abilities 39.05 (8.91) 50.96 (7.52) 64.36 (9.37)

Working Memory**
Central executive 87.86 (12.54) 95.87 (10.48) 106.50 (19.74)
Phonological loop 88.48 (8.54) 93.61 (9.94) 104.05 (15.41)
Visuospatial sketchpad 83.05 (10.70) 92.61 (11.02) 94.09 (20.08)

RAN ***
1-digit numbers 23.67 (8.42) 23.68 (6.76) 23.40 (3.73)
1-syllable animals 60.92 (13.90) 59.16 (12.30) 51.63 (7.86)
3-syllable animals 69.04 (18.58) 70.76 (20.94) 57.45 (12.12)

Note. Standard deviations are shown in parentheses.
LA, low achievers; NA, normal achievers; HA, high achievers.
*Standard score: Mean = 50, SD = 10. **Standard score: Mean = 100, SD = 15.

***Mean reaction times in seconds.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
E
T
H
-
B
i
b
l
i
o
t
h
e
k
]
 
A
t
:
 
1
7
:
0
5
 
2
9
 
A
u
g
u
s
t
 
2
0
1
0



THE NUMERICAL STROOP EFFECT IN CHILDREN 469

and of Congruity × Distance × Group, F(1, 62) = 3.25, p = .045, were significant. The
analyses yielded neither a main effect of intelligence, F(1, 62) = 0.12, p = .736, nor signif-
icant interaction effects between intelligence and any other factor (ps > .147). A Bonfer-
roni-adjusted post hoc test revealed no differences between the groups of children for this
overall analysis (ps = 1.000).

The repeated-measures ANCOVA on reaction times revealed highly significant
main effects of task, F(1, 62) = 371.50, p < .001, congruity, F(1, 62) = 282.31, p < .001,
distance, F(1, 62) = 63.80, p < .001, and group, F(2, 62) = 21.09, p < .001. With the
exception of Group × Distance, F(2, 62) = 0.52, p = .595, all other two-way interactions
were significant, i.e., Task × Congruity, F(1, 62) = 219.39, p < .001, Task × Distance, F(1,
62) = 78.40, p < .001, Congruity × Distance, F(1, 62) = 7.09, p < .010, Task × Group, F(2,
62) = 11.13, p < .001, and Congruity × Group, F(2, 62) = 5.77, p = .005. Of the three-way
interactions, Task × Congruity × Distance, F(1, 62) = 29.38, p < .001, and Task × Distance
× Group, F(1, 62) = 3.70, p = .030, were significant. The interaction between congruity,
distance, and group reached marginal significance, F(1, 62) = 2.93, p = .061. There was
neither a main effect of intelligence, F(1, 62) = 0.15, p = .697, nor did the interactions
between intelligence and the factors task, congruity, or distance reach significance (ps >
.118). Bonferroni-corrected post hoc tests showed that over all in tasks and conditions LA
were significantly slower that both other groups, while HA were significantly faster than
LA and NA (ps < .017).

Children’s Performance Data Separated by Task

For the numerical comparison task, a repeated-measures ANOVA on error rates
with congruity and numerical distance as within-subjects factors and group as between-
subjects factor yielded highly significant main effects of congruity, F(1, 63) = 99.96, p <
.001, and distance, F(1, 63) = 52.34, p < .001, but no effect of group, F(2, 63) = 0.47, p =
.625. No interaction effects were found (ps > .153). The analysis of the reaction times
revealed highly significant main effects of congruity, F(1, 63) = 312.47, p < .001, dis-
tance, F(1, 63) = 84.82, p < .001, and group, F(2, 63) = 25.14, p < .001. Of the interactions
only Congruity × Group was significant, F(2, 63) = 4.32, p = .017. Post hoc tests showed
that LA were significantly slower than NA and HA (ps < .001), and HA were faster than
both other groups (ps < .022).

Table 2 Mean Overall Reaction Times and Error Rates for the
Levels of the Factors Task, Congruity, and Distance.

RTs in ms % Errors

Task
Numerical comparison 945 (215) 8.9 (7.2)
Physical size comparison 598 (131) 1.8 (2.4)

Congruity
Incongruent 823 (172) 9.0 (6.8)
Congruent 719 (145) 1.8 (3.0)

Numerical distance
Distance 1 787 (160) 6.7 (4.8)
Distance 5 755 (155) 4.1 (4.3)

Note. Standard deviations are shown in parentheses.
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For the size comparison task, the repeated-measures ANOVA on error rates yielded
no effects of congruity, distance, group, or intelligence (ps > .166). Of the interactions,
only Congruity × Distance was significant, F(1, 63) = 8.06, p = .006. The analysis of the
reaction times showed highly significant main effects of congruity, F(1, 63) = 13.23, p <
.001, and group, F(2, 63) = 9.45, p = .001. Of the interactions Congruity × Distance, F(1,
63) = 39.47, p < .001, and Distance × Group, F(2, 63) = 3.87, p = .027, were significant.
Post hoc tests showed that while the reaction times of LA and NA did not differ (p = .587),
HA were significantly faster than both other groups (ps < .013).

Effects of the Interaction of Congruity and Numerical Distance

Figure 1 illustrates the specifics of the interactions of task, numerical distance and
congruency for children’s reaction times. For the numerical comparison (Figure 1, left
side), the graphs shows the typical steep drop of reaction times across the three congru-
ency conditions for all groups, irrespective of numerical distance. For the physical com-
parison task, the picture changes (Figure 1, right side). Apart from a reversal of the
influence of numerical distance for the incongruent compared to the congruent trials, a
second effect can be gathered from the reaction time curves. While for the small numerical
distance the classical effect of congruity is not evident in any of the three groups, the reac-
tion times for trials where the numerical distance is five show the classical Stroop pattern,
i.e., longer reaction times for incongruent compared to congruent trials.

In order to test the different congruity and distance effects, several two-way analy-
ses of variance were carried out on reaction times and error rates. Table 3 lists the
ANOVA results for all congruity (congruent, neutral, incongruent) and distance combina-
tions of the numerical comparison task. Post hoc pairwise comparisons for the effects of
congruity showed that for both numerical distances, reaction times were significantly
shorter and error rates significantly lower for congruent than for neutral trials (ps < .001).
The differences in reaction times and error rates between neutral and incongruent trials
were significant too (ps < .001), with the only exception of the error rates for the large dis-
tance (p = .539). Post hoc tests for group differences in mean reaction times showed that
for all congruity and distance conditions HA were significantly faster than NA, whereas

Figure 1 The congruity effect as a function of task and numerical distance for the three groups of children.
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NA were significantly faster than LA (ps < .039). No group differences were found for the
error rates (ps > .964).

The results of the two-way ANOVAs for all congruity (congruent, incongruent) and
distance combinations on reaction times and error rates for the physical comparison task
can be gathered from Table 4. All post hoc pairwise comparisons yielded significant reac-
tion time differences between HA and both other groups (ps < .018), while the differences
between LA and NA were not significant (ps > .413). Again, no group differences were
found for the error rates (ps > .481).

Follow-up one-way ANOVAs were conducted for each group separately to further
investigate the two significant interactions for the reaction times. While the overall effects
of congruity for the large distance in the numerical task as well as all post hoc compari-
sons of the congruity conditions were highly significant in each of the groups (ps < .001),
the groups showed differential susceptibility to the influence of numerical distance for the
incongruent condition of the physical comparison. While the analyses yielded significant
reversed distance effects for LA, F(1, 20) = 17.33, p < .001, and NA, F(1, 22) = 10.45, p <
.004, no such effect was found for the high achievers, F(1, 21) = 1.38, p = .253. 

DISCUSSION

The main objective of the present study was to determine whether primary school
children of different math achievement levels show differences in measures of controlled

Table 3 Results of the Two-Way Repeated Measures ANOVAs for the Numerical Comparison Task.

RTs Errors

Factor df * F p df * F p

Congruity effect for factor numerical distance = 1
(εGG = 0.93) (εGG = 0.71)

Congruity (2, 126) 138.71 < .001 (2, 126) 95.73 < .001
Group (2, 63) 26.41 < .001 (2, 63) 0.42 .657
Congruity × Group (4, 126) 1.83 .128 (4, 126) 0.70 .595
Congruity effect for factor numerical distance = 5

(εGG = 0.82) (εGG = 0.54)

Congruity (2, 126) 142.44 < .001 (2, 126) 43.49 < .001
Group (2, 63) 25.21 < .001 (2, 63) 1.01 .406
Congruity × Group (4, 126) 3.53 .009 (4, 126) 1.06 .353
Distance effect for factor congruity = incongruent
Distance (1, 63) 64.43 < .001 (1, 63) 57.83 < .001
Group (2, 63) 25.14 < .001 (2, 63) 0.52 .599
Distance × Group (2, 63) 1.27 .289 (2, 63) 1.71 .188
Distance effect for factor congruity = neutral
Distance (1, 63) 95.82 < .001 (1, 63) 24.34 < .001
Group (2, 63) 26.77 < .001 (2, 63) 0.07 .930
Distance × Group (2, 63) 2.46 .093 (2, 63) 0.34 .716
Distance effect for factor congruity = congruent
Distance (1, 63) 33.52 < .001 (1, 63) 0.02 .879
Group (2, 63) 21.90 < .001 (2, 63) 0.04 .958
Distance × Group (2, 63) 1.97 .147 (2, 63) 0.73 .485

*Greenhouse-Geisser adjusted where appropriate.
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and automatized processing of numerical magnitude information. The overall analyses
showed, across our three groups, typical patterns of longer reaction times and higher error
rates for the more demanding conditions, i.e., numerical compared to physical size
comparisons, incongruent compared to congruent conditions, and comparisons that
involved smaller compared to larger numerical distances. These findings are well in line
with previous studies on number comparison, in general, and numerical Stroop tasks, in
particular (Cohen Kadosh, Cohen Kadosh, Linden, et al., 2007; Girelli et al., 2000; Henik
& Tzelgov, 1982; Kaufmann et al., 2005; Kaufmann et al, 2006; Moyer & Landauer,
1967; Rubinsten et al., 2002; Szücs et al., 2007; Szücs & Soltész, 2007; Tang et al., 2006;
Tzelgov et al., 1992).

However, apart from similar findings of variation in performance measures that
depend on the different dimensions of task difficulty, a number of studies on developmen-
tal dyscalculia reported the absence of congruity effects in physical size comparison tasks
in children and adults suffering from MD (Ashkenazi, Rubinsten, & Henik, 2009; Koontz
& Berch, 1996; Rubinsten & Henik, 2005). Differential effects of size congruity in the
context of physical comparisons for different math achievement groups were taken as evi-
dence for automatization deficits in numerical magnitude processing in populations with
MD (Rubinsten & Henik, 2005). However, in the light of two recent studies that empha-
size the necessity to not only investigate the effects of congruity per se but to also look
into the influence of numerical distance as a second relevant measure of automaticity in
number processing (Szücs et al., 2007; Tang et al., 2006), the present study used an exper-
imental paradigm that implemented two numerical distances for the digits pairs to be com-
pared. This allowed us to investigate the size congruity effect as a function of small and
large numerical distance conditions.

For the numerical comparison task, where controlled access to and processing of
numerical magnitude plays the main role, the results for all congruency levels, and in partic-
ular for the neutral condition, demonstrate that the groups of children operate on different
performance levels, with their performance being related to the math achievement scores.

Table 4 Results of the Two-Way Repeated Measures ANOVAs for the Size Comparison Task.

RTs Errors

Factor df F p df F p

Congruity effect for factor numerical distance = 1
Congruity (1, 63) 6.26 .015 (1, 63) 10.88 .002
Group (2, 63) 8.13 .001 (2, 63) 1.01 .343
Congruity × Group (2, 63) 1.19 .310 (2, 63) 0.83 .443
Congruity effect for factor numerical distance = 5
Congruity (1, 63) 33.21 < .001 (1, 63) 0.25 .618
Group (2, 63) 10.63 < .001 (2, 63) 0.34 .711
Congruity × Group (2, 63) 2.48 .092 (2, 63) 0.06 .938
Distance effect for factor congruity = incongruent
Distance (1, 63) 28.95 < .001 (1, 63) 12.23 .001
Group (2, 63) 8.82 < .001 (2, 63) 0.08 .923
Distance × Group (2, 63) 5.59 .006 (2, 63) 0.05 .950
Distance effect for factor congruity = congruent
Distance (1, 63) 27.91 < .001 (1, 63) 1.32 .254
Group (2, 63) 9.75 < .001 (2, 63) 0.95 .393
Distance × Group (2, 63) 0.12 .888 (2, 63) 0.36 .698
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However, apart from quantitative differences between the achievement groups, their
patterns of behavior are rather similar from a qualitative point of view. These results are
compatible with models of the development of normal and impaired mathematical pro-
cessing that assume math achievement to be based on functions on the level of basic
numerical representations (Butterworth, 1999; Wilson & Dehaene, 2007).

More relevant for the question of whether MD is related to or concomitant with
automatization deficits in numerical magnitude processing are the results from the physical
size comparison task. However, we will focus this part of the discussion on the analyses of
reaction time data only. As overall error rates were very low for the physical size compar-
ison task with almost half of the children making no errors at all, accuracy does not seem
to be a sufficiently sensitive measure of performance for our specific experimental setting.

To begin with, the fact that the interaction of congruity and distance was significant
for the physical comparison while no main effect of distance was found already suggests
that the effects of congruity should probably not be interpreted without taking the effects
of distance into account. Following Girelli et al. (2000), we separated the effects of size
congruity for the two distance conditions. While such an analysis yielded no additional
insights on the case of the numerical comparison task, for the physical comparison sepa-
rate analyses of congruity effects for the two numerical distances revealed a whole new
picture. When the numerical distance between the digits is small, neither of the groups
shows a size congruity effect. By contrast, when the numerical distance is large, effects of
congruity between task-relevant and task-irrelevant stimulus dimensions can be found in
all three groups. That means that not only normal and high achievers show a numerical
Stroop effect but low achievers do too. Interestingly, Girelli and colleagues (2000)
reported similar interactions of numerical distance and size congruity effects in a physical
comparison task. One plausible interpretation may be that for small numerical distances
the magnitude information available to the child is not fine grained enough in order to
influence processing under Stroop conditions in a context where the numerical magnitude
is task irrelevant. Such an explanation that focuses on representational acuity functions
would be in line with studies on developmental changes in numerical distance effects. It
has been shown repeatedly that younger children typically show larger numerical distance
effects than older children or adults (Duncan & McFarland, 1980; Holloway & Ansari,
2008). According to Holloway and Ansari, this decrease in numerical distance effects over
developmental time might be related to a noisier representation of numerical and/or non-
numerical magnitude per se, or to noisier mappings between symbolic and nonsymbolic
representations in earlier phases of development.

By comparing the effects of numerical distance for the congruent and the incon-
gruent condition in the physical comparison task, further insight into children’s specific
performance patterns can be obtained. The combination of a classical distance effect for
the congruent condition with a reversed distance effect for the incongruent condition in
the groups of low and normal achievers is in line with previous studies that report simi-
lar performance patterns in studies on the number Stroop task (Henik & Tzelgov, 1992;
Szücs & Soltész, 2007). Following Tang and colleagues (2006), the finding of a
reversed distance effect in the incongruent condition of the physical comparison task
can be interpreted as evidence of automatized processing of numerical magnitude infor-
mation. All in all, the demonstration of both a congruity effect, at least for the large dis-
tance, and a reversed distance effect for the group of children with math difficulties does
not support the notion of automatization deficits as necessarily tied to the development
of MD.
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While the performance patterns of normal children and children with problems in
the domain of mathematical processing do not differ on the whole for the physical com-
parison, it becomes apparent on this deeper level of analysis that the performance of the
high achievers diverges substantially. Similar to the performance of low and normal
achievers for the large distance condition, high achievers exhibit an effect of facilitation
when stimulus information is congruent. However, what is different is the apparent lack of
the massively detrimental effect of incongruity that can be gathered from the absence of a
reversed distance effect for the large distance condition. These results can be explained by
classical theories on Stroop processing. It was suggested that the overall Stroop effect can
actually be divided into two separate components, i.e., facilitation, which is reflected in
the performance gain for the congruent compared to the neutral condition, and inhibition,
which is reflected by the loss in performance for the incongruent compared to the neutral
condition. It is assumed that these two Stroop components are based on somewhat differ-
ent underlying cognitive mechanisms, with the facilitatory component relying more on
automaticity of processing (MacLeod & Dunbar, 1988), and interference drawing mainly
on attentional or inhibitory control resources (Posner, 1978). Such an explanation of the
performance in the case of the incongruent condition links the results for the high achiev-
ers to their considerably higher scores in the KFT. In an early developmental study on
children’s performance in the classical color Stroop paradigm, Friedman (1971) showed
that, at least in children of our age group, general intelligence and small interference
effects under Stroop conditions are correlated.

This means that an explanation of the missing reversed distance effect should
probably focus on the fact that the group of HA reached significantly higher scores for the
executive control measures of the working memory test (WMTB-C; Pickering & Gathercole,
2001) than both other groups. Our results might be an indicator of differences in the ability
to control attentional resources when the children are confronted with conflicting informa-
tion. Such an explanation would fit the findings of an fMRI study on the numerical Stroop
task, where higher activation in the dorsolateral prefrontal (DLPFC) and anterior cingulate
(ACC) cortices were found for incongruent compared to congruent trials (Kaufmann et al.,
2005). According to MacDonald, Cohen, Stenger, and Carter (2000), activations in these
regions can be associated with top-down control of task-appropriate behavior (DLPFC)
and evaluatory processes (ACC) under conflict. Such an interpretation of the results of the
high achievers in the physical comparison task is well in line with the idea originally
proposed by Dempster and Corkill (1999), who assume that resistance to interference is an
important factor in general cognitive ability; i.e., children with higher IQ should be less
prone to intrusions from irrelevant sources of information due to more efficient inhibitory
control (cf. Engle, Kane, & Tuholski, 1999 for an extensive discussion of the relationship
between intelligence and executive control functioning). The specific relevance of inhibi-
tory control for children’s performance in numerical Stroop tasks is corroborated by a
study on children with attention deficit/hyperactivity disorder (ADHD), which found
larger interference effects in children with selective attention deficits compared to their
normal peers (Kaufmann & Nuerk, 2006). And finally, the finding that the reaction times
of HA in the digit-naming condition of the RAN tasks were not different from those of the
other two groups allows for the conclusion that differences in general numerical process-
ing speed cannot underlie these effects (Denckla & Rudel, 1974).

In conclusion, we found that when the influence of numerical distance is taken into
consideration, children of different achievement groups—i.e., low, normal, and high
achievers in the domain of mathematics—show similar congruity effects in each of the
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two subtasks of the number Stroop test. For the numerical comparison we found congruity
effects for both numerical distances in all groups as well as classical distance effects for
each of the congruity conditions. In the physical size comparison, all children show an
effect of congruity for the large numerical distance, while this effect is missing in all
groups for the comparisons involving small numerical distances. The finding of consider-
ably large reversed numerical distance effects not only for the group of normal achievers
but also for the children with MD is not easily reconciled with theories that propose
automatization deficits to be causally related to developmental math disabilities. We
suggest that future research on differential congruity effects in numerical Stroop tasks
across age or achievement groups should not disregard differences in representational acu-
ity as an explanatory factor. Furthermore, the lack of a significant reversed distance effect
in the group of high achievers for the physical comparison task, which becomes apparent
only when the impacts of congruity and distance are separated, corroborates the findings
of previous studies that have shown that apart from differences on the level of numerical
magnitude representations, differences even at the stage of response execution—i.e.,
related to the inhibition of prepotent reactions—may influence Stroop performance.

Overall, our results suggest that models that focus on different cognitive subdo-
mains and processing levels (e.g., Szücs & Soltész, 2007) may be more appropriate to
explain the complex performance patterns in numerical Stroop tasks than approaches
that focus on one explanatory factor only. Furthermore, apart from conclusions related
directly to the questions of automatized numerical processing in different achievement
groups, on a methodological level these results underline the necessity to investigate the
interaction of the two separable stimulus dimensions in the context of numerical Stroop
tasks. Only by separating the influences of the dimensions of congruity and numerical
distance is it possible to identify specific performance patterns and to explain them in a
consistent manner.
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