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THE NuSTAR EXTRAGALACTIC SURVEY: FIRST DIRECT MEASUREMENTS OF THE 10 keV X-RAY
LUMINOSITY FUNCTION FOR ACTIVE GALACTIC NUCLEI AT z > 0.1
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ABSTRACT

We present the first direct measurements of the rest-frame 10–40 keV X-ray luminosity function (XLF) of active
galactic nuclei (AGNs) based on a sample of 94 sources at 0.1 < z < 3, selected at 8–24 keV energies from sources
in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic survey program. Our results are consistent
with the strong evolution of the AGN population seen in prior, lower-energy studies of the XLF. However,
different models of the intrinsic distribution of absorption, which are used to correct for selection biases, give
significantly different predictions for the total number of sources in our sample, leading to small, systematic
differences in our binned estimates of the XLF. Adopting a model with a lower intrinsic fraction of Compton-thick
sources and a larger population of sources with column densities N 10H

23 24~ - cm−2 or a model with stronger
Compton reflection component (with a relative normalization of R ∼ 2 at all luminosities) can bring extrapolations
of the XLF from 2–10 keV into agreement with our NuSTAR sample. Ultimately, X-ray spectral analysis of the
NuSTAR sources is required to break this degeneracy between the distribution of absorbing column densities and
the strength of the Compton reflection component and thus refine our measurements of the XLF. Furthermore, the
models that successfully describe the high-redshift population seen by NuSTAR tend to over-predict previous, high-
energy measurements of the local XLF, indicating that there is evolution of the AGN population that is not fully
captured by the current models.

Key words: galaxies: active – galaxies: evolution – X-rays: galaxies

1. INTRODUCTION

Measurements of the luminosity function of active galactic

nuclei (AGNs) provide the key observational data available to

track the history and distribution of accretion onto super-

massive black holes. X-ray surveys have been crucial for

performing such measurements as they can efficiently identify

AGNs down to low luminosities, over a wide range of

redshifts, and where the central regions are obscured by large

amounts of gas and dust (see Brandt & Alexander 2015, for a

recent review).
A number of studies have presented measurements of the

X-ray luminosity function (XLF) of AGNs based on surveys

with the Chandra or XMM-Newton X-ray observatories (e.g.,
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Ueda et al. 2003; Barger et al. 2005; Hasinger et al. 2005; Aird
et al. 2010; Miyaji et al. 2015). These studies show that the
AGN population has evolved substantially over cosmic time.
Both the space density of AGNs and the overall accretion
density (which traces the total rate of black hole growth)
peaked at z ∼ 1−2 and have declined ever since. The evolution
also has a strong luminosity dependence, whereby the space
density of luminous AGNs peaks at z ≈ 2 whereas lower
luminosity AGNs peak at later cosmic times (z ≈ 1). This
pattern, reflected in the evolution of the shape of the XLF,
provides crucial insights into the underlying distributions of
black hole masses and accretion rates (e.g., Aird et al. 2013;
Shankar et al. 2013).

A major issue in XLF studies with Chandra and XMM-

Newton is the impact of absorption. It is now well established
that many AGNs are surrounded by gas and dust that obscures
their emission at certain wavelengths (e.g., Martínez-Sansigre
et al. 2005; Stern et al. 2005; Tozzi et al. 2006). Soft X-rays
(∼0.5–2 keV) will be absorbed by gas with equivalent neutral
hydrogen column densities N 10H

22 cm−2, whereas higher
energy X-rays can penetrate larger column densities. Thus,
samples selected at ∼2–10 keV energies are less biased and are
typically adopted in XLF studies (e.g., Aird et al. 2010; Miyaji
et al. 2015). However, absorption can still suppress the
observable flux, especially at higher column densities
(N 10H

23 cm−2
) and at lower redshifts (z  1), where the

observed band probes lower rest-frame energies. The emission
from Compton-thick sources (N 10H

24 cm−2
) is even more

strongly suppressed, although such sources may still be
identified at ∼0.5–10 keV energies by their scattered emission
and signatures of reflection from the obscuring material (e.g.,
Georgantopoulos et al. 2013; Brightman et al. 2014). Multi-
wavelength studies can also identify the signatures of heavy
obscuration in X-ray detected AGNs (e.g., Cappi et al. 2006;
Alexander et al. 2008; Gilli et al. 2010; Georgantopoulos et al.
2011) or directly identify additional, obscured AGN popula-
tions that are not detected in the X-ray band (e.g., Donley
et al. 2008; Juneau et al. 2011; Eisenhardt et al. 2012; Del
Moro et al. 2015).

Correcting for absorption to accurately recover the XLF is
challenging. Luminosity estimates for individual sources can be
corrected based on X-ray spectral analysis or hardness ratios
(e.g., Ueda et al. 2003; La Franca et al. 2005; Buchner
et al. 2015). Alternatively, less-direct statistical approaches can
be adopted to constrain the underlying distribution of NH and
account for the impact on observed X-ray samples (e.g., Aird
et al. 2015, hereafter A15; Miyaji et al. 2015). Despite much
progress, the distribution of NH as a function of luminosity and
redshift (hereafter, “the NH function”) and, most crucially, the
fraction of Compton-thick sources remain poorly constrained
outside the local Universe.

The cosmic X-ray background (CXB) provides an addi-
tional, integral constraint on the fraction of heavily obscured
and Compton-thick AGNs. At low energies (8 keV),
Chandra surveys have resolved the majority (∼70%–90%) of
the CXB into discrete point sources, predominantly unabsorbed
and moderately absorbed AGNs at z ∼ 0.5–2 (e.g., Worsley
et al. 2005; Georgakakis et al. 2008; Lehmer et al. 2012; Xue
et al. 2012). However, the peak of the CXB occurs at much
higher energies, ∼20–30 keV (e.g., Marshall et al. 1980;
Churazov et al. 2007; Ajello et al. 2008). Population synthesis
models, based on studies of the XLF and NH function at lower

energies, attribute 70% of the emission at this peak to
absorbed AGNs (N 10H

22 cm−2 e.g., Gilli et al. 2007;
Draper & Ballantyne 2009; Treister et al. 2009), although the
required fraction of Compton-thick (N 10H

24 cm−2
) AGNs

is still uncertain (e.g., Ballantyne et al. 2011; Akylas
et al. 2012, A15).
Until recently, only ∼1%–2% of the CXB at 10 keV could

be directly resolved into individual objects, due to the limited
sensitivity at these energies achieved with non-focusing X-ray
missions such as INTEGRAL or Swift (e.g., Krivonos et al.
2007; Tueller et al. 2008; Ajello et al. 2012). Nonetheless,
AGN samples identified by these missions—which are less
biased against obscured sources—have enabled crucial mea-
surements of the XLF, the NH function, and the fraction of
Compton-thick AGNs in the local (z  0.1) universe (e.g.,
Beckmann et al. 2009; Burlon et al. 2011; Vasudevan et al.
2013), which are often used to extrapolate to higher redshifts
(e.g., Ueda et al. 2014, hereafter U14).
The Nuclear Spectroscopic Telescope Array (hereafter

NuSTAR, Harrison et al. 2013) is the first orbiting observatory
with >10 keV focusing optics, providing ∼2 orders of
magnitude increase in sensitivity compared to previous high-
energy observatories. One of the primary objectives of the
NuSTAR mission is to identify and characterize the source
populations that produce the peak of the CXB. To this end,
NuSTAR is executing a multi-layered program of extragalactic
surveys. Source catalogs and initial results from the dedicated
surveys of the COSMOS and Extended Chandra Deep Field
South (ECDFS) regions are presented by Civano et al. (2015,
hereafter C15) and Mullaney et al. (2015, hereafter M15),
respectively, while Alexander et al. (2013) presented the first
results from our ongoing serendipitous survey program.
Harrison et al. (2015) present source number counts at
3–8 keV and 8–24 keV energies from the full survey program
and show that NuSTAR is directly resolving ∼35% of the CXB
emission at 8–24 keV, a factor ∼15–30 times more than
previous high-energy X-ray observatories.
In this paper, we present the first measurements of the XLF

of AGNs at 0.1 < z < 3 based on direct selection of sources at
hard (>8 keV) energies from across the NuSTAR extragalactic
survey program. Section 2 describes our data and defines our
sample. Section 3 describes our statistical methods to estimate
intrinsic luminosities and recover the XLF. In Section 4, we
present our measurements of the 10–40 keV XLF and explore
the effects of different model assumptions. We discuss our
results and future prospects for the NuSTAR survey program in
Section 5 and summarize our findings in Section 6. We adopt a
flat cosmology with ΩΛ = 0.7 and H0 = 70 km s−1Mpc−1

throughout this paper.

2. DATA AND SAMPLE SELECTION

The NuSTAR extragalactic survey program (see Harrison
et al. 2015, for an overview) consists of three components: (1) a
deep (∼400 ks) survey covering both the ECDFS (M15) and
Extended Groth Strip (EGS: J. Aird et al. 2016, in preparation)
regions; (2) a medium depth (∼100 ks) survey covering the
COSMOS field (C15); and (3) a wide-area program searching
for serendipitous detections across all NuSTAR observations
(Alexander et al. 2013, C. Fuentes et al. 2016, in preparation,
G. B. Lansbury et al. 2016, in preparation). In this paper we
select sources from across the NuSTAR extragalactic survey
program that are directly detected at 8–24 keV energies.
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NuSTAR provides unprecedented sensitivity at these energies,

although the sensitivity of this band is dominated by 12 keV

energies due to a combination of decreasing effective area and

the decrease in source photon flux with increasing energy.
Our overall sample consists of 97 sources. We identify

lower-energy X-ray counterparts to the vast majority of these

sources (93 out of 97) and identify optical or infrared

counterparts (matching to the low-energy X-ray position, if

available) for all but one source (NuSTAR J033122-2743.9 in

the ECDFS, discussed further below). Reliable (spectroscopic

or photometric) redshift estimates are obtained for 91 out of

our 97 sources. Additional details are given in Sections 2.1

and 2.2 below, with full details and catalogs provided

by M15, C15, or G. B. Lansbury et al. (2016, in prepartation).

Figure 1 shows the distribution of the rest-frame 10–40 keV

luminosities versus redshift for our sample. Luminosities in

this plot are estimated from the 8–24 keV count rates

assuming an unabsorbed X-ray spectrum with a photon index

Γ = 1.9 and a reflection component with a relative

normalization of R = 1, folded through the NuSTAR

response. Section 3.1 gives a detailed description of our

spectral model and the uncertainties in these luminosity

estimates, which are accounted for in our analysis of the XLF.

For our estimates of the XLF we use sources in the redshift

range 0.1 < z < 3, resulting in a sample of 94 sources (which

includes an additional six sources with indeterminate

redshifts).

2.1. Dedicated Survey Fields (ECDFS, EGS, and COSMOS)

In the dedicated survey fields (ECDFS, EGS, and COS-
MOS), we adopt a consistent source detection procedure. We
generate background maps using the NUSKYBGD code (Wik et al.
2014), which we use to calculate the probability that the image
counts in a 20″ aperture were produced by a spurious
fluctuation of the background (hereafter, the “false probabil-
ity”) at the position of every pixel. We then identify positions
where the false probability falls below a set threshold and thus
the observed counts can be associated with a real source. See
M15 and C15 for full details.
Our final sample of 8–24 keV detections consists of 19, 13,

and 32 sources in the ECDFS, EGS, and COSMOS fields,
respectively. We identify lower-energy X-ray counterparts to
our sources in the deep Chandra or XMM-Newton imaging of
these fields (Lehmer et al. 2005; Cappelluti et al. 2009; Puccetti
et al. 2009; Xue et al. 2011; Nandra et al. 2015) for all but one
of our sources (NuSTAR J033122-2743.9 in the ECDFS,
discussed by M15). All of the low-energy counterparts have
multiwavelength identifications, as given by M15 and C15 and
references therein (for the ECDFS and COSMOS fields) or
Nandra et al. (2015) for the EGS field. A very high fraction of
these counterparts (86%) have available spectroscopic red-
shifts; for the remainder we adopt the best photometric redshift
estimate given by M15, C15, or Nandra et al. (2015). For two
sources in the ECDFS (NuSTAR J033212-2752.3 and
NuSTAR J033243-2738.3), which lack photometric estimates
in the M15 catalog, we adopt photometric redshifts from Hsu
et al. (2014). We retain NuSTAR J033122-2743.9 (which lacks
a low-energy or multiwavelength counterpart) in our sample
but assume no knowledge of its redshift, effectively adopting a
p(z) distribution that is constant in zlog 1( )+ (see A15 and
further discussion in Section 3.1 below). We note that this
source could be a spurious detection (and would be consistent
with the expected spurious fraction, given our false probability
thresholds); this possibility is allowed for by our statistical
methodology to determine the XLF.

2.2. Serendipitous Survey

For the serendipitous survey, we adopt the same source
detection procedure as in the dedicated fields but use a different
method to determine the background maps since in many of the
fields a bright target contaminates ∼10%–80% of the NuSTAR
field of view. We thus take the original X-ray images and
measure the counts in annular apertures of inner radius 30″ and
outer radius 90″ centered at each pixel position. We rescale the
counts within each annulus to a 20″ radius based on the ratio of
the effective exposures. This procedure produces maps giving
estimates of the local background level at every pixel based on
the observed images. The annular aperture ensures any
contribution from a source at that pixel position is excluded
from the background estimate. However, any large-scale
contribution from a bright target source will be included. We
use these background maps, along with the mosaic count
images, to generate false-probability maps, and we proceed
with source detection as in the dedicated survey fields, adopting
a false-probability threshold of <10−6 across all bands and
fields. We exclude any detections within 90 of the target
position. We also exclude areas occupied by large, foreground
galaxies (based on the optical imaging) or known sources that
are associated with the target (but are not at the aimpoint). In

Figure 1. Rest-frame 10–40 keV X-ray luminosity (not corrected for
absorption) vs. redshift for sources in our 8–24 keV selected sample from
the various NuSTAR survey components, as indicated. Luminosities are
estimated from the 8–24 keV observed fluxes (see Sections 2 and 3.1 for
details). The vertical dotted lines show the limits of the redshift bins adopted
for our XLF estimates in Section 4 (sources in the shaded regions are
excluded). The blue dashed line indicates the characteristic break in the XLF,
L ,
*

based on the 2–10 keV XLF measured by A15.
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addition, we exclude areas where the effective exposure is
<30% of the maximal (on-axis) exposure in a given field,
which removes unreliable detections close to the edge of the
NuSTAR field of view where the background is poorly
determined. We consider all fields analyzed as part of the
serendipitous program up to 2015 January 1, extending the
sample of Alexander et al. (2013). Full details of this extended
serendipitous survey program will be given by G. B. Lansbury
et al. 2016, (in preparation). For this paper, we apply a number
of additional cuts.

1. We exclude fields at Galactic latitudes b 20 ,∣ ∣ <  to
ensure our sample is dominated by extragalactic sources.

2. We exclude any fields where there are >106 counts
within 120″ of the aimpoint; i.e., fields where the target is
bright and will substantially contaminate the entire
NuSTAR field of view.

3. We only consider fields at declinations > −5°; i.e.
accessible from the northern hemisphere.

We do not expect any of these cuts to introduce systematic
biases in the sample. The final cut ensures that we have a high
spectroscopic redshift completeness,30 thanks to a substantial
ongoing follow-up program with Palomar and Keck (PI:
Harrison; PI: Stern), in addition to existing redshifts from the
literature. Follow-up programs of southern fields are underway
using Magellan (PIs: Bauer, Treister) and ESO NTT (PI:
Lansbury) but have yet to achieve the high level of spectro-
scopic completeness required for the present study.

After applying the above cuts, our serendipitious survey
spans 106 NuSTAR fields, corresponding to a total area
coverage of 4.40 deg2. These NuSTAR observations span a
wide range of depths (∼10–1000 ks, although predominantly
50 ks), resulting in a wide range of sensitivities (see
Section 2.3 below and Figure 2).

Our serendipitous sample contains 33 sources that are
detected in the 8–24 keV band. We identify lower-energy
counterparts to 30 of these sources, with the majority of

counterparts (19/30) identified in the 3XMM source catalog
(Watson et al. 2009; Rosen et al. 2015) and the remainder
identified manually in archival XMM-Newton, Chandra, or
Swift/XRT imaging data. We also identify counterparts in the
WISE all-sky survey (Wright et al. 2010) for all but one of our
sources (including two of the sources that lack low-energy
X-ray counterparts). We identify optical counterparts, matching
to the low-energy X-ray position or WISE positions (if
available), using imaging from the SDSS (York et al. 2000),
USNOB1 (Monet et al. 2003), or our own pre-imaging
obtained during the spectroscopic follow-up program. Full
details on the cross-matching process for the full serendipitous
survey sample will be provided by G. B. Lansbury et al. 2016,
(in preparation).
Out of our sample of 33 sources, 28 (85%) have spectro-

scopic redshifts (all of these sources have an extragalactic
origin). We retain the remaining five sources but assume no
prior knowledge of their redshift, adopting a p(z) distribution
that is constant in zlog 1 .( )+ However, after folding these
broad p(z) distributions through our models of the XLF a
moderate redshift (mean z ∼ 0.7) is generally preferred. We
note that ∼3% of sources at b 20∣ ∣ >  with spectroscopic
classifications in our full serendipitous sample (including
sources detected in the 3–8 keV and 3–24 keV bands) are
associated with Galactic sources. Thus, one or more of our five
8–24 keV sources without spectroscopic classifications could
have a Galactic origin; given our high overall redshift
completeness, this potential contamination will have a
negligible impact on our results. A full list of fields and the
properties of sources from the serendipitous survey program,
marking the fields and sources used in this work, will be given
by G. B. Lansbury et al. 2016, (in preparation).

2.3. Sensitivity Analysis

Our source detection procedure (using false probability
maps) is essentially identical across all of the different survey
components, allowing us to determine the sensitivity in a
consistent manner. We construct sensitivity maps following the
procedure described by Georgakakis et al. (2008) that accounts
for the Poisson nature of the detection. First, for each pixel
position in our images we estimate the minimum number of
counts, L, in a 20″ extraction aperture that would satisfy our
false probability detection threshold given the local background
estimate at that position, B. We then estimate the expected
counts, s, from a source of flux, F, given the effective exposure
and apply an aperture correction31 and fixed flux-to-count rate
conversion factor from C15. We then calculate the probability
that the combination of the expected source and background
counts, s + B, produces a total number of counts that exceeds
our threshold for detection, L. Each pixel contributes
fractionally to the total area curve—the survey area sensitive
to a given flux—in proportion to this probability. We sum over
all pixels to determine our overall area curves for a given
survey component. Masked areas with low exposure or
corresponding to the target (for the serendipitous survey fields)
are excluded in this calculation.
We note that the true flux-to-counts conversion factor

depends on the spectral shape of the source. In the XLF

Figure 2. X-ray area curves (area as a function of 8–24 keV flux) for the
various NuSTAR extragalactic survey components, as indicated.

30
The cut on declinations 5>-  is not applied for the number counts analysis

of Harrison et al. (2015), where redshift information is not required, resulting in
a larger areal coverage and sample size.

31
As discussed by C15, the core of the NuSTAR point-spread function varies

by less than a few percent over the field of view. Thus, we can neglect any
spatial dependence of the aperture correction.
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analysis described below (Section 3), we allow for a range of

spectral shapes when converting between luminosities and

count rates, which are converted to an equivalent flux to

determine the sensitivity from our area curves. Thus, the

dependence of the sensitivity on the spectral shape is accounted

for in our analysis.
Figure 2 shows the area coverage as a function of

the 8–24 keV flux for the various survey components. Our

COSMOS and ECDFS area curves are in good agreement with

those derived from simulations by C15, verifying our analytic

method. The serendipitous survey not only covers the largest

overall area but also covers an area comparable to the dedicated

deep surveys at fainter fluxes, making it a powerful addition to

our study. We note that the dedicated surveys have very deep

supporting data at lower X-ray energies and other wavelengths,

which enables the high-redshift completeness and will be

exploited in future studies of the X-ray and multiwavelength

properties of NuSTAR sources.

3. METHODOLOGY

3.1. Luminosity Estimates

For each source in our sample, we must estimate the

intrinsic luminosity, corrected for absorption and accounting

for any other spectral features (e.g., reflection, scattering),

allowing us to trace the accretion power of the AGNs in our

sample. We estimate the luminosity in the rest-frame 10–40

keV energy range, L .10 40 keV- This luminosity must be

corrected for the effects of absorption along the line of sight

and includes the contribution of any reflection component.

The rest-frame 10–40 keV energy range roughly corresponds

to the observed 8–24 keV NuSTAR band (where we

perform detection) for z ≈ 0.3–1 (where the bulk of our

sample lies) and is becoming the standard for extragalactic

NuSTAR surveys (e.g., Alexander et al. 2013; Del Moro

et al. 2014).
To convert between the observed fluxes and L10–40 keV

requires knowledge of the X-ray spectrum. X-ray spectral

analysis of the NuSTAR sources is underway (see Alexander

et al. 2013; Del Moro et al. 2014, A. Del Moro et al. 2016, in

preparation and L. Zappacosta et al. 2016, in preparation). For

this study, we adopt the statistical approach used by A15. We

use a particular X-ray spectral model: an absorbed power law

along with a simple modeling of the Compton reflection

(pexrav: Magdziarz & Zdziarski 1995) and a soft scattered

component. Our model is described in detail in Section 3.1

of A15. We use priors to describe the expected distributions of

the spectral parameters. For the photon index, Γ, we apply a

normal prior with a mean of 1.9 and standard deviation of 0.2.

For the scattered fraction, fscatt, we assume a lognormal prior

with mean flog 1.73scatt = - and a standard deviation of

0.8 dex. For the reflection strength, R, we adopt a constant prior

in the range 0 < R < 2. These priors allow for our lack of

knowledge of the true values for an individual NuSTAR source.

This simple spectral model should provide an adequate

description of the broad spectral properties of X-ray AGNs

in the NuSTAR bandpass. Based on this model, we can derive

the joint probability distribution function for the intrinsic

luminosity (L10–40 keV), absorption column density (NH), and

redshift (z), for an individual source, i, in our sample,

p L N z d T b

p z d p L N z T b

L N z

, , , ,

, , ,

, , , 1

i i i

i i i

10 40 keV H

10 40 keV H

10 40 keV H

( ∣ )

( ∣ ) ( ∣ )

( ) ( )p

µ

´

-

-

-

where di represents any data on the redshift (e.g., optical

spectroscopy or a photometric redshift) and Ti and bi represent

the NuSTAR data: the total observed 8–24 keV counts in a 20
aperture, Ti, and the estimated background counts, bi. The final

term, L N z, , ,10 40 keV H( )p - represents any prior knowledge of

the expected values of L10 40 keV- , NH and z.
In this study we assume p z di( ∣ ) is given by a δ-function at

the available spectroscopic or photometric redshift value. We
neglect the uncertainties in the photo-z for the seven sources
where we require such estimates, given their high accuracy (σ
0.04: Luo et al. 2010; Salvato et al. 2011; Hsu et al. 2014;
Nandra et al. 2015). For the six sources that lack redshift
information completely (one source in ECDFS that lacks a
Chandra counterpart and five sources in the serendipitous
survey without spectroscopic follow-up) we conservatively
adopt a broad redshift distribution spanning 0 < z < 5 that is a
constant function of zlog 1 .( )+ Our high spectroscopic
completeness (86%) ensures that our XLF measurements are
not significantly affected by errors in the photometric redshifts
or sources with indeterminate redshifts.
We calculate p L N z T b, , ,i i10 40 keV H( ∣ )- by assuming that

the observed counts are described by a Poisson process and
integrating over the priors on the spectral parameters (Γ, fscatt,
and R), as described in Section 3.1 of A15. Our X-ray spectral
model is folded through the NuSTAR response function; thus
we account for the variations in sensitivity across the 8–24 keV
band. The main panel of Figure 3 shows an example of the two-
dimensional constraints on L10 40 keV- and NH for a typical
source in our sample, assuming no a priori knowledge of these
values (adopting log-constant priors for L10 40 keV- and NH).
The value of NH is unconstrained, but the observed counts
allow us to place constraints on the value of L10 40 keV- ,
depending on the value of NH. If N 10H

23 cm−2 then, for this
example, we estimate that log (L10 40 keV- /erg s−1

) ≈ 44.35 ±

0.15. The error is a combination of the Poisson uncertainties
and the uncertainties on the other spectral parameters (primarily
Γ and R) but is not affected by the absorption. For higher
values of NH, the same observed counts must correspond to a
higher intrinsic luminosity.
However, we do not completely lack a priori knowledge of

L10 40 keV- or NH. A number of previous studies have presented
estimates of the XLF and NH function of AGNs, albeit based on
lower energy or lower redshift data (e.g., La Franca et al. 2005;
Burlon et al. 2011; Ueda et al. 2014, A15). Such studies tell us
that high luminosity sources are significantly rarer than lower
luminosity sources (due to the double power-law shape of the
XLF) and predict different distributions of NH. We can use
these studies to apply informative priors when estimating
p L N z d T b, , , ,i i i10 40 keV H( ∣ )- for an individual source.
The sub-panels of Figure 3 illustrate the marginalized

distributions of L10 40 keV- and NH (bottom and right panels,
respectively). For our non-informative (log-constant) priors on
L10 40 keV- and NH (solid black lines), there is a long tail in
p L ,10 40 keV( )- corresponding to Compton-thick column den-
sities and correspondingly higher luminosities. We also apply
priors based on the XLF and NH functions of A15 (blue dashed
lines, see Section 5.1 and Table 9 of A15 for the model
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specification and parameter values, respectively) and U14 (red

dotted lines, see Tables 2 and 4 of U14). These studies give the

XLF in terms of the intrinsic (i.e., absorption-corrected) rest-

frame 2–10 keV luminosity, which we convert to L10 40 keV-
using our X-ray spectral model (marginalizing over the priors

on the spectral parameters). With priors based on either the

U14 or A15 models, the long tail in p L10 40 keV( )- is

significantly suppressed as high luminosity sources are

substantially rarer (according to the XLF). In addition, the

peak of p L10 40 keV( )- is shifted to slightly lower L10 40 keV- than

with a constant prior. This shift accounts for the effect of

Eddington bias: a detection is more likely to be a lower

luminosity (and hence more common) source where the

observed flux is a positive fluctuation. Our extensive simula-

tions have shown that this effect is significant in our NuSTAR

survey data (see C15).
The distribution of p NH( ) (right panel of Figure 3) is mainly

determined by the shape of the NH function at N 10H
23 cm−2.

Thus, in this example, the probability density is slightly higher

for N 10H
20 21= - cm−2 than for N 10H

21 23= - cm−2. There are

only slight differences between the priors based on U14 or A15.

At a fixed luminosity, the intrinsic NH function rises at

N 10H
23 24= - cm−2

(for both models), hence p NH( ) increases

at N 10H
23= cm−2. However, at z = 1.0, absorption by column

densities 1023 cm−2 starts to suppress the observed 8–24 keV

flux; thus, at N 10H
23> cm−2 the same observed counts must

correspond to a higher L10 40 keV- . As higher luminosity sources

are rarer, the marginalized p NH( ) decreases as NH increases,

indicating that a detected source is less likely to be associated
with these higher levels of absorption. An individual detection is
very unlikely to be a Compton-thick AGN and the chance of
extreme column densities (N 10H

25 cm−2
) is even more

strongly suppressed. Nonetheless, the probability of an individual
source having a Compton-thick NH is slightly higher for the U14
prior (which has a higher intrinsic Compton-thick fraction32,
f 50CThick » %) than for the A15 prior ( f 25CThick » %).

3.2. Binned Estimates of the XLF

Our NuSTAR sample is relatively small and is limited to L*
sources at z > 0.5 (see Figure 1). Thus, we do not attempt to fit
an overall parametric model for the shape of the XLF and its
evolution. Instead, we produce binned estimates of the XLF in
fixed luminosity and redshift bins. We adopt the Nobs/Nmdl

method (Miyaji et al. 2001; Aird et al. 2010; Miyaji et al. 2015)
and use parametric models from previous, lower-energy studies
of the XLF and NH function to correct for underlying selection
effects. The binned estimate of the XLF is given by

L z
N

N
, 2b bbin mdl

obs

mdl

( ) ( )f f»

where L z,b bmdl ( )f is a given model estimate of the XLF,

evaluated at Lb and zb
33, and is rescaled by the ratio of the

effective observed number of sources in a bin (Nobs) to the

predicted number based on the model (Nmdl).
To calculate Nmdl we fold a given model of the XLF and NH

function (A15 or U14) through the 8–24 keV sensitivity curves
for our surveys (see Section 2.3, Figure 2). We convert between
L10 40 keV- , NH, and z and the observed 8–24 keV flux based on
our X-ray spectral model and the appropriate NuSTAR response
function. The Nmdl term accounts for selection biases in our
sample, primarily driven by the underlying NH function, and
allows for the fact that heavily absorbed sources are expected to
be under-represented in our sample.
To calculate Nobs we sum the individual

p L N z d T b, , , ,i i i10 40 keV H( ∣ )- distributions of our sources
(including priors based on either the U14 or A15 models)
and integrate over a given luminosity–redshift bin. As we allow
for a range of possible luminosities (and in some cases
redshifts), an individual source can make a partial contribution
to Nobs for multiple bins.
We estimate errors on our binned XLF based on the

approximate Poisson error in the effective observed number of
sources in a bin, Nobs. We obtain Poisson errors based on
Gehrels (1986), although in many cases Nobs is non-integer and
thus these errors are approximations (see also Aird et al. 2010;
Miyaji et al. 2015). We only plot bins where N 1.obs 
We note that all three terms in Equation (2) will depend, to

varying extents, on the underlying parametric model of the
XLF and NH function that is assumed. In particular, changing
the assumed fCThick will alter our binned estimates; we expect
Compton-thick sources are severely under-represented in our
observed sample, which is accounted for in the Nmdl term, and
thus our XLF estimates are increased to allow for this missed
population. We explore these effects further in Section 4 below.

Figure 3. Example of the two-dimensional probability distributions of
L10 40 keV- and NH for a single NuSTAR 8–24 keV detection (main panel),
based purely on the observed 8–24 keV counts and background and assuming
no a priori knowledge of L10 40 keV- or NH. Contours indicate the 68.3% (solid)
and 95.4% (dashed) confidence intervals (i.e., 1 and 2σ equivalent) in the two-
dimensional parameter space. The sub-panels show the marginalized distribu-
tions of L10 40 keV- (bottom) and NH (right) for the log-constant prior (black
solid line) and applying informative priors based on previous estimates of the
XLF and NH function by A15 (blue dashed line) and U14 (red dotted line),
extrapolated to the NuSTAR energy band. See Section 3.1 for more details.

32
We define the intrinsic fraction of Compton-thick AGNs, fCThick, as the ratio

of the number of sources with N 10H
24 26= - cm−2 to all absorbed

(N 10H
22> cm−2

) AGNs.
33

We fix Lb at the center of the luminosity bin, whereas zb is fixed at the mean
redshift of all sources in a given redshift bin.
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4. MEASUREMENTS OF THE XLF WITH NUSTAR

In this section we present measurements of the XLF of
AGNs based on the NuSTAR 8–24 keV sample. In Figure 4 (top

panels) we present binned estimates of the 10–40 keV XLF in

three redshift ranges based on the N Nobs mdl method. The green

triangles are estimates where we neglect the effects of

absorption, providing the most direct estimate of the

observed 10–40 keV XLF. We assume all sources have
N 10H

20= cm−2 and calculate the binned XLF utilising the

best-fitting model for the Compton-thin XLF from A15,

although these binned estimates are not strongly affected by

the assumed XLF model. The red crosses and blue circles are

binned estimates where we account for absorption effects using
the best-fitting model of the NH function from U14 and A15,

respectively, and adopt the total XLF of AGNs (including

Compton-thick sources), extraoplated from 2–10 keV energies.

These binned estimates are higher than when absorption

is neglected (green triangles) due to the corrections for

heavily absorbed (N 10H
23 cm−2

) and Compton-thick

(N 10H
24 cm−2

) sources that will be under-represented in

our observed samples due to selection biases, even at the harder

energies probed by NuSTAR. Our binned estimates are listed in
Table 1.
In Figure 4, we also show the U14 model for the total XLF

(including Compton-thick sources), extrapolated from
2–10 keV energies (black dashed line). To extrapolate, we
assume our (unabsorbed) X-ray spectral model evaluated at the
mean of the priors on the spectral parameters (i.e., Γ = 1.9,
fscatt = 1.9%, and R = 1.0), which gives

L Llog erg s log erg s 0.14

3

10 40 keV
1

2 10 keV
1( ) ( )

( )

» +-
-

-
-

where L2–10 keV is the rest-frame 2–10 keV luminosity. Both

the U14- and A15-based binned estimates, to first order, are in

agreement with this extrapolation of the XLF model, within

their errors. We note that the extrapolation of the A15 model

for the total XLF (including Compton-thick AGNs) is virtually

identical to the U14 XLF model over the range of luminosities

and redshifts probed by our data and thus is also in agreement

with the binned estimates.
On closer examination, however, there are differences

between the binned estimates when the U14 model of the NH

Figure 4. Top panels: binned estimates of the 10–40 keV XLF of AGNs based on the NuSTAR 8–24 keV selected sample in three redshift ranges. Green triangles are
estimates when the effects of absorption are neglected (error bars are omitted for clarity). The red crosses and blue circles are binned estimates of the XLF, where the
luminosities and space densities are corrected for absorption effects. We account for absorption-dependent selection effects using the Nobs/Nmdl method, assuming
different models of the NH function (including Compton-thick AGNs): U14 and A15 for the red crosses and blue circles, respectively. Errors are based on the Poisson
error in the observed number of sources in a bin. There are small discrepancies between the U14 and A15 binned estimates due to differences in the models of the NH

function (see Figure 5 and text in Section 4 for details). The black dashed line shows a model of the total XLF of AGNs (from U14, although the A15 XLF model is
virtually identical over the range probed by our data), extrapolated from 2–10 keV energies to the 10–40 keV band assuming our baseline, unabsorbed X-ray spectral
model (with 1.9G = and R = 1). Assuming stronger reflection (e.g., R = 2) shifts the model to higher luminosities (gray dotted line) and can thus bring the model into
better agreement with the binned estimates based on the U14 NH function. The purple long-dashed lines in all panels show the XLF from Swift/BAT (Ajello
et al. 2012) at z ≈ 0, converted to the 10–40 keV band. Bottom panels: ratio between the XLF model and the binned estimates in terms of Nobs/Nmdl.
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function is used to correct for selection biases, rather than A15.
The U14 binned estimates are slightly higher than the A15
binned estimates, most noticeably at higher redshifts, and are
systematically higher than the extrapolated XLF model. The
Nobs/Nmdl ratios, indicating the differences between our binned
estimates and the model, are shown in the bottom panels of
Figure 4 and also illustrate this pattern: Nobs/Nmdl is system-
atically higher for the U14-based binned estimates, indicating
that the U14 model of the NH function under-predicts the
number of sources in our NuSTAR sample (i.e., under-predicts
Nmdl). These discrepancies must be due to differences in the
underlying model of the NH function, which introduces
different corrections for the fraction of heavily absorbed and
Compton-thick sources.

To explore this further, in the top panels of Figure 5 we show
the intrinsic NH functions from the U14 and A15 models,
evaluated at the mean redshift and geometric mean luminosity
for NuSTAR sources in each bin. There are clear differences
whereby the U14 model has a higher fraction of sources in the
Compton-thick regime ( f 50CThick = % versus 25% for A15)
and a lower relative fraction of sources with
N 10H

23 24= - cm−2
(i.e., heavily obscured, but Compton-thin

sources). These differences result in higher binned estimates of
the XLF in Figure 4 when the U14 model is used to correct for
selection biases—the binned estimates are increased to allow
for a larger population of Compton-thick sources that are not
represented in our observed samples.

The bottom panels of Figure 5 show the predicted numbers
of sources with different NH values in our 8–24 keV selected
sample. These are calculated by folding the U14 or A15 models
of the NH function (and XLF) through our sensitivity functions

(assuming our X-ray spectral model) over the entire redshift
bin. The predicted distributions differ substantially from the
intrinsic NH functions shown in the top panels; most noticeably
the predicted numbers of Compton-thick AGNs in the samples
are extremely small. Such small numbers are due to the flux
from a Compton-thick AGN being suppressed by a factor of
2–10, even in the relatively hard 8–24 keV band that is used
for selection, combined with the steep slope of the XLF at the
bright luminosities that we probe, which results in strong
selection biases against such sources (see Figure 3 and
Ballantyne et al. 2011). The predicted numbers of sources
based on the U14 model are generally smaller than with the
A15 model due to the higher intrinsic fCThick in the U14 model.
The total predicted numbers, Nmdl combined over all
luminosities, and the effective observed numbers in a bin,
Nobs, are given in each panel. Generally, Nmdl based on the A15
model is closer to Nobs in all of the redshift panels, although
statistically the Nmdl estimates from both A15 and U14 are
consistent with Nobs at the <2.5σ level. Combining the three
redshift panels, we find that our total observed number of
sources (94) is consistent with the prediction based on A15
(84.5) at the <1σ level but is significantly higher (>3σ) than
the U14 prediction (58.9).
Another possible explanation for the U14 model under-

predicting the observed number of sources could be our choice
of X-ray spectral model. Assuming different prior distributions
for Γ, fscatt, and R could change the extrapolation of our models
of the XLF to the 10–40 keV band, potentially bringing the
model XLF into better agreement with our binned estimates
and altering our Nmdl predictions (without requiring any
changes to the NH function). Varying fscatt has a minimal

Table 1

Binned Estimates of the Rest-frame 10–40 keV X-Ray Luminosity Function of AGNs Based on the NuSTAR 8–24 keV Sample

z-range zá ña Llog 10 40 keV- fnoabs
b fA15

c fU14
d

(erg s−1
) (Mpc−3 dex−1

) (Mpc−3 dex−1
) (Mpc−3 dex−1

)

0.1–0.5 0.28 42.75–43.00 1.81 101.08
2.14 4´-
+ - 2.64 101.76

3.86 4´-
+ - 3.42 102.25

4.87 4´-
+ -

43.00–43.25 9.39 104.67
8.13 5´-
+ - 1.52 100.81

1.46 4´-
+ - 1.74 100.93

1.71 4´-
+ -

43.25–43.50 5.69 102.27
3.50 5´-
+ - 9.51 103.82

5.91 5´-
+ - 1.02 100.42

0.66 4´-
+ -

43.50–43.75 2.63 100.98
1.46 5´-
+ - 4.08 101.52

2.28 5´-
+ - 4.60 101.74

2.62 5´-
+ -

43.75–44.00 8.48 103.85
6.33 6´-
+ - 1.27 100.54

0.86 5´-
+ - 1.59 100.67

1.07 5´-
+ -

44.00–44.25 3.20 101.66
2.95 6´-
+ - 4.28 102.18

3.84 6´-
+ - 5.73 102.87

5.03 6´-
+ -

44.25–44.50 1.81 100.95
1.71 6´-
+ - 3.00 101.50

2.63 6´-
+ - 3.83 101.90

3.28 6´-
+ -

0.5–1.0 0.75 43.50–43.75 1.74 101.27
3.09 4´-
+ - 2.12 101.73

4.89 4´-
+ - 2.95 102.44

7.05 4´-
+ -

43.75–44.00 5.92 103.05
5.42 5´-
+ - 9.49 105.06

9.21 5´-
+ - 1.25 100.66

1.20 4´-
+ -

44.00–44.25 2.32 100.96
1.50 5´-
+ - 3.21 101.33

2.08 5´-
+ - 3.89 101.59

2.48 5´-
+ -

44.25–44.50 1.53 100.42
0.57 5´-
+ - 1.99 100.56

0.76 5´-
+ - 2.26 100.64

0.86 5´-
+ -

44.50–44.75 4.17 101.39
1.98 6´-
+ - 5.89 101.89

2.65 6´-
+ - 6.42 102.08

2.94 6´-
+ -

44.75–45.00 3.74 102.68
6.38 7´-
+ - 5.50 103.57

7.62 7´-
+ - 5.84 103.88

8.49 7´-
+ -

1.0–3.0 1.51 44.25–44.50 4.21 102.44
4.73 5´-
+ - 5.75 103.58

7.36 5´-
+ - 1.03 100.63

1.28 4´-
+ -

44.50–44.75 1.61 100.71
1.16 5´-
+ - 2.08 100.95

1.57 5´-
+ - 3.34 101.54

2.56 5´-
+ -

44.75–45.00 5.69 102.09
3.09 6´-
+ - 6.75 102.49

3.70 6´-
+ - 8.92 103.32

4.95 6´-
+ -

45.00–45.25 2.00 100.69
1.00 6´-
+ - 2.36 100.81

1.17 6´-
+ - 2.68 100.92

1.33 6´-
+ -

45.25–45.50 3.76 101.85
3.19 7´-
+ - 4.86 102.27

3.81 7´-
+ - 4.89 102.29

3.84 7´-
+ -

45.50–45.75 1.56 100.91
1.76 7´-
+ - 1.54 100.87

1.66 7´-
+ - 1.40 100.79

1.51 7´-
+ -

Notes.
a
Mean redshift of sources in the redshift bin.

b
Binned estimates of the XLF, neglecting absorption (i.e., assuming all sources have N 10H

20= cm−2
). The A15 model for the XLF of Compton-thin AGNs is

adopted for the N Nobs mdl method. Errors are based on the Poisson error in the observed number of sources (Nobs).
c
Binned estimates of the XLF, adopting the A15 model for the NH function and the total XLF (including Compton-thick sources) for the N Nobs mdl method.

d
Binned estimates of the XLF, adopting the U14 model for the NH function and the total XLF (including Compton-thick sources) for the N Nobs mdl method.
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impact as the observed 8–24 keV band probes the direct
emission and reflection component, rather than the scattered
emission that is important at lower energies. Varying Γ has a
larger impact, although a very flat, intrinsic photon index (Γ ≈

1.4 which is then subjected to absorption) is required to bring
the U14 model into agreement with our binned estimates. It is
now well established that the intrinsic photon index of the
power-law emission from AGNs has a mean Γ ≈ 1.9 with
scatter 0.2 (e.g., Nandra & Pounds 1994; Tozzi et al. 2006;
Scott et al. 2011), as assumed in our original spectral model.

Changing our assumed reflection strength, R, has a more
significant impact. Our baseline spectral model assumes a flat
distribution in the range R = 0–2 and thus an average reflection
of R 1.á ñ = Assuming stronger reflection increases the
luminosity in the 10–40 keV band for the same 2–10 keV
luminosity.34 For R = 2, we find

L Llog erg s log erg s 0.26

4

10 40 keV
1

2 10 keV
1( ) ( )

( )

» +-
-

-
-

with our spectral model, which shifts the model XLF to higher

L10 40 keV- (gray dotted line in Figure 4) and brings it into good

agreement with the U14-based binned estimates. For a fixed

R = 2 (for all sources), we predict Nmdl = 99.9 (across all

redshift bins) with the U14 model of the NH function, in good

agreement with our observed number of sources (94).

However, with the A15 model of the NH function we predict

Nmdl = 146.2 if we adopt a spectral model with stronger

reflection (R = 2), thus over-predicting the observed number of

sources.
In conclusion, the U14 model of the NH function predicts

fewer sources than observed in our 8–24 keV sample,
possibly due to a higher relative fraction of Compton-thick
AGNs (compared to A15). Thus, the binned estimates of the
XLF are slightly higher. The A15 model, which predicts more
sources with N 10H

23 24» - cm−2, is in better agreement
with the observed samples. Alternatively, a stronger reflec-
tion component (average R ≈ 2 rather than R ≈ 1) across all
luminosities results in better agreement between our mea-
surements of the XLF and the extrapolation of the U14
model. Further study (e.g., X-ray spectral analysis) is
required to improve constraints on the NH function, determine
the intrinsic distribution of R, and refine our estimates of
the XLF.

Figure 5. Model predictions of the intrinsic and observable NH functions. Top panels: intrinsic NH functions evaluated at the mean redshift and geometric mean
luminosity of sources in the bin, based on the A15 (blue dashed line) and U14 (red dotted line) models. Bottom panels: predicted numbers of sources in our
NuSTAR 8–24 selected sample in each redshift range as a function of NH, based on the A15 and U14 models (folded through our sensitivity and assuming our baseline
R = 1 spectral model in both cases). We also give the total predicted numbers (Nmdl) in each redshift range and the observed number of sources (Nobs). The total
observed number in a bin (Nobs) is non-integer due to the small number of sources with undetermined redshifts that can thus make a partial contribution to multiple
redshift bins.

34
The contribution from reflection is negligible at the ∼2–10 keV energies

probed by A15 and U14, thus adopting a spectral model with stronger
reflection when extrapolating to the NuSTAR band does not contradict the
results of these lower-energy studies.
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5. DISCUSSION

5.1. The Evolution of the XLF

We have presented the first measurements of the rest-frame

10–40 keV XLF of AGNs at high redshifts (0.1 < z < 3) based

on a sample of sources selected at comparable observed-frame

energies (8–24 keV). Selecting at hard X-ray energies—in

contrast to prior studies based on lower-energy data—provides

estimates of the intrinsic X-ray luminosity that are relatively

unaffected by absorption due to Compton-thin column

densities (N 10H
24 cm−2

). Thus, our work provides the most

direct measurements of the XLF currently possible at these

redshifts, although our selection remains biased against

Compton-thick sources.
Our results are consistent with the strong evolution of the

AGN population seen in lower-energy studies of the XLF (e.g.,

Ueda et al. 2003; Barger et al. 2005) and at longer wavelengths

(e.g., Ross et al. 2013; Lacy et al. 2015), characterized by a

shift in the luminosity function toward higher luminosities at

higher redshifts. This evolution leads to the substantial increase

in the space density of luminous (L 1010 40 keV
44- erg s−1

)

AGNs out to z ∼ 2 that is seen in our measurements of the XLF

(see Figure 4). No substantial modifications to this overall

picture appear to be required based on our NuSTAR data,

although the limited range of luminosities probed by NuSTAR

means we are unable to measure the faint-end slope of the XLF

at z  0.5 or compare different parameterizations. Furthermore,

we find that strong (R ∼ 2) reflection is needed to reconcile the

U14 model of the XLF with our NuSTAR sample (see further

discussion in Section 5.2 below).
Our NuSTAR measurements provide a high-redshift com-

parison to previous measurements of the XLF at hard

(10 keV) X-ray energies, which have been restricted to the

local (z  0.1) universe. In Figure 6 we compare the best fit to

the XLF of local AGNs in the Swift/BAT 60-month sample

(thick purple dashed line, Ajello et al. 2012) with extrapola-

tions of the U14 and A15 models to z = 0.03 (the median

redshift of sources in the Swift/BAT sample). Both the A15

model (solid blue line) and the U14 model with a strong

(R = 2) reflection component (black dotted line)—either of

which is consistent with our higher redshift NuSTAR data—

over-predict the local Swift/BAT XLF at all luminosities. The

U14 model with R = 1 is in better agreement with the Swift/
BAT XLF close to the flux limit (vertical gray dashed line);

however, this model significantly under-predicts the number

of sources in our high-redshift NuSTAR sample (see Figure 5,

discussed in Section 4 above). A similar result is seen in our

analysis of the NuSTAR number counts, where the predictions

of population synthesis models (based on either the U14 XLF

with strong reflection or the A15 model) provide a good

agreement with the observed NuSTAR number counts but

over-predict the counts at the brighter fluxes probed by Swift/
BAT (see Figure 5 of Harrison et al. 2015). Ballantyne (2014)

also highlighted the discrepancies between measurements of

the local XLF and the extrapolations of high-redshift

evolutionary models. These findings indicate that there must

be some evolution in the XLF, absorption distribution, or

spectral properties of AGNs between z ∼ 0 and the higher

redshifts probed by NuSTAR that is not fully accounted for by

the current models.

5.2. The Absorption Distribution, the Fraction of Compton-
thick Sources and the Reflection Strength

Our final binned estimates of the XLF differ slightly
depending on the underlying model of the NH function that is
used to correct for selection biases, whereby the binned
estimates using the U14 model are systematically higher than
the binned estimates using the A15 model. Our observed
sample appears to favor a higher relative number of heavily
absorbed (N 10H

23 24» - cm−2
) sources and a lower Comp-

ton-thick fraction, as given by the A15 model. We note that the
NH function of A15 is based on an indirect method, attempting
to reconcile samples of AGNs selected at 0.5–2 keV and
2–7 keV energies from Chandra surveys, spanning out to z ∼

5. In contrast, U14 determine the NH function in the local
universe based on spectral analysis of sources in the Swift/
BAT AGN sample (selected at 15–195 keV), which is then
extrapolated to higher redshifts. Both of these methods have
their limitations. Accurate constraints on the intrinsic NH

function in both the local and high-redshift universe are vital to
determine the extent of obscured black hole growth and shed
light on the physical origin of the obscuring material (e.g.,
Hopkins et al. 2006; Buchner et al. 2015). While our results
provide indirect constraints on the NH function (we do not
measure NH for individual sources), our measurements of the

Figure 6. Comparison of the local XLF of Compton-thin AGNs, based on the
best fit to the Swift/BAT 60-month 15–55 keV sample by Ajello et al. (2012;
purple long-dashed line, hatched region indicates conversion to 10–40 keV
with a photon index between Γ = 1.4 and Γ = 2.1) to extrapolations of the U14
and A15 models (evaluated at z = 0.03, the median redshift of the Swift/BAT
sample). The extrapolations of the A15 model with moderate reflection (R = 1)

and a relatively high fraction of sources with N 10H
23 24= - cm−2

(blue solid
line) and the U14 model with strong reflection (R = 2, dotted black line), both
of which can describe the high-redshift population seen by NuSTAR, over-
predict the observed z ∼ 0 XLF at all luminosities. The U14 model with R = 1
is in better agreement with the Swift/BAT measurement close to the flux limit
(vertical gray dashed line); however, this model significantly under-predicts the
number of sources in our high-redshift NuSTAR sample. These findings
indicate that there is evolution in the XLF, absorption distribution, or spectral
properties of AGNs between z ∼ 0 and the higher redshifts (z ∼ 0.1–3) probed
by NuSTAR that is not accounted for by the current models.
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10–40 keV XLF place important constraints on the number
densities of absorbed, moderately luminous sources at z  0.1.

The incidence and strength of Compton reflection, which can
substantially boost the observed fluxes at 10 keV energies,
also has an important impact on our study. Moderate reflection
(R ≈ 1) provides a good agreement between our observed
NuSTAR sample and the extrapolation of the A15 XLF from
lower energies. A stronger (R ≈ 2) reflection component is
needed to reconcile our NuSTAR sample with the extrapolated
model without requiring changes to the U14 NH function and
Compton-thick fraction. Most prior studies have found that R
(usually probed indirectly via the strength of the iron K-line) is
inversely correlated with luminosity and generally weak (i.e.,
R  1) for moderately luminous AGNs (e.g., Iwasawa &
Taniguchi 1993; Nandra et al. 1997; Page et al. 2005; Ricci
et al. 2011). Spectral analysis of a single source in our NuSTAR
sample (NuSTAR J033202-2746.8 in the ECDFS: Del Moro
et al. 2014) found a moderate reflection component (R ≈ 0.55)
for this high luminosity (L 6.4 1010 40 keV

44» ´- erg s−1
)

source. However, Ballantyne (2014) found that strong reflec-
tion (R ≈ 1.7) at all luminosities is needed to reconcile different
measurements of the local XLF across a wide range of X-ray
energies (∼0.5–200 keV). Our measurements of the 10–40 keV
XLF indicate that moderate-to-strong reflection (R ∼ 1−2) is
required to describe the average spectral characteristics of
L 1010 40 keV

43 46~-
- erg s−1 AGNs at z ∼ 0.1–3. The extent,

strength, and spectral characteristics of reflection provide
insights into the physical nature of the obscuring material
and the accretion disk (e.g., García et al. 2013; Falocco
et al. 2014; Brightman et al. 2015). Strong reflection could also
indicate a substantial population of rapidly spinning black holes
in the detected sample; however, a relatively small intrinsic
fraction of high-spin sources (∼7%) can potentially dominate
the observed number counts at a given flux limit (Brenneman
et al. 2011; Vasudevan et al. 2015). Accurately measuring the
distribution of reflection is thus an important challenge for
future statistical studies of AGN populations.

The Compton-thick fraction and the strength of reflection are
also vital parameters for understanding the origin of the CXB,
in particular, the peak at ∼20–30 keV (e.g., Gilli et al. 2007;
Draper & Ballantyne 2009; Akylas et al. 2012). The
degeneracy between these parameters and the consequences
for AGN population synthesis models are discussed in detail by
Treister et al. (2009). Our measurements of the XLF appear to
suffer from a similar degeneracy. Nevertheless, our results
constrain the distribution of luminosity and redshift of sources
responsible for a large fraction of the CXB emission (∼35% at
8–24 keV, see Harrison et al. 2015), placing an additional
constraint on the possible contributions of Compton-thick
AGNs or reflection to the CXB.

Recent NuSTAR studies have provided constraints on the
distribution of NH of optically selected Type-2 QSOs (Gandhi
et al. 2014; Lansbury et al. 2014, 2015) and find that NH is
often underestimated for these sources based purely on low-
energy (<10 keV) data. Given the small sample sizes and large
remaining uncertainties, their recovered NH function is
consistent with both the U14 and A15 models adopted in this
paper. C15 use a band ratio analysis to identify candidate
Compton-thick AGNs among NuSTAR detected sources in the
survey of the COSMOS field. Their number of candidates
(∼13%–20% of the NuSTAR sources) is significantly higher
than our predictions (we expect only ∼0.5 Compton-thick

AGNs out of 32 sources detected at 8–24 keV energies in
COSMOS), indicating that our models may need updating to a
much higher intrinsic fCThick. However, X-ray spectral analysis
is required to measure NH and confirm the Compton-thick
nature of these candidates. Alexander et al. (2013) presented
X-ray spectral analysis of the first ten sources from the NuSTAR
serendipitous survey, finding a high fraction (50%) have
N 10H

22 cm−2 but none were Compton-thick, consistent
with the predictions of our models, albeit for a limited sample
size. Del Moro et al. (2014) presented the first spectral analysis
from the deep survey of the ECDFS, focusing on a single
source.

5.3. Future Prospects

To fully test the conclusions of this paper, compare between
the U14 and A15 models, and refine our estimates of the XLF
requires accurate measurements of the distribution of NH and R
for AGNs across a wide range of luminosities and redshifts.
Spectral analysis of sources from across the NuSTAR extra-
galactic survey program will be the focus of forthcoming papers
(A. Del Moro et al. 2016, in preparation, L. Zappacosta et al.
2016, in preparation) and will place crucial constraints on the
distribution of NH and R for luminous AGNs out to z ∼ 3.
Ultimately though, the ability of the NuSTAR survey program to
constrain the XLF, NH function, Compton-thick fraction, or
reflection properties of AGNs is limited by both depth and
sample size. The ongoing survey program will improve this
situation. Our serendipitous sample will roughly double with the
inclusion of Southern fields (see G. B. Lansbury et al. 2016, in
preparation) and continues to grow as NuSTAR observes targets.
The dedicated survey program is also continuing and will initially
focus on increasing the area coverage of the deep (∼400 ks) layer
via observations of the GOODS-N (Alexander et al. 2003) and
UDS (Lawrence et al. 2007; Ueda et al. 2008) fields. These
observations will increase the area coverage at the faintest fluxes
by 50 %, improving the number statistics at low luminosities.
Pushing to greater depths, however, is vital to constrain the

low-to-moderate luminosity AGN population (L*) that
corresponds to the bulk of the accretion density. Our current
NuSTAR sample is limited to luminous X-ray sources. We do
not probe below the break in the XLF (L*) at z  0.5 and do
not place strong constraints on the faint-end slope in any
redshift bin. Thus, we are unable to address issues regarding
the best parametric description of the evolution of the XLF
(i.e., pure luminosity evolution, independent luminosity and
density evolution, luminosity-dependent density evolution) or
the extent of any evolution in the shape (see Aird et al. 2010;
Miyaji et al. 2015, U14, A15). At fainter luminosities the
intrinsic Compton-thick fraction is expected to be somewhat
higher and the flatter slope of the XLF should reduce the biases
against the detection of such sources in the current samples (see
Figure 5). Indeed, the observed fraction of Compton-thick
AGNs in deep Chandra surveys (∼3%, e.g., Brightman
et al. 2014) is similar to the expected fraction in our NuSTAR
survey and the absolute numbers (∼100 Compton-thick
candidates were identified by Brightman et al. 2014) are much
larger, mainly due to the much fainter luminosities that are
accessed by Chandra.35 Substantially increasing the nominal

35
We note that the higher energies probed by NuSTAR are vital to accurately

characterize the spectra of both Compton-thin and Compton-thick AGNs,
measure NH, and determine the strength of the reflection component (see
Lansbury et al. 2015).
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depths of the NuSTAR survey is challenging as the observations
are background limited for exposures 150 ks. An alternative
strategy is to consider sources that are detected in the broader
3–24 keV band, providing a sample of sources a factor 2
larger and reaching luminosities a factor ∼2 fainter than the
8–24 keV sample considered here. A preliminary analysis of
the 3–24 keV sample (using the same, indirect approach to
absorption corrections described in this paper) indicates that the
XLF is consistent with the U14 and A15 models at L*,
although this band is dominated by soft (8 keV) photons and
larger, uncertain corrections are required for the fraction of
absorbed and Compton-thick sources. However, many of the
sources detected at 3–8 keV or 3–24 keV in the NuSTAR
surveys have statistically significant counts (and thus useful
information) at harder energies. Thus, it may be possible to
improve constraints on the XLF, NH function, and distribution
of reflection via sophisticated analysis of the band ratios or
X-ray spectra, or via stacking analyses. Careful consideration
of the survey sensitivity and selection biases will be vital in
such studies.

6. CONCLUSIONS

1. We have presented the first measurements of the rest-
frame 10–40 keV XLF of AGNs at 0.1 < z < 3 based on
a sample of 94 sources selected at comparable observed-
frame energies (8–24 keV). Our study takes advantage of
the unprecedented sensitivity at these energies that is
achieved by the NuSTAR survey program.

2. We find that different models of the NH function, used to
account for selection biases in our measurements, make
significantly different predictions for the total number of
sources in our sample, leading to slight differences in our
binned estimates of the XLF. The Ueda et al. (2014)
model predicts fewer AGNs than observed in our sample,
possibly due to a higher fCThick, whereas the Aird et al.
(2015) model, which predicts more sources with
N 10H

23 24» - cm−2, is in better agreement with the
observed samples.

3. Our results are also sensitive to our assumed X-ray
spectral model. Stronger reflection (R ≈ 2, compared to
our baseline assumption of R ≈ 1) at all luminosities can
bring the Ueda et al. (2014) model predictions into better
agreement with our NuSTAR sample. However, with R ≈

2 the Aird et al. (2015) model over-predicts the number of
sources in our sample by 50%.

4. Our results are consistent with the strong evolution of the
AGN population seen in lower-energy studies of the XLF
(e.g., Ueda et al. 2003; Barger et al. 2005; Aird et al.
2010), characterized by a shift in the luminosity function
toward higher luminosities at higher redshifts. However,
the models that successfully describe the high-redshift
population detected by NuSTAR tend to over-predict the
local (z ≈ 0) XLF measured by Swift/BAT, indicating
some evolution of the AGN population that is not fully
captured by the current models. Nonetheless, as our
sample is limited to luminous (L∗) X-ray sources at
z  0.5, we defer an investigation of different parametric
descriptions of the evolution of the XLF to future studies.

5. Forthcoming X-ray spectral analysis of the NuSTAR
survey should enable us to measure NH and R for the
brightest sources, break the degeneracy between the NH

function and the average reflection strength, and refine

our estimates of the XLF. Including lower-energy
NuSTAR detections may enable us to probe a factor ∼2
deeper. The ongoing NuSTAR survey program will also
increase our sample size and improve our estimates of
the XLF.
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