
The NUXMV Symbolic Model Checker?

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti
A. Micheli, S. Mover, M. Roveri, and S. Tonetta

Fondazione Bruno Kessler

Abstract. This paper describes the NUXMV symbolic model checker for finite-
and infinite-state synchronous transition systems. NUXMV is the evolution of the
NUSMV open source model checker. It builds on and extends NUSMV along
two main directions. For finite-state systems it complements the basic verification
techniques of NUSMV with state-of-the-art verification algorithms. For infinite-
state systems, it extends the NUSMV language with new data types, namely Inte-
gers and Reals, and it provides advanced SMT-based model checking techniques.
Besides extended functionalities, NUXMV has been optimized in terms of perfor-
mance to be competitive with the state of the art. NUXMV has been used in several
industrial projects as verification back-end, and it is the basis for several exten-
sions to cope with requirements analysis, contract based design, model checking
of hybrid systems, safety assessment, and software model checking.

1 Introduction

NUSMV [1] is a symbolic model checker for finite state fair transition systems. It has
been developed jointly by Carnegie Mellon University, the University of Trento and
Fondazione Bruno Kessler (FBK) since 1999. It is distributed as open source under
the LGPL license, and it integrates some of the most successful BDD and SAT based
symbolic model checking algorithms up to 2011 (the year of its last official release).

Since its first release in 1999, the public available version of NUSMV has been
complemented and extended, internally at FBK, with multiple functionalities. This was
done in order to facilitate its deployment in several operational settings, and to take into
account the needs resulting from industrial and research projects. In particular, we in-
tegrated functionalities for requirements engineering, safety assessment, contract based
design, and techniques for the analysis of hybrid systems; we also interfaced NUXMV
with SMT engines. The whole set of new functionalities were developed as a single
code-base, referred in several papers as NuSMT and NuSMV3. To better maintain such
features, and to facilitate the deployment, we started a re-engineering process where we
separated all of them in several different tools. In this view, NUSMV is the code-base
that provides basic functionalities and common data structures to all the other tools (e.g.
symbol table, handling of expressions, interface with the CUDD [2] BDD package, in-
terface with the SAT solvers (e.g. MINISAT [3]). NUSMV also provides all the basic
model checking algorithms for the pure Boolean case.

? This work was carried out within the D-MILS project, which is partially funded under the
European Commission’s Seventh Framework Programme (FP7).

In this paper we describe NUXMV, a new symbolic model checker for finite- and
infinite-state synchronous fair transition systems. NUXMV is the evolution of NUSMV,
as such it builds on NUSMV and extends it along two main directions. For finite-
state systems, it complements NUSMV basic verification techniques with a family of
new state-of-the-art verification algorithms. For infinite-state systems, it extends the
NUSMV language with new data types, namely Integers and Reals, and it provides
advanced SMT-based model checking techniques. NUXMV participated in the 2013
hardware model checking competition (HWMCC’13) positioning among the first four
in the single and multiple tracks. NUXMV also compares well with other model check-
ers for infinite-state systems. Finally, NUXMV has been successfully used in several
application domains and in industrial settings. It is currently the core verification en-
gine for many other tools (also industrial ones). The tool is distributed in binary code,
free to be used for academic research and for non-commercial uses. The latest version
of NUXMV can be downloaded from https://nuxmv.fbk.eu.

2 Functionalities

NUXMV inherits, and thus provides to the user, all the functionalities of NUSMV [1].
In this section we describe all the new features distinguishing them in those for the
analysis of finite-state domains, those for the analysis of infinite-state domains, and
other generic features.

2.1 Analysis of finite-state domains

NUXMV complements the NUSMV language with the AIGER [4] format. AIGER is
the language adopted in the hardware model checking competition. Once the AIGER file
is read, the internal data structures of NUXMV are populated, and it is possible to verify
the properties (if any) with any of the available verification algorithms, or specify new
properties interactively “playing” with the design.

NUXMV implements a vast portfolio of algorithms for invariant checking. We cur-
rently provide an implementation for the McMillan interpolation-based approach [5]
and for the interpolation sequence approach [6]. Interpolation based algorithms are
complemented with k-induction algorithms [7] and a family of algorithms based on
IC3 [8,9,10]. The IC3 algorithm using abstraction refinement [10] comes in two variant
depending on the approach to refinement: the original one based on IC3, and a new
variant based on BMC. All these techniques, benefit from the use of temporal decom-
position [11] and from techniques to discover equivalences to simplify the problem. We
remark that, to implement the interpolation based algorithms we extended MINISAT [3]
to build a resolution proof.

Still related to the verification of invariants, we also improved the BDD based
invariant checking algorithms by allowing the user to specify hints in the spirit of
guided reachability [12]. The hints are specified using a restricted fragment of the PSL
SERE [13]. The hints can also be used to compute the full set of the reachable states.

For LTL SAT based model checking, we complemented the BMC based algorithms
of NUSMV [14,15] with k-liveness [16] integrated within an IC3 framework. K-liveness
is based on counting and bounding the number of times a fairness constraint can become

2

https://nuxmv.fbk.eu

true. This is used in conjunction with the construction of a monitor for LTL properties,
for which we use the LTL2SMV [17] as provided by NUSMV.

2.2 Analysis of infinite-state domains

1 MODULE main
2 IVAR
3 d : Real ;
4 VAR
5 s ta te : {s0 , s1};
6 res : Real ;
7 ASSIGN
8 i n i t (s t a t e) := s0 ;
9 next (s t a t e) := case

10 s ta te = s0 & res >= 0.10 : s1 ;
11 s ta te = s1 & res >= 0.20 : s0 ;
12 TRUE : s t a t e ;
13 esac ;
14 next (t) := case
15 s ta te = s0 & res < 0.10 : res + d ;
16 s ta te = s1 & res < 0.20 : res + d ;
17 TRUE : 0 . 0 ;
18 esac ;
19 INIT
20 res >= 0.0
21 TRANS
22 (s t a t e = s0−> (d >= 0 & d <= 0 . 0 1)) &
23 (s t a t e = s1−> (d >= 0 & d <= 0 . 0 2))
24 INVARSPEC res <= 0 . 3 ;

Fig. 1. Example of the NUXMV language.

In order to allow the user to specify infinite-
state systems, we extended the language of
NUSMV with two new data types, namely Re-
als and unbounded Integers. This, for instance,
enables to specify domains with infinite data
types (like e.g. the example in Fig. 1).

To analyze such kind of designs, we inte-
grated in NUXMV several new verification al-
gorithms based on Satisfiability Modulo Theory
(SMT) [18] and on abstraction, or combination
of abstraction with other techniques.

We lifted Simple Bounded Model Checking
(SBMC) [15] from the pure Boolean case to the
SMT case. The encoding is the same as that of
SBMC, but instead of using a SAT solver we
use an SMT solver. The SBMC SMT based approach for LTL verification is comple-
mented with k-liveness combined with IC3 extended to the infinite-state case [19]. This
approach relies on recent results on applying an IC3-based approach to the verification
of infinite-state systems [20]. We remark that, although these approaches are in general
incomplete, if a lazo-shaped counterexample exists, it is guaranteed to be eventually
found. Moreover, for certain designs, they are able to conclude that the property hold.

As far as invariant checking is concerned, we lifted the pure Boolean approaches
like BMC, k-induction, interpolation, and IC3 to the infinite-state systems case. Intu-
itively, we use an SMT solver in place of the SAT solver. Similarly to the finite case, we
provide an SMT based implementation for the McMillan approach [5], the interpolation
sequence approach [6], k-induction [7] and for algorithms based on IC3 [20,21].

NUXMV also implements several approaches based on abstraction refinement [22].
We provide new algorithms combining abstraction with BMC and k-induction [23].
The algorithms do not rely on quantifier elimination techniques to compute the ab-
straction, but encode the model checking problem over the abstract state space into
SMT problems. The advantage, is that they avoid the possible bottleneck of abstrac-
tion computation. The very same approach has been recently lifted and tightly inte-
grated within the IC3 framework [21], with very good results. All these techniques
complement the “classical” counterexample guided (predicate) abstraction refinement
(CEGAR) [22], also implemented in NUXMV. The CEGAR approach requires the com-
putation of a quantifier-free formula that is equivalent to the abstract transition relation
w.r.t. a given set of predicates. This, in turn, requires the solving of an AllSAT prob-
lem [24]. For this step, NUXMV implements different techniques: a combination of
BDD and SMT [25,26], where BDDs are used as compact Boolean model enumerators
within an AllSMT approach; a technique that exploits the structure of the system under
verification, to partition the abstraction problem into the combination of several smaller
abstraction problems [27]. For the refinement step to discard the spurious counterex-

3

ample, NUXMV implements three approaches based on the analysis of the unsatisfiable
core, on the analysis of the interpolants, and on the weakest preconditions.

2.3 Miscellaneous functionalities

NUXMV provides novel functionalities that aim at facilitating the modeling and
the understanding of complex designs. For instance, it allows for the generation of
an explicit state representation (subject to the projection over a set of user specified
predicates) in XMI format of the design under verification. The generated XMI can be
visualized in any UML based viewer supporting the import from XMI.

LTL and invariant properties have been extended to allow for the use of input signals
and next values of state variables. This does not add any expressive power to the lan-
guage, but facilitates the writing of properties from the user’s point of view. Internally,
each state formula containing a reference to an input or next signal is replaced with a
corresponding monitor allowing for the reuse of off-the-shelf verification engines.

NUXMV also provides several model transformation techniques aiming to reduce
the state space of the design. It uses static analysis techniques to extract possible values
for variables, and then re-encode the design using such information (e.g. using a word at
32 bit to store 2 values can be re-encoded with just one Boolean variable). These tech-
niques are complemented with others aiming at simplifying the model through constants
and free inputs propagation [28].

Finally, in NUXMV we removed the NUSMV limitation that restricted the support
to bit vectors with less than 64 bits only.

3 Architecture

NUXMV extends the NUSMV [1] architecture as described here after. NUXMV shares
with NUSMV all the basic functionalities, e.g. the symbol table, the flattening of the
design, the Boolean encoding of scalar variables, the representation of the finite-state
machines at the different abstraction levels (e.g., scalar, BDD). Moreover, it inherits
from NUSMV all the basic model checking algorithms for finite domains both using
BDDs (using the CUDD [2]) and SAT (e.g. MINISAT [3]). To implement the new func-
tionalities, we added new Boolean reasoning engines. We extended MINISAT with the
construction of the resolution proof. On top of this, we built an interface to extract inter-
polants. In this respect, we extended the standard API in NUSMV to also provide API
for extracting and manipulating interpolants. This also enables for the use of different
SAT engines in a transparent way.

For IC3 based algorithms, NUXMV provides two modes: execution as a library, or
call of an external executable (this was also done to participate to the hardware model
checking competition). The use of an external executable also opens to experiment with
other engines, and to reuse the results within NUXMV, provided the I/O interface is
respected. The model checking problem is dumped into AIGER format, and for violated
properties the resulting AIGER trace is converted back into a NUXMV trace.

To reason over infinite-state systems, we created an interface towards SMT engines.
We instantiated this interface on the MATHSAT5 [29] SMT solver (although in prin-
ciple other SMT solvers could be plugged in). The interface enables for a wide range

4

 20

 40

 60

 80

 100

 120

 10 100 1000 10000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

ABC-superprove
nuXmv

Iimc
v3

nuXmv-HWMCC13

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

Iimc
nuXmv

Tip
v3

Fig. 2. Results for finite domains on the HWMCC13 samples.

of queries: satisfiability checking and AllSMT queries; extraction of unsatisfiable cores
and of interpolants; and, quantifier elimination. This interface is the basis on top of
which the majority of the SMT based algorithms are built. For IC3 based algorithms, a
more tight integration with the SMT solver is required, therefore we implemented them
directly on top of MATHSAT5. We then interfaced this new engine with NUXMV.

NUXMV has been developed in C and in C++. It compiles and executes on the most
widely used Operating Systems (OSs) and architectures; namely, Linux, MS Windows,
and MacOS X. Porting to other OSs is also possible (although not tested yet).

4 Performance evaluation

In order to see where NUXMV is positioned w.r.t. the state-of-the-art, we report in this
section some results. In Fig. 2 we plot the comparison of NUXMV against the three best
performers at the HWMCC13. The comparison is run on the same benchmarks used in
the HWMCC13 in the single safety (left) and in the liveness (right) tracks. We com-
pare two versions of NUXMV, the one that participated in the competition (NUXMV-
HWMCC13) and the current one. The results show that, still ABC is the top performer,
but the current version of NUXMV is able to solve more problems that the one submitted
to the competition. Moreover, it solves more problems than iimc and v3 that are per-
forming better than NUXMV-HWMCC13. Concerning the liveness track, NUXMV did
not participate in the competition. Here iimc is still the winner, but NUXMV performs
better than v3 and tip (positioned 2nd and 3rd resp. in the HWMCC13).

In Fig. 3 we report some results for the SMT cases. On the left we compare IC3 with
implicit abstraction algorithm [21] as available in NUXMV against state-of-the-art en-
gines on a set of bit-vector (BV) benchmarks (we took all the benchmarks used in [20],
using BV as background theory instead of LRA, the instances of the bitvector set
of the Software Verification Competition [30] and the instances from the test suite of
InvGen [31]). For the other solvers, bit-blasting was performed. In Fig. 3 on the right,
we compare NUXMV with other model checkers for Linear Integer Arithmetic (LIA).
(The label nuXmv-IC3(IA) corresponds to the label IC3+IA(BV) of [21]). We used
benchmarks taken from Lustre programs as available from the web page of Kind [32].
These results show that in both cases NUXMV can solve more problems than the other
state-of-the-art tools.

These results, clearly show that NUXMV is well positioned in the space of formal
verification engines, both for the finite domain case, and for the infinite domain one.

5

 20

 40

 60

 80

 100

 120

 140

 160

 1 10 100 1000 10000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

nuXmv-IC3(IA)
ABC-dprove

Tip
IC3ref

ABC-PDR

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1 10 100 1000

N
u

m
b

e
r

o
f

s
o

lv
e

d
 i
n

s
ta

n
c
e

s

Total time

nuXmv-IC3(IA)
Z3

pKind
Kind

Fig. 3. Results on SMT domains: BV and LIA (taken from [21].

5 Applications

The NUXMV symbolic model checker has been used in a wide range of applications,
both at academic and at industrial level.

As far as the industrial settings are concerned, we report that NUXMV is used at
Rockwell-Collins as one of the available back-end verification engines [33]. NUXMV
has been extended and is daily used by Ales s.r.l., also as a back-end verification engine,
for their internal verification flow [34]. Moreover, Ansaldo STS integrated NUXMV
within their development environment for the verification of railways interlocking soft-
ware [35]. We also remark that NUXMV has been widely used in several industrial
projects with the European Space Agency (ESA). For instance, it is the back-end of
the COMPASS tool [36], developed within the COMPASS [37] and AUTOGEF [38]
projects both funded by ESA. It has also been used in the EuRailCheck tool for the
validation of a fragment of the ETCS requirements [39]. EuRailCheck was developed
in response of an invitation to tender issued by the European Railway Agency.

NUXMV is also the back-end of several other tools. (We remark that, since the de-
velopment of NUXMV started a long time ago, its functionalities were used already by
other tools, often relying on intermediate, non-official versions of NUXMV itself.) It
has been integrated in AutoFocus [40]. It is used in the KRATOS [41] software model
checker, in RATSY [42] for temporal logic synthesis, and in OCRA [43] for contract
based requirements analysis. Finally, it is the basis on top of which we built the safety
assessment tool FSAP [44] and the HyCOMP [45] tool for the verification of hybrid
systems.

6 Conclusions and Future Work

In this paper we presented NUXMV, a new symbolic model checker for finite- and
infinite-state transition systems. We described its functionalities, and we reported some
results that compare its performance with the state-of-the-art. The results show that it is
well positioned w.r.t. the other possible competitors.

As future work, we would like to add support for arrays, their combination with
bit vectors, and uninterpreted functions, and to interface with the BTOR format. We
would like to exploit multi-core architecures to further speed-up the analyses. Finally,
we would like to wrap the NUXMV functionalities in a scripting language to facilitate
the experimentation of new algorithms and the customization w.r.t. user needs.

6

References

1. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In
Brinksma, E., Larsen, K.G., eds.: CAV. Volume 2404 of LNCS., Springer (2002) 359–364

2. Somenzi, F.: CUDD: Colorado University Decision Diagram package — release 2.4.1
3. Eén, N., Sörensson, N.: An extensible sat-solver. In Giunchiglia, E., Tacchella, A., eds.:

SAT. Volume 2919 of LNCS., Springer (2003) 502–518
4. Biere, A., Heljanko, K., Wieringa, S.: AIGER. (2011) http://fmv.jku.at/aiger/.
5. McMillan, K.L.: Interpolation and sat-based model checking. In Jr., W.A.H., Somenzi, F.,

eds.: CAV. Volume 2725 of LNCS., Springer (2003) 1–13
6. Vizel, Y., Grumberg, O.: Interpolation-sequence based model checking. In: FMCAD, IEEE

(2009) 1–8
7. Sheeran, M., Singh, S., Stålmarck, G.: Checking safety properties using induction and a

sat-solver. In Jr., W.A.H., Johnson, S.D., eds.: FMCAD. Volume 1954 of LNCS., Springer
(2000) 108–125

8. Bradley, A.R.: Sat-based model checking without unrolling. In Jhala, R., Schmidt, D.A.,
eds.: VMCAI. Volume 6538 of LNCS., Springer (2011) 70–87

9. Hassan, Z., Bradley, A.R., Somenzi, F.: Better generalization in ic3. In: FMCAD, IEEE
(2013) 157–164

10. Vizel, Y., Grumberg, O., Shoham, S.: Lazy abstraction and sat-based reachability in hardware
model checking. In Cabodi, G., Singh, S., eds.: FMCAD, IEEE (2012) 173–181

11. Case, M.L., Mony, H., Baumgartner, J., Kanzelman, R.: Enhanced verification by temporal
decomposition. In: FMCAD, IEEE (2009) 17–24

12. Thomas, D., Chakraborty, S., Pandya, P.K.: Efficient guided symbolic reachability using
reachability expressions. STTT 10(2) (2008) 113–129

13. Eisner, C., Fisman, D.: A Practical Introduction to PSL (Series on Integrated Circuits and
Systems). Springer-Verlag New York, Inc., Secaucus, NJ, USA (2006)

14. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without bdds. In
Cleaveland, R., ed.: TACAS. Volume 1579 of LNCS., Springer (1999) 193–207

15. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings of
bounded ltl model checking. Logical Methods in Computer Science 2(5) (2006)

16. Claessen, K., Sörensson, N.: A liveness checking algorithm that counts. In Cabodi, G.,
Singh, S., eds.: FMCAD, IEEE (2012) 52–59

17. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another Look at LTL Model Checking. Formal
Methods in System Design 10(1) (1997) 47–71

18. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In:
Handbook of Satisfiability. IOS Press (2009) 825–885

19. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying ltl properties of hybrid systems
with k-liveness. Technical report (2014) Under review.

20. Cimatti, A., Griggio, A.: Software model checking via ic3. In Madhusudan, P., Seshia, S.A.,
eds.: CAV. Volume 7358 of LNCS., Springer (2012) 277–293

21. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Ic3 modulo theories via implicit predicate
abstraction. In: TACAS. (2014)

22. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction
refinement for symbolic model checking. J. ACM 50(5) (2003) 752–794

23. Tonetta, S.: Abstract model checking without computing the abstraction. In Cavalcanti, A.,
Dams, D., eds.: FM. Volume 5850 of LNCS., Springer (2009) 89–105

24. Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT Techniques for Fast Predicate Abstraction.
In Ball, T., Jones, R.B., eds.: CAV. Volume 4144 of LNCS., Springer (2006) 424–437

25. Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyamasundar,
R.K.: Computing Predicate Abstractions by Integrating BDDs and SMT Solvers. In: FM-
CAD, IEEE Computer Society (2007) 69–76

7

http://fmv.jku.at/aiger/

26. Cimatti, A., Franzén, A., Griggio, A., Kalyanasundaram, K., Roveri, M.: Tighter integration
of BDDs and SMT for Predicate Abstraction. In: DATE, IEEE (2010) 1707–1712

27. Cimatti, A., Dubrovin, J., Junttila, T.A., Roveri, M.: Structure-aware computation of predi-
cate abstraction. In: FMCAD, IEEE (2009) 9–16

28. Armoni, R., Fix, L., Fraer, R., Heyman, T., Vardi, M.Y., Vizel, Y., Zbar, Y.: Deeper Bound
in BMC by Combining Constant Propagation and Abstraction. In: ASP-DAC, IEEE (2007)
304–309

29. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT Solver. In
Piterman, N., Smolka, S.A., eds.: TACAS. Volume 7795 of LNCS., Springer (2013) 93–107

30. Beyer, D.: Second Competition on Software Verification - (Summary of SV-COMP 2013). In
Piterman, N., Smolka, S.A., eds.: TACAS. Volume 7795 of LNCS., Springer (2013) 594–609

31. Gupta, A., Rybalchenko, A.: Invgen: An efficient invariant generator. In Bouajjani, A.,
Maler, O., eds.: CAV. Volume 5643 of LNCS., Springer (2009) 634–640

32. Hagen, G., Tinelli, C.: Scaling up the formal verification of lustre programs with smt-based
techniques. In Cimatti, A., Jones, R.B., eds.: FMCAD, IEEE (2008) 1–9

33. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Commun.
ACM 53(2) (February 2010) 58–64

34. Ferrante, O., Benvenuti, L., Mangeruca, L., Sofronis, C., Ferrari, A.: Parallel NuSMV: A
NuSMV Extension for the Verification of Complex Embedded Systems. In Ortmeier, F.,
Daniel, P., eds.: SAFECOMP Workshops. Volume 7613 of LNCS., Springer (2012) 409–416

35. Cimatti, A., Corvino, R., Lazzaro, A., Narasamdya, I., Rizzo, T., Roveri, M., Sanseviero, A.,
Tchaltsev, A.: Formal Verification and Validation of ERTMS Industrial Railway Train Spac-
ing System. In Madhusudan, P., Seshia, S.A., eds.: CAV. Volume 7358 of LNCS., Springer
(2012) 378–393

36. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M., Wimmer, R.: A
Model Checker for AADL. In Touili, T., Cook, B., Jackson, P., eds.: CAV. Volume 6174 of
LNCS., Springer (2010) 562–565

37. Bozzano, M., Cimatti, A., Katoen, J.P., Nguyen, V.Y., Noll, T., Roveri, M.: The compass ap-
proach: Correctness, modelling and performability of aerospace systems. In Buth, B., Rabe,
G., Seyfarth, T., eds.: SAFECOMP. Volume 5775 of Lecture Notes in Computer Science.,
Springer (2009) 173–186

38. Alaña, E., Naranjo, H., Yushtein, Y., Bozzano, M., Cimatti, A., Gario, M., de Ferluc, E.,
Garcia, G.: Automated generation of FDIR for the compass integrated toolset (AUTOGEF).
DASIA 2012 (2012)

39. Chiappini, A., Cimatti, A., Macchi, L., Rebollo, O., Roveri, M., Susi, A., Tonetta, S., Vit-
torini, B.: Formalization and validation of a subset of the european train control system. In
Kramer, J., Bishop, J., Devanbu, P.T., Uchitel, S., eds.: ICSE (2), ACM (2010) 109–118

40. Autofocus-Team: The AutoFOCUS tool: https://af3.fortiss.org
41. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos - A Software

Model Checker for SystemC. In Gopalakrishnan, G., Qadeer, S., eds.: CAV. Volume 6806 of
LNCS., Springer (2011) 310–316

42. Bloem, R., Cimatti, A., Greimel, K., Hofferek, G., Könighofer, R., Roveri, M., Schuppan,
V., Seeber, R.: RATSY - A New Requirements Analysis Tool with Synthesis. In Touili, T.,
Cook, B., Jackson, P., eds.: CAV. Volume 6174 of LNCS., Springer (2010) 425–429

43. Cimatti, A., Dorigatti, M., Tonetta, S.: OCRA: A tool for checking the refinement of temporal
contracts. In: ASE, IEEE (2013) 702–705

44. Bozzano, M., Villafiorita, A.: The FSAP/NuSMV-SA Safety Analysis Platform. STTT 9(1)
(2007) 5–24

45. Cimatti, A., Mover, S., Tonetta, S.: SMT-Based Verification of Hybrid Systems. In Hoff-
mann, J., Selman, B., eds.: AAAI, AAAI Press (2012)

8

https://af3.fortiss.org

	The nuXmv Symbolic Model Checker

